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Abstract: Optoelectrokinetics (OEK), a fusion of optics, electrokinetics, and microfluidics, has been
demonstrated to offer a series of extraordinary advantages in the manipulation and fabrication of
micro/nanomaterials, such as requiring no mask, programmability, flexibility, and rapidness. In this
paper, we summarize a variety of differently structured OEK chips, followed by a discussion on how
they are fabricated and the ways in which they work. We also review how three differently sized
polystyrene beads can be separated simultaneously, how a variety of nanoparticles can be assembled,
and how micro/nanomaterials can be fabricated into functional devices. Another focus of our paper
is on mask-free fabrication and assembly of hydrogel-based micro/nanostructures and its possible
applications in biological fields. We provide a summary of the current challenges facing the OEK
technique and its future prospects at the end of this paper.

Keywords: optoelectrokinetics; optically-induced dielectrophoresis; micro/nanomaterials;
separation; fabrication

1. Introduction

Accurate manipulation and fabrication of micro/nanomaterials in liquid is fundamental for a range
of applications such as micro/nanoelectronics [1,2], biosensors [3,4], biomedicine [5,6], biosensing [7,8]
and energy harvesting [9,10]. Various attempts have been made to make that happen. For example, silver
nanoparticles were integrated into the luminol system to enable more efficient electrochemiluminescence
and thereby allow for ultrasensitive detection of cardiac troponin [11]. Combining graphene and
traditional integrated circuits, a high-mobility, high-resolution, and broadband image digital sensor was
developed to capture ultraviolet, visible, and infrared light [12]. Gold nanoparticles were assembled
into micro/nanowires to fabricate a flexible pressure sensor that offers a detection limit up to 25 Pa [13].
This sensor is also sensitive to pulses in different regions of the human body, offering an approach to
facilitating the development of wearable devices.

To address real-world needs for manipulation and fabrication of micro/nanomaterials, a number
of micro-/nano-scaled methods have been presented. Typical examples include microfluidic [14,15],
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acoustic [16,17], electrokinetics [18,19], magnetic [20,21], optical [22,23], thermal [24,25], and atomic
force microscope [26,27] approaches. An emerging topic on the manipulation and fabrication of
micro/nanoparticles is about how to develop a novel mechanism that can complement what a single
technique can offer. The long-term aim is to create valuable techniques that can help extend the
applicability of micro/nanomaterials. Combining acoustic and magnetic fields, an approach that can
aggregate nanoparticles in the presence of a magnetic field and move them towards the wall of a
microchannel under the action of an external acoustic wave was proposed [28]. This approach bears
significant potential for application in target drug delivery and biomedical surgery. There is also
a technique called the acoustofluidic tweezers, which integrates acoustic waves into a microfluidic
system and offers a label-free and high-throughput way to isolate 110-nm particles from a mixture
of micro/nanoparticles with a purity as high as 99% [29]. By incorporating white light source from
light-emitting diode into a microfluidic system, the absorbance of micro/nanoparticles at different
diameters as well as the bit error rate can be determined, which allows easy and rapid measurement
of micro/nanoparticle concentration [30]. In addition, a hybrid isomotive dielectrophoresis
(DEP)-microfluidic technique was proposed for label-free separation of same-/differently-sized
micro/nanoparticles based on their crossover-frequency features [31]. This technique also enables
reliable and repeatable separation and dynamically adjusting the purity and yield of separated beads.

A new hybrid and novel manipulation technique called optically-induced dielectrophoresis
(ODEP) or optoelectrokinetics (OEK) was proposed for programmable, contact-free, flexible, automatic,
dynamic, and rapid manipulation of micro/nano-entities [32]. OEK has attracted much attention
in micro/nanomanipulation fields since it was invented in 2005. This technique combines the
merits of optical, electrokinetics, and microfluidic schemes, offering a more versatile approach to
micro-/nano-scaled manipulation and fabrication over other competing lab-on-a-chip techniques.
Optically-projected images are custom-designed on a computer using graphic animation software.
These images are then transmitted by a commercial projector and focused onto the surface of the
OEK chip, thereby triggering the photosensitive material and changing the distribution of the external
AC bias potential. Most of the AC bias potential will shift to the liquid layer, which generates a
non-uniform electric field around the illuminated area. Meanwhile, various electrokinetics forces
are produced. These forces are further exerted onto the micro/nanoparticles, driving, directing,
and delivering them towards the intended destination programmatically and digitally. This is how
optical-electrokinetics-microfluidics integration works. Featuring the use of optically-projected images
as virtual electrodes to directly manipulate micro/nanoparticles and without referring to metal-based
electrodes, OEK has been widely used in the manipulation, separation, assembly, and fabrication
of micro/nano-entities as well as extraction of their intrinsic properties [33–38], which has shown
a highly promising new strategy in the development of micro/nanomanipulation and fabrication
communities. More recently, Berkeley Lights Inc., the inventor of OEK, has commercialized this
technology in bio-related fields, offering a unique approach to take the development of biomedical
and bioengineering sciences to a new level. Furthermore, it also shows the high potential for the use
of this technology in material manipulation and fabrication to move from lab-oriented research to
real-world applications.

