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Abstract

Knowledge about soil nitrogen (N) and phosphorus (P) concentrations, stocks, and stoichio-

metric ratios is crucial for understanding the biogeochemical cycles and ecosystem function

in arid mountainous forests. However, the corresponding information is scarce, particularly

in arid mountainous forests. To fill this gap, we investigated the depth and elevational pat-

terns of the soil N and P concentrations and the N: P ratios in a Picea schrenkiana forest

using data from soil profiles collected during 2012–2017. Our results showed that the soil N

and P concentrations and the N: P ratios varied from 0.15 g kg−1 to 0.56 g kg−1 (average of

0.31 g kg−1), from 0.09 g kg−1 to 0.16 g kg−1 (average of 0.12 g kg−1), and from 2.42 g kg−1

to 4.36 g kg−1 (average of 3.42 g kg−1), respectively; additionally, values significantly and lin-

early decreased with soil depth. We did not observe a significant variation in the soil N and P

concentrations and the N: P ratios with the elevational gradient. In contrast, our results

revealed that the mean annual temperature and mean annual precipitation exhibited a more

significant influence on the soil N and P concentrations and the N: P ratios than did eleva-

tion. This finding indicated that climatic variables might have a more direct impact on soil

nutrient status than elevation. The observed relationship among the soil N and P concentra-

tions and the N: P ratios demonstrated that the soil N was closely coupled with the soil P in

the P. schrenkiana forest.

Introduction

The theoretical relationship between foliar nutrient patterns and soil nutrients has been a cor-

nerstone of ecosystem science for years [1–4]. The corresponding investigations have been

conducted across different terrestrial ecosystems [5–8]. Among these studies, the majority

have mainly focused on two categories of nutrients, i.e., macronutrients (e.g., nitrogen [N],

phosphorus [P], and potassium [K]) and micronutrients (e.g., iron [Fe], manganese [Mn], and
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zinc [Zn]), based on their different functions in plant growth. Multiple studies have shown

that soil macronutrients, particularly N and P, play vital roles in plant functioning and are

among the most important limiting nutrients in terrestrial ecosystems [9–11]. Thus, their con-

centrations and mass ratios (N: P) are currently viewed as indices of the nutrient status that

may provide insights into several processes, such as soil microbial activities, leaching, denitrifi-

cation, and nutrient mineralization [12–14].

Worldwide, forest ecosystems represent the habitat of a considerable portion of our flora

and fauna, and humans benefit from the diverse environmental functions of forests, such as

climate, hydrology, water, air quality, and CO2 sequestration [15]. Soil N and P concentrations

and N: P ratios of forests have been extensively investigated in recent years [16–18]. Currently,

the issues, i.e., the influence of soil depth and elevation on forest soil N and P concentrations

and N: P ratios and the response of the concentrations and the ratios to climatic variables,

remain controversial, even though considerable research has been conducted [4, 19–21].

Therefore, a deep understanding of the patterns and drivers of forest soil N and P concentra-

tions and N: P ratios is necessary to evaluate the sustainability of forest ecosystems, the cycling

of N and P in forests, and the feedback of forest ecosystems in response to climate change [18].

Depth patterns of soil N and P concentrations and N: P ratios vary among different forest

ecosystems. In a lower subtropical successional series in southern China and determined that

the total N decreased with soil depth, the total P exhibited a complex variation among different

forest species, and the N: P ratios of deep soils were higher than those of shallow soils [22].

Similar results were also reported in a study that focused on N and P stoichiometries across

forest ecosystems in Northwest China [23]. In contrast, soil N and P increased with soil depth,

and the N: P ratios increased from the upper to the lower soil horizons in subtropical planta-

tions [24]. In a boreal forest of central Canada, the soil total N and P in surface mineral soil (0–

15 cm) was lower than that in subsurface mineral soil (15–30 cm); however, the N: P ratios

remained unchanged [25]. In a subalpine forest of central Nepal (Himalayan tree line), soil N

and P concentrations and the N: P ratios consistently decreased with soil depth [21]. These

results represent highly varied data for forest soil N and P concentrations and N: P ratios

across different soil depths; this high variability highlights the importance of site-specific stud-

ies for the sufficient approximation of soil nutrients in forest ecosystems worldwide.