Unlike previous review studies that only discuss some aspects of OEK-based microfluidics [39–41],
we present a comprehensive review of OEK-based manipulation and fabrication of micro/nanoparticles.
First, we summarize differently structured OEK chips and discuss their respective working principles.
Then, we describe OEK-based manipulation and fabrication of micro-/nano-scaled materials without
using any masks. Next, we review the use of OEK chips for fabricating various hydrogel-based
structures and functional micro/nanodevices. Finally, we explain current and future challenges facing
the OEK technique and possible innovations on it.
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2. Optoelectrokinetics (OEK) Chips and Their Working Principles

The ODEP or OEK chip was firstly invented in 2005 [32]. The chip typically consists of four
layers [32]: a top glass layer coated with a transparent and conductive indium tin oxide (ITO) film,
which connects with one end of the AC bias potential; a bottom ITO glass layer serving as the bottom
electrode that connects with the other end of the AC bias potential; a thin film (50 nm) n+ hydrogenated
amorphous silicon (a-Si:H) layer, deposited onto the bottom ITO glass after generation of a 1 µm
undoped a-Si:H layer and a 20 nm silicon nitride layer; a liquid layer that contains the manipulated
micro/nanoparticles to function as a “gap” for the OEK chip. The doped a-Si:H layer can decrease the
contact resistance between the liquid layer and the undoped a-Si:H layer, and the silicon nitride layer
serves the purpose of passivation. It is worth noting that the undoped a-Si:H layer is the photosensitive
layer from which optically-induced virtual electrodes are generated. In general, the ITO layer is
sputtered onto the glass layer; the a-Si:H layer is deposited onto the ITO layer by plasma-enhanced
chemical vapor deposition. Figure 1 is an illustration of its mechanism proposed in our group given
in [42]. In our study, only a layer of a-Si:H was deposited, which was also classified into an a-Si:H
based OEK chip.

When the OEK chip is illuminated by the optically-projected patterns shown on a digital
micromirror display (DMD), the external AC voltage shifts to the liquid layer with suspended
micro/nanoparticles. Then, an optically-induced non-uniform electric field is produced around the
illuminated area. Under the action of this electric field, the micro/nanoparticles are polarized, producing
an ODEP force. This force is, in turn, exerted onto the micro/nanoparticles, which is defined as [43]〈

→

FODEP

〉
= 2πR3εmRe[K(ω)]∇

∣∣∣∣∣→Erms

∣∣∣∣∣2, (1)

where R is the radius of the micro/nanoparticles, ε is the permittivity of the liquid, E is the magnitude of
the optically-induced non-uniform electric field, rms means the root-mean-square value, the subscript
m is the liquid, ω is the angular frequency of the AC bias potential across the liquid medium, and K(ω)
is the Clausius–Mossotti (CM) factor, which is further expressed as

K(ω) =
ε∗p − ε

∗
m

ε∗p + 2ε∗m
, (2)

where ε* = ε − jσ/ω, with σ representing the conductivity. The subscript p means the particle.
The direction of the ODEP force, both positive and negative, is fully directed by the real part of the
CM factor. Specifically, if the value of the real part of the CM factor is higher than zero, a positive
ODEP force will be generated and then the micro/nanoparticles will be attracted and moved to the
illuminated area. Otherwise, the micro/nanoparticles will be pushed away from the illuminated area.
For micro/nanoparticles that vary significantly in their size, a common method to separate them is by
making the ODEP magnitudes have three orders of difference.

Other OEK forces, including AC electroosmosis (ACEO) and AC electrothermal, were investigated
using the finite element analysis (FEA) method [44]. Typically, those two kinds of electrokinetics forces
arise from the interaction between the optically-induced non-uniform electric field and liquid solution
at a given AC frequency. As an example, under the action of an ACEO force, the fluid flow can rapidly
push a large number of micro/nanoparticles towards the illuminated area and assemble them into
desired patterns or devices [45,46].