Plants could be limited by P in warm regions and by N in cold regions because of litter

input, decomposition, leaching, and other factors [26–28]. This finding indicates the effect of

temperature variation on the soil N and P concentrations and N: P ratios [27]. Experimental

manipulations conducted in a grassland sufficiently demonstrated the response of the soil N

and P concentrations and N: P ratios to variations in temperature [29]. For forest ecosystems,

experimental manipulation is infeasible if the goal is to understand the response of N: P ratios

to temperature variation (and other variables, e.g., precipitation). As a result, the soil N: P

ratios along an elevational gradient have the potential to complement experimental manipula-

tions. For example, the variation in climatic conditions could be determined through parame-

ter measurements across sites [30]. To date, limited data are available on the variation in forest

soil N: P ratios with changes in elevation. In alpine forest of the Eastern Tibetan Plateau, soil

N: P ratios increased with elevation because of the high temperature and litter input at low ele-

vations [31]. Similar results were reported in a study that aimed to understand the soil stoi-

chiometric characteristics along elevational gradients in Southwest China [32]. Soil N: P

decreased as elevation increased at Himalaya treeline [21]. Similar results were obtained in

South American and African forest communities [33]. In Picea crassifolia forest of the Qilian

Mountains near our study area, the soil N: P ratios initially increase and subsequently decrease

with elevation, and the maximum ratio was found at 3100 m a.s.l. [34]. The authors interpreted

this phenomenon as a result of the relatively low N concentrations and the high anthropogenic
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disturbance at low elevations. Overall, the patterns of the soil N: P ratios in forests along eleva-

tional gradients are far from being fully understood.

Apart from soil depth and elevation, most studies have focused on the relationship between

soil N: P ratios and climatic conditions [18, 35–37]. In general, low temperature slows micro-

bial activity and is responsible for the decrease in N decomposition from forest litter [18]. In

contrast, high precipitation could result in strong leaching of the soil, which is consequently

correlated with the low concentration of P in soils [18]. However, a wide variation among for-

est ecosystems has been observed. For example, a large-scale investigation of soil stoichiometry

in forest ecosystems along the north-south transect in eastern China indicated that the soil N:

P ratios increased with the mean annual temperature (MAT) and mean annual precipitation

(MAP) [37]. In contrast, although the soil N and P showed a strong correlation with the MAT,

the soil N: P ratios exhibited a weak relationship with the MAT across forests in China, addi-

tionally, soil N: P ratios increased along the precipitation gradient [38]. Another large-scale

investigation observed a negative response of soil N: P ratios to MAT and a positive relation-

ship between soil N: P ratios and MAP [18]. These studies have shed some light on the basic

understanding of the spatial patterns of soil N: P. However, the exact response of the ratios to

climatic variables remains unknown.

The Schrenk’s spruce (Picea schrenkiana) is one of the most widespread and important tim-

ber tree species in Central Asia. The distribution of Schrenk’s spruce covers an elevational

range from 1,600 m to 2,700 m in the Tianshan Mountains, which is a large mountain system

that lies 2,000 km from Uzbekistan, Kyrgyzstan, Kazakhstan, and China [39]. Being the largest

latitudinal mountain system in the world, the Tianshan Mountains comprise the largest moun-

tain system in the world that is found among arid regions and is far from the ocean [40].

Because the species spans such a wide elevational and longitudinal range, Schrenk’s spruce for-

est provides an opportunity to analyze the variation in soil N and P concentrations and N: P

ratios across a wide elevational gradient and a gradient of MAT and MAP. The soil nutrient

status of Schrenk’s spruce forests has been investigated [41–43]. However, no study has

addressed the changes in soil N: P stoichiometric ratios in Schrenk’s spruce forest in relation

to soil depth, MAT, MAP, and elevation across the distributional range of the species. In the

present study, based on systematic field sampling from 2012 to 2017, we aimed to understand

the response of soil N and P concentrations and N: P ratios to potential drivers (i.e., climate,

soil, and elevation). Specifically, we aimed to (1) explore the effects of soil depth, MAT, MAP,

and elevation on the patterns of soil N and P stoichiometries in Schrenk’s spruce forest and (2)

identify the relationship between the N and P stocks and their stoichiometric ratios at different

soil depths. By addressing these issues, this study provides a novel assessment of the spatial pat-

terns of soil nutrients in a subalpine forest of an arid mountainous region.

Materials and methods

Study area

The study is not relevant to Human Subject Research, did not involved vertebrate animals,

embryos or tissues, and endangered or protected species. No specific permissions were

required for these sites we conducted soil sampling, some sites in tourist area could enter by

tickets.

The present study was conducted in the Tianshan Mountains, which span from Uzbekistan

to Northwest China, and the study comprised the western, central, and eastern parts. The

Tarim and Junggar basins are located at the south and north of the Tianshan Mountains,

respectively. The Ili River basin is situated between the western and central parts of the Tian-

shan Mountains (Fig 1). The study area is characterized by continental climate with cold and
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dry winters and relatively warm and humid summers, and more than 70% of precipitation

occurs during the warm months, i.e., from May to September, because of the long distance

from the ocean. In the Tianshan Mountains, the MAT decreases from 13.3˚C at low elevations

to -7.3˚C at high elevations, and the MAP increases from less than 100 mm to more than 800

mm with the increase in elevation [44]. The vegetation types in Tianshan include (from low to

high elevations) steppe, steppe-forest, subalpine shrubby meadow, alpine-frost action-barren

zone, and permanent snow and ice [44]. Our field work was conducted in the steppe-forest

belt on the northern slope of the Tianshan Mountains, where Schrenk’s spruce forest forms

single-species stands between 1,600 m a.s.l. and 2,800 m a.s.l. Soils on the northern slope of the

Tianshan Mountains mainly include leached yellowish brown soil and yellowish brown soil

[45]. In spruce forest, the soil is deeper than 30 cm below the forest floor, and shallower than

30 cm at the upper and lower tree (Schrenk’s spruce) line [40].

Field sampling and laboratory analysis

Sampling was conducted at eight sites (i.e., Zhaosu, Jinghe, Shihezi, Baiyanggou, Shuixigou,

Banfanggou, Tianchi, and Balikun; Fig 1, No specific permissions were required for these sites

where we conducted soil sampling) from June to September from 2012 to 2017. At each site,

we selected slopes with Shrenk’s spruce forest and collected soil cores (we collected 90 cores in

Schrenks’ spruce forest). Due to variation of soil depth, numbers of samples for each depth are

different (90 for 0–10 cm and 10–20 cm depth, 85, 84, 83, 67, 59 and 39 for 20–30 cm, 30-

Fig 1. Location of the study area (Tianshan Mountains) and the sampling sites (red diamonds) in the Tianshan Mountains. The map with shaded relief was

downloaded from Natural Earth (https://www.naturalearthdata.com/).

https://doi.org/10.1371/journal.pone.0204130.g001
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40cm, 40–50 cm, 50–60 cm and 60–70 cm, respectively). During sampling work, we started at

the plot (8-m radius circle) with the lowest elevation and ended at the plot with the highest

location (up to the forest line of approximately 2,800 m), and elevational intervals were

approximately 30 m. The longitude, latitude, and elevation of each plot were identified using a

global positioning system receiver, i.e., eTrex venture. During sampling, soil samples from

three random parallel profiles (within each plot) were collected from the top of the mineral

soil to the top of the parent material in 10-cm intervals using a soil auger (1.5 cm). The parallel

samples collected at each depth were mixed to obtain a composite sample. After being trans-

ported to the laboratory, the soil samples were air-dried and sieved. The soil total N concentra-

tions (g kg−1) were analyzed using the Kjeldahl digestion method [46], and the total P

concentrations (g kg−1) were measured using the perchloric acid digestion method followed by

the molybdate colorimetric test [47].