Recently, various types of photosensitive materials have been explored to manipulate
and fabricate micro/nanomaterials in the same way as an a-Si:H based OEK chip works. A
P3HT/PCBM bulk-heterojunction polymer was demonstrated as an alternative to a-Si:H for
micro/nanomanipulation [47]. Figure 2 shows the structure of an OEK chip made up of this material.
P3HT/PCBM serves as a photosensitive material to respond to optically-projected images and produce a
non-uniform electric field, thereby manipulating and isolating differently sized polystyrene beads [48].
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The P3HT/PCBM polymer for making this type of chip is created by spinning-coating at a relatively
low temperature. Compared to a-Si:H based OEK chips, OEK chips based on this material are much
easier to fabricate, except that the fabrication process of the latter requires preventing the polymer film
from being collapsed by either water or oxygen. OEK chips based on this material can bend up and
down freely to produce concave or convex curvatures, which leads to significantly higher efficiency in
separating and concentrating differently sized polystyrene beads [49].
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Figure 2. Structure of P3HT/PCBM polymer-based OEK chip (reproduced from Ref. [47]).

Another kind of OEK chip was devised based on TiOPc, an organic photosensitive material.
As shown in Figure 3 [50], the chip has the same structure as the one indicated in Figure 1. This chip
can be easily fabricated only by spinning-coating and baking techniques. This chip is fabricated in
a much easier way than an a-Si:H based chip. It has been demonstrated that this chip can perform
real-time manipulation of picobubbles [51] and droplets [52] as well as cell patterning [53]. However,
problems remain with the long-term stability of this OEK chip.



Micromachines 2020, 11, 78 5 of 20
Micromachines 2019, 10, x FOR PEER REVIEW  5 of 20 

 

 
Figure 3. Structure of TiOPc-based OEK chip and simulation of the electric field (reproduced from Ref. 
[50]). 

3. OEK-Based Manipulation of Micro/Nanomaterials 

3.1. Separation and Assembly of Micro-Scaled Particles 

The OEK chip has been commonly used to perform manipulations such as separation, 
concentration and assembly on micro/nanoparticles, with the aid of an ODEP and/or ACEO 
mechanism. The OEK chip permits the assembly of 2D colloidal microparticles by using the 
electrohydrodynamic flows [54–56] and the manipulation of droplets [57–59]. Differently sized 
polystyrene beads serve various functions in material science and biomedical research. Hence, 
finding a rapid and automatic method to manipulate and separate them is critical in investigating the 
performance of targets of interest. 

The conductivity of polystyrene beads is size-dependent and expressed as σ = 2KS/R, where KS 
is the surface conductivity of polystyrene beads [42]. The relationship between the crossover 
frequency (Re [K(ω)] = 0) of the ODEP force and the size of the polystyrene beads can be further 
derived as [42] 

  
  2

2 2 21
2 2

m S S m
crossover

p m p m

R K K R
f

R
 

    

 


 
. (3) 

The size-dependent crossover frequency as a function of the liquid conductivity, i.e., Equation 
(3), is illustrated in Figure 4 [42]. Then, separation of 1 μm and 10 μm polystyrene beads was 
successfully demonstrated by using ODEP forces in different directions, i.e., a positive ODEP force 
exerted onto the 1 μm polystyrene beads and a negative one onto the 10 μm ones, as shown in  
Figure 5 [42]. 

 
Figure 4. Crossover frequency vs. liquid conductivity of three differently sized polystyrene beads 
(reproduced from Ref. [42]). 

Figure 3. Structure of TiOPc-based OEK chip and simulation of the electric field (reproduced from
Ref. [50]).

3. OEK-Based Manipulation of Micro/Nanomaterials

3.1. Separation and Assembly of Micro-Scaled Particles

The OEK chip has been commonly used to perform manipulations such as separation, concentration
and assembly on micro/nanoparticles, with the aid of an ODEP and/or ACEO mechanism. The OEK chip
permits the assembly of 2D colloidal microparticles by using the electrohydrodynamic flows [54–56]
and the manipulation of droplets [57–59]. Differently sized polystyrene beads serve various functions in
material science and biomedical research. Hence, finding a rapid and automatic method to manipulate
and separate them is critical in investigating the performance of targets of interest.

The conductivity of polystyrene beads is size-dependent and expressed as σ = 2KS/R, where KS is
the surface conductivity of polystyrene beads [42]. The relationship between the crossover frequency
(Re [K(ω)] = 0) of the ODEP force and the size of the polystyrene beads can be further derived as [42]

fcrossover =
1

2π

√√
(σmR− 2KS)(2KS + 2σmR)

R2
(
εp − εm

)(
εp + 2εm

) . (3)

The size-dependent crossover frequency as a function of the liquid conductivity, i.e., Equation (3),
is illustrated in Figure 4 [42]. Then, separation of 1 µm and 10 µm polystyrene beads was successfully
demonstrated by using ODEP forces in different directions, i.e., a positive ODEP force exerted onto the
1 µm polystyrene beads and a negative one onto the 10 µm ones, as shown in Figure 5 [42].
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Moreover, polystyrene beads with three different diameters, i.e., 500 nm, 1 µm, and 10 µm, were
separated simultaneously. Figure 6 shows the detailed experimental process [42]. A negative ODEP
force would be exerted onto the 10 µm diameter polystyrene beads, while a positive ODEP force
would be exerted onto both the 500 nm and 1 µm ones. However, the 1 µm polystyrene beads would
experience a much higher magnitude of ODEP force than the 500 nm ones because the magnitude of
the ODEP force is proportional to the third power of the particle radius.
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diameter) could move in an OEK chip at a maximum velocity of 3200 μm/s, much quicker than non-

Figure 5. Separation of 10 µm and 1 µm polystyrene beads. (a) Initially, polystyrene beads were
suspended in the liquid solution; (b) the OEK chip was illuminated by the optical ring pattern, with
the AC bias potential switched on simultaneously; (c) 10 µm polystyrene beads were pushed towards
the central area of the ring under the action of a negative ODEP force, while the 1 µm ones were
attracted into the ring under the action of a positive ODEP force as the ring size decreased; (d,e) are
captured images showing the positions of the polystyrene beads with two different diameters as the
ring size decreased dynamically; (f) shows the final positions of the 10 µm and 1 µm polystyrene beads
(reproduced from Ref. [42]).
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Figure 6. Simultaneous separation of polystyrene beads with diameters of 500 nm, 1 µm, and 10 µm.
(a) When the OEK chip was illuminated by the optical rectangle pattern under the action of an external
AC bias potential, both the 500 nm and 1 µm polystyrene beads were attracted to the illuminated area.
By contrast, the 10 µm ones were pushed away from the optical ring; (b) as the optical rectangle size
decreased, the 10 µm polystyrene beads moved towards the central area of the optical rectangle and
those with the other two diameters still resided within the optical ring; (c) when the gap formed by
the long sides of the rectangle was around 10 µm, the 10 µm polystyrene beads were aligned; (d) the
10 µm polystyrene beads were separated as the rectangle size further decreased; (e) the rectangle was
decreased to a line pattern; (f) the 500 nm and 1 µm polystyrene beads were finally located at different
positions of the OEK chip (reproduced from Ref. [42]).

Manipulation and assembly of metallic microspheres into patterns were proposed [60]. It was
observed that conductive silver-coated poly(methyl methacrylate) (PMMA) microspheres (50 µm
diameter) could move in an OEK chip at a maximum velocity of 3200 µm/s, much quicker than
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non-conductive microparticles such as polystyrene beads [61]. As the motorized XY stage moves at
an increasing velocity, the microspheres reach their maximum velocity when they cannot follow the
movement of the stage. Simulation on the electric field distribution and the ODEP force attributes the
strong ODEP force to the local interaction between the optically-induced electric field and the silver
shells surrounding the microspheres. The microspheres were then experimentally assembled to validate
their high-accuracy positioning capabilities. Figure 7 shows how the microspheres were assembled
with different spaces, i.e., from 1.39 µm to 20.7 µm, relative to a stable bubble [60]. The assembly of the
“O,” “E,” “T” pattern was realized, demonstrating the ability of the OEK chip to precisely and parallelly
pattern metallic microspheres into arbitrary shapes. In addition, the manipulation and assembly of
hybrid metal-polymer microparticles were achieved [62].
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Figure 7. Captured images of manipulated metallic microparticles with different spaces to a bubble:
(a) 1.39 µm, (b) 2.5 µm, (c) 3.3 µm, (d) 5.3 µm, (e) 8.4 µm, (f) 10.6 µm, and (g) 20.7 µm; parallel assembly
of metallic microspheres into images of (h) “O,” (i) “E,” (j) “T” (reproduced from Ref. [60]).