Climatic and topographic data

In this study, the climatic variables from the WorldClim 2 dataset (released in June 2016) were

used [48]. This dataset contains the average monthly climate data for the minimum, mean,

and maximum temperatures as well as precipitation data from 1970 to 2000. The dataset has

different spatial resolutions (from 30 arc seconds to 10 arc minutes). We used the dataset with

30 arc seconds (approximately 1 km × 1 km), as this dataset has been evaluated and reliably

used in forest science [49, 50]. Although selecting more variables guarantees a more compre-

hensive analysis, only the MAT and MAP were selected in the present study because of the

existing collinearity among the variables [48]. Prior to the corresponding data analysis, these

two variables were resampled (using bilinear interpolation) to 30 m × 30 m resolution for a

detailed characterization of the MAT and MAP in the mountainous study area. The slopes of

the sampling sites were calculated using the slope tool in the spatial analyst toolbox of ArcMap

10.0 (ESRI Inc). Specifically, we first calculated the slope (30 m × 30 m resolution) of the Tian-

shan Mountains and then extracted the slope value to each of the sampling sites. The cation

exchange capacity (CEC, cmolc/kg), clay, sand and silt content (CC, SNC and SLC, respec-

tively, mass fraction in %), soil pH and available soil water capacity (AWC, volumetric frac-

tion) were extracted from the SoilGrids dataset. The SoilGrids provides global predictions for

standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity

(CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30,

60, 100 and 200 cm), the predictions are based on globally fitted models using soil profile and

environmental covariate data.

Statistical analysis

The total N and P stocks were calculated to discern their relationship with elevation. For each

sampled soil profile, the N and P stocks were calculated as the sum of the product of soil bulk

density (< 2 mm fraction in g cm−3), the N and P concentrations (g kg−1), and the soil layer

thickness (cm) at each depth. All data were checked for homogeneity of variance and normal-

ity of distribution prior to analysis. ANOVA (one-way and two-way) was used to test the sig-

nificant (p< 0.05) effect of the soil depth, elevation, MAT, MAP and combination of these

factors (i.e., soil depth × elevation, soil depth × MAT, soil depth × MAP, elevation × MAT,

elevation × MAP, and MAT × MAP) on the soil N and P concentrations and the N: P ratios.

The correlation among the soil N and P concentrations and the N: P ratios with the soil depth,

elevation, MAT, and MAP were analyzed using the Pearson correlation coefficient. Linear

(simple and multiple) regression analysis was used to determine the linear relationship

between the soil N and P concentrations and the N: P ratios with the soil depth, elevation,
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MAT, MAP, latitude, longitude and slope. All statistical analyses were performed using SPSS

19.0 (SPSS Inc., Chicago, IL, USA).

Results

At different soil depths, the N and P concentrations and the N: P ratios varied from 0.15 g kg−1

to 0.56 g kg−1 (average of 0.31 g kg−1), from 0.09 g kg−1 to 0.16 g kg−1 (average of 0.12 g kg−1),

and from 2.42 g kg−1 to 4.36 g kg−1 (average of 3.42 g kg−1), respectively (Table 1). With the

increase in soil depth, the N and P concentrations and the N: P ratios significantly and linearly

decreased (Fig 2A–2C). No significant linear relationships were observed between the N and P

stocks and the N: P ratios with elevation (Fig 2D–2F).