It has been further demonstrated that OEK can serve as a versatile and programmable microrobot
to perform typical micromanipulations such as “load,” “transport,” and “deliver” [63]. Firstly, OEK
was used to manipulate custom-designed microstructures. Then, the OEK based microrobot could
manipulate secondary microparticles in a parallel, multistep, contact-free and programmable manner.
Figure 8 is a series of images showing the dynamic process of the OEK-based microrobot across large
distances. This partially enclosed microrobot could load one 15 µm diameter polystyrene bead of
interest with the aid of a negative ODEP force (Figure 8A–C), followed by a translational movement of
300 µm/s (Figure 8D). In addition, the OEK-based microrobot delivered this bead to the target location
(Figure 8E,F). Figure 8G schematically presents the three-step process, which exhibited a higher moving
velocity than when OEK was used alone. This OEK-based microrobot was also validated to be suitable
for isolating single cells for clonal expansion and other biomedical applications.
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Figure 8. A series of OEK-based robotic micromanipulations. (A) A fully enclosed microrobot; (B) the
load mode of a partially enclosed microrobot; (C) the partially enclosed microrobot loaded one bead of
interest; (D) the fully enclosed microrobot transported the bead; (E) the partially enclosed microrobot
delivered the bead; (F) the bead was unloaded; (G) schematic illustration of the “load,” “transport,”
and “deliver” micromanipulations (reproduced from Ref. [63]).

3.2. Manipulation of Nano-Scaled Particles

OEK has also been used to dynamically manipulate nano-scaled entities, including the separation
of nanowires [64–67], the patterning of two-dimensional nanomaterials [68], and manipulation of
nanoparticles [69–74].

OEK allows the use of ODEP forces to effectively separate individual nanowires with different
conductance levels, which has facilitated the development of nanodevices. Dynamic separation
of semiconducting and metallic nanowires based on their difference in translational velocity was
reported [64]. When the external voltage was higher than the “separation voltage,” i.e., the threshold
one for moving the silicon nanowire, the silver nanowire could be separated from the silicon nanowire.
Due to the high polarization of metallic nanowires in a non-uniform electric field, the silver nanowire
moved at a much higher velocity than the silicon nanowire. When the OEK chip was dynamically
illuminated by an optically-projected laser line at a scanning velocity greater than 2 µm/s and an
AC bias potential of 8 Vpp, both of these two types of nanowires were trapped by the laser line
initially. The silicon nanowire, however, could not follow the movement of the laser line and became
“uncontrollable.” Hence, these two types of nanowires were successfully separated. In addition, it
was experimentally validated that real-time and large-scale assembly of silver nanowires is possible
using an array of image-defined traps, suggesting the potential for massively parallel assembly at
the nanoscale.

Furthermore, the manipulation and assembly of nanoparticles have been studied both theoretically
and experimentally. First, a rapid and automatic assembly of 100 nm diameter gold nanoparticle
(AuNP)-based microstructures was experimentally investigated [72]. Figure 9 indicates the
experimental process in which AuNP-based microstructures were rapidly assembled. It was observed
that each geometry of the four AuNP-based microstructures could reflect the optical pattern. However,
using the triangle pattern as the virtual electrodes attracted most of the AuNPs into the locations
of angular bisectors and formed a circle structure with three lines pointing toward the center of the
triangle. The square pattern pushed the AuNPs to the diagonals of the pattern and most of them were
moved into the central area.
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two different methods [73]. A composite solution consisting of conductive polyaniline (PANI) 

Figure 9. Rapid assembly of various microstructures using gold nanoparticles (AuNPs) with a diameter
of 100 nm. (a) Four different optical patterns served as virtual electrodes, with an external AC bias
potential switched on simultaneously; (b) after 30 s, the AuNPs were attracted into the areas illuminated
by the four patterns; (c) AuNP-based microstructures formed when the optical patterns were moved
and AC bias potential was switched off; (d) SEM images of (c); (e) SEM image of an AuNP-based
microstructure in triangle pattern; (f) SEM image of an AuNP-based microstructure in square pattern
(reproduced from Ref. [72]).

Fabrication of various nanomaterial-based microelectrodes in an OEK chip was achieved using two
different methods [73]. A composite solution consisting of conductive polyaniline (PANI) nanoparticles
and multi-walled carbon nanotubes (MWCNTs) was used to examine the possibility of creating
microelectrodes by OEK forces. Microelectrodes with various geometrical sizes could be fabricated
within 1–3 min. Compared to the resistance change of the MWCNTs bundles, that of the microelectrodes
could be neglected; the ethanol concentration was successfully reflected by the resistance change of the
sensitive elements.

Rapid assembly of carbon nanoparticles (CNPs) with a diameter of 50 nm into electrical elements
was realized [74]. A series of experiments were conducted to rapidly assemble CNPs into various
electrical elements within 45 s. The results demonstrated that the microstructures had resistance
properties. Specifically, their resistance value could be controlled by the width and length of the
microstructures: inversely increasing with the width (Figure 10a–c) and linearly increasing with the
length (Figure 10d–f).
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measurement voltages (d–f) (reproduced from Ref. [74]).
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4. Mask-Free Fabrication of Electrodes and Devices

An optically-induced electrochemical reaction and deposition scheme was presented to enable
dynamic, rapid and mask-free fabrication of microelectrodes [75–79]. When the OEK chip was
illuminated by optically-projected images, an electrical field would be produced in the illuminated
area due to the creation of electron-hole pairs. Then, only the metal ions of liquid solution in the
illuminated area were reduced by trapping electron from a-Si:H when an external AC bias potential
was switched on. Furthermore, the reduced metal atoms would be attached to the illuminated a-Si:H
surface and formed into metallic microstructures with the same shape as the incident light.

Compared to the OEK-force-based method, this scheme could dynamically fabricate
microelectrodes in 10 secs with a liquid conductivity as high as 2 × 107 S/m. For instance, silver
ion-based microelectrodes were reported, as shown in Figure 11 [75]. These microelectrodes
exhibited more even distribution and lower roughness. Their heights could be adjusted by
the linearly increasing deposition time and the solution concentration. In addition, the entire
experiment was conducted at room temperature and atmospheric pressure without using conventional
photolithographic techniques and metal nanoparticles and/or inks. In addition, integrated
CuO/ZnO-based/single-walled-nanotube [76] nanowire-based field-effect transistors were presented,
further validating that this scheme could facilitate the manufacturing of integrated nanodevices and
offer an alternative to micro/nanosensor fabrication.Micromachines 2019, 10, x FOR PEER REVIEW  10 of 20 
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Figure 11. (a) Fabricated microelectrodes with respect to deposition time; scale bar: 10 µm. (b) Surface
roughness of microelectrode by atomic force microscope (AFM) and SEM. (c) Thickness and (d) surface
roughness of microelectrodes with respect to deposition time and solution concentration (reproduced
from Ref. [75]).

Silver-based nanostructures with various geometrical topographies were synthesized in an OEK
chip, as shown in Figure 12 [77]. The incident light excited the generation of electron-hole pairs in the
a-Si:H layer and then the electrons migrated from the valence band to the conduction band. With the
aid of an existing electric double layer, an electrochemical reaction occurred between the electrons
and the suspended silver solution in the liquid chamber under given parameters in the solution;
meanwhile, crystallization occurred with the silver-based nanostructures. In this case, silver polyhedral
nanoparticles, nanoplates in triangle and hexagon patterns, as well as nanobelts were fabricated by
projecting various optical patterns. Experimental parameters that affected the fabrication process,
including time duration, AC frequency and voltage, were also investigated and optimized. In sum,
this OEK-based method opens up a new path to mask-free and rapid synthesis of nanostructures
and nanobelts.
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Figure 12. Synthesis of various silver nanostructures by optically-projected patterns in OEK chip.
(a) Silver crystal nanoparticles. (b) Stacked silver hexagonal nanoplates. (c) Crystallized silver octahedra
and hexagonal silver nanoplates. (d) An array of silver nanoparticles-based micropillars (reproduced
from Ref. [77]).

Using this method, MoS2 with excellent optical and electronic properties was fabricated into
thin-film transistors without relying on any conventional microlithography, such as nanoimprint
lithography, laser patterning, or photolithography [78]. The MoS2 material was first loaded into
the OEK chip. Then, the Au and Ag electrodes were rapidly fabricated onto the target MoS2 film.
Accordingly, MoS2 thin-film transistors with Au and Ag electrodes were obtained, respectively, as
shown in Figure 13. These transistors performed the best when they were 30–40 nm thick, exhibiting
a low subthreshold swing of 0.75 V/decade and high mobility of 41 cm2

·V−1
·s−1, much better than

conventional Si-based thin-film transistors.
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Figure 13. SEM images of MoS2 thin-film transistors fabricated with Au (a) and Ag (d) electrodes; (b,e)
are the enlarged view of the rectangle areas in (a,d), respectively; (c,f) are the AFM characterization
results of the heights of MoS2 thin-film transistors (reproduced from Ref. [78]).

5. Fabrication and Assembly of Hydrogel-based Micro/Nanostructures

Mask-free and non-UV based polymerization and prototyping of high-aspect-ratio 3D hydrogel
microstructures, such as poly (ethylene glycol) (PEG)-diacrylate (PEGDA), was demonstrated in an
OEK chip [80–85].

A laser or UV-based method was proposed to obtain PEGDA-based micro/nanostructures [86,87].
The abovementioned OEK-based mask-free method could meet the same purpose without using any
UV light sources or lasers [80]. Figure 14 shows the experimental results with controlled sizes, shapes
and thicknesses of PEGDA-based structures. Parallel micro/nanostructures were flexibly patterned
onto the chip using optical images. Furthermore, by projecting a series of custom-designed and
dynamic optical patterns that served as digital masks, 3D microstructures were fabricated rapidly



Micromachines 2020, 11, 78 12 of 20

in a layer-by-layer manner, with their thickness varying from tens of nanometers to hundreds of
micrometers [81].
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Figure 14. SEM images of poly (ethylene glycol) (PEG)-diacrylate (PEGDA)-based micro/nanostructures
fabricated using optically-projected spot patterns with different exposure times. The heights in (a–f)
measured by AFM were 233 nm, 455 nm, 687 nm, 950 nm, 1.34 µm, and 1.62 µm, respectively
(reproduced from Ref. [80]).

In addition, hollow and circular tubes were fabricated with a length, diameter, wall thickness,
and high-aspect-ratio tuned by the exposure time, as shown in Figure 15 [82]. These tubes could
manipulate and trap polystyrene beads when they grew longer as the exposure time increased. Then,
the PEGDA-based tube continued to elongate and the beads were trapped and moved away from
the initial position. Arrays of hydrogel micropillars were also fabricated. These micropillars were
capable of serving as micro-scaled cavity molds for casting polydimethylsiloxane, demonstrating
potential of finding applications in microfluidics-related fields. The abovementioned results indicate
this technology is well-suited for the rapid fabrication of microfluidic chips.
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Figure 15. (a) PEGDA-based hydrogel tube with a length of ~20 µm, an outer diameter of ~10 µm,
and an inner diameter of ~5 µm. (b) PEGDA-based hydrogel tube with a length of ~35 µm, an outer
diameter of ~25 µm, and an inner diameter of ~20 µm (reproduced from Ref. [82]).

Assembly of PEGDA-based microstructures was also realized, followed by an application of
bottom-up functional tissue construction and engineering [83]. Arbitrary PEGDA-based microstructures
were polymerized in a high-throughput and on-demand manner by a DMD. Then, the fabricated
microstructures were transferred into an OEK chip for assembly, which was achieved by using
microfluidic flow. Figure 16 illustrates the assembly of PEGDA-based microstructures with different
sizes and shapes. Before moving into the OEK chip, the microstructures were either fabricated
individually or patterned on a per-array basis. Then, microstructures were aligned into horizontal
lines under the action of an ODEP force. Figure 16A–G present the dynamic process of translating
microstructures into a single structure for further biomedical and tissue applications. Furthermore,
microstructures with the same shape could be assembled into the same layer, as shown in Figure 16H–L.
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Figure 16. (A–G) Captured microscope image showing the dynamic process of assembling
microstructures with different sizes and shapes; (H–L) the experimental process of assembling two
different microstructures (reproduced from Ref. [83]).

An extended study was made on the microfabrication of 3D hydrogel scaffolds [84]. A
layer-by-layer solidification mechanism was presented to fabricate hydrogel scaffolds, which involved
a polymerization-delamination-polymerization loop. This loop was determined by a competition
between the adhesive force and the water-absorbency-induced swelling force. The hydrogel scaffolds’
thickness ranged from tens of nanometers to hundreds of nanometers. Thin hydrogel layers were cured
at the interface of the a-Si:H and PEDGA solution layers in a layer-by-layer scheme with nano-scaled
thickness. Furthermore, those layers were continuously stacked along the normal direction of the OEK
chip to finally construct 3D structures. Figure 17 is a microscopic characterization of the dynamic
multilayered electro-polymerization of 3D hydrogel structures. Two alternating lines perpendicular to
each other were designed to fabricate hydrogel microstructures, as shown in Figure 17a. The optical
microscope, SEM, and AFM were employed to illustrate the fabrication results at a ∆t0 of 4 secs, as
shown in Figure 17b–d, respectively. The results indicated that these mesh-like hydrogel scaffolds
came with controlled pores and gaps. The folded PEGDA hydrogel grids shown in Figure 17e,f further
validated the existence of pores and gaps, which could greatly facilitate the spreading, migration, and
proliferation of cells as well as the mimicking of cell-cell communications.
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6. Conclusions and Prospects

As discussed above, the OEK technique has been widely used by the microfluidic community to
make a list of research achievements in terms of the manipulation and fabrication of micro/nanomaterials
Although some of these achievements are also accomplished by other competing techniques, OEK is
superior to the others in that it consumes ultra-low power and offers a programmable, flexible and
versatile approach for parallel and multi-scaled micromanipulation. OEK has also been found to be
capable of detecting cellular properties and statuses and measuring drug concentration in a label-free
and dynamic manner, without relying on any other techniques [88–94]. These advantages suggest
that OEK is well-positioned to promote the use of microfluidic tools for micro/nanomanipulation.
Nonetheless, challenges remain for OEK to transform from a lab-based technique to one that is widely
useful in practical applications. Here is a summary of these challenges.

Firstly, the 3D manipulation mechanism of OEK should be further explored. Early studies on
the OEK technique were mostly focused on 2D manipulation schemes, which proved to be more
effective than other competing techniques. With the evolvement of OEK chips, however, researchers
have realized the necessity of shifting their focus to 3D manipulation. One example of this shift in
focus is a two-layer a-Si:H based OEK chip, in which the top ITO glass is replaced with a-Si:H to
enable spatial and adsorption-free manipulation of beads using a negative ODEP force [95]. However,
this OEK chip cannot manipulate micro/nanoparticles using a positive ODEP force and requires
using other OEK forces. Besides, the manipulation is liable to be affected by dynamic fluid flow and
electrothermal motion, which is because the manipulated micro/nanoparticles tend to be located in the
center of the chip. The poor light transmission can significantly compromise the quality of observation.
A lateral-field OEK device was developed to enable parallel single-cell manipulation, which can
also assemble nanowires and integrate with other microfluidic components [96]. Nevertheless, the
fabrication process is complicated and involves high costs. By dynamically projecting a series of
optical patterns, a layer-by-layer approach was built to create 3D microstructures in a mask-free
manner [81,84]. However, these incident light patterns are only suitable for fabricating hydrogel
microstructures and are insufficient for manipulating nanoparticles and assembling nanowires into
functional devices. All the above problems warrant continued efforts to further enhance capabilities of
OEKs in 3D manipulation.

Secondly, to facilitate the adoption of OEK-based microfluidics, it is important to develop an
integrated chip that is ready for a complete and conventional laboratory-level process. This requires
the integration of OEK with conventional microfluidic systems and/or components. A number of
attempts have been made on such integration to move OEK further beyond its typical functions such as
manipulation, separation, assembly, and fabrication of micro/nano-entities. For instance, to enhance the
detection performance of OEK, a pair of optical fibers were embedded into the microchannel to rapidly
and accurately count the number of particles and cells [97,98]. A lens-free holographic microscope was
incorporated into the OEK chip to allow observing microparticles and cells in a large field of view [99].
This approach offers the ability to rapidly capture the holographic images of microparticles and cells
across an ultra-large area of up to hundreds of square millimeters. In addition, on-chip continuous
medium exchange and electroporation of cells [100] were achieved by incorporating a conventional
microchannel bonded onto a top ITO glass layer. The combination of an OEK chip and surface
acoustic wave elements was utilized [101,102] to provide functions such as concentration, guiding,
focusing, trapping, and sorting of polystyrene beads and cell lysis. Although the abovementioned
works represent tangible advances in the OEK technique, there is still a lack of effective integration of
micro/nanochannels or micro/nanostructures into the liquid layer of OEK chips. This severely hinders
the use of OEK in fabricating arrays of micro/nanosensors and sophisticated micro/nanodevices for
bio-detection and tissue engineering applications. The fabricated micro/nanostructures mentioned in
this paper still reside within the OEK chip. They cannot be delivered or directed out of the chip due to
the lack of a conventional micropump or microchannel integrated into the liquid layer. Hence, there is
much more to do to better integrate OEK chips with microfluidic systems or elements.
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Finally, increased efforts are required to identify new possible applications of the OEK technique,
which is the ultimate challenge and also the key to address the above two challenges. We believe that a
technique can only flourish by bringing real benefits to end-users. Although a variety of OEK-based
applications, such as separation, assembly, patterning, fabrication, and synthesis of materials, have
been reported, this technique still has a long way to go to become a truly useful and practical tool
in these endeavors. For example, there has not been an OEK-based method to fabricate functional
micro/nanodevices for industrial applications, such as field-effect transistors and nanosensors. In sum,
if upcoming studies can focus more on solving the abovementioned challenges, the OEK technique
will soon be able to find wide applications in real-world situations.
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