One-way ANOVA demonstrated that the influences of the soil depth, MAP, longitude and

latitude on the soil N concentration were significant in Schrenk’s spruce forest (Table 2). For P

concentration, the soil depth, longitude, latitude and slope were significant (Table 2). The soil

depth, longitude and latitude were significant for the N: P ratios. Two-way ANOVA analysis

demonstrated that interactions among factors without elevation (i.e., soil depth with MAT,

Table 1. N and P concentrations and N: P ratios at different soil depths.

0–10 cm 10–20 cm 20–30 cm 30–40 cm 40–50 cm 50–60 cm 60–70 cm 70–80 cm

N (g kg−1) 0.56 ± 0.31 0.41 ± 0.33 0.35 ± 0.31 0.30 ± 0.28 0.27 ± 0.23 0.23 ± 0.15 0.20 ± 0.16 0.15 ± 0.10

P (g kg−1) 0.16 ± 0.09 0.13 ± 0.08 0.12 ± 0.08 0.11 ± 0.06 0.12 ± 0.07 0.12 ± 0.07 0.11 ± 0.06 0.09 ± 0.06

N: P 4.36 ± 3.05 4.13 ± 4.04 3.26 ± 2.29 3.63 ± 3.18 3.32 ± 3.09 3.15 ± 3.64 3.13 ± 4.35 2.42 ± 2.20

Value are expressed as the mean ± SD. The numbers of samples are 86, 87, 85, 84, 83, 67, 59, and 39 for the respective layers from 0–10 cm to 70–80 cm.

https://doi.org/10.1371/journal.pone.0204130.t001

Fig 2. Relationship between N and P concentrations and N: P ratios with soil depth (a-c), and distribution of N and P stocks and N: P ratios with elevation (d-f).

https://doi.org/10.1371/journal.pone.0204130.g002
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soil depth with MAP and MAT with MAP) were significant for the N and P concentrations

and the N: P ratios (Table 2).

Simple linear regression indicated that the N stock and the N: P ratios significantly

decreased with the MAT; however, the P stock increased with the temperature (Fig 3A–3C).

The correlation coefficients between the N and P stocks and the N: P ratios with the MAT

were -0.24, 0.27, and -0.32, respectively (Fig 3A–3C). Correspondingly, the MAT explained

5.7% (r = -0.24), 7.3% (r = 0.27), and 10.2% (r = -0.32) of the variation in the N and P stocks

and the N: P ratios. The increase in the MAP at high elevations could result in the decrease in

the N and P stocks and N: P ratios (Fig 3D and 3E). With a relatively high coefficient of deter-

mination, the influence of the MAP on the N (r2 = 0.12) and P (r2 = 0.12) stocks was stronger

than that of the MAT. In contrast, the influence of the MAP on the N: P ratios (Fig 3F) was rel-

atively weaker (r = -0.21) than that of the MAT (r = -0.32). Linear regression also indicated

that the N and P concentrations and N: P ratios increased with longitude, which explained

20%, 9% and 4% of the variations in the N concentration, P concentration and N: P ratios (Fig

4A, 4D and 4G), respectively. Latitude explained 13% and 11% of the variation in the N con-

centration and the N: P ratios (Fig 4B and 4H). As the slope increased, the N and P concentra-

tions decreased linearly (Fig 4C and 4F).

Multiple linear regression indicated that the linear combinations of elevation and MAP,

MAT and MAP, and elevation and MAT and MAP explained 21%, 21% and 21% of the varia-

tion in the N concentration, respectively; however, the combination of elevation and MAT

only explained 4% of the variation in the N concentration (Table 3). For the P concentration,

although the regression relationship was significant at the 0.05 level, the combination of eleva-

tion and MAT only explained 10% of the variation in P. Similarly, if included elevation as an

independent variable to determine the response of the N: P ratios to impact factors, a relatively

Table 2. Results of ANOVA for effect of different variables on soil N and P concentrations and N: P ratios. One-

way ANOVA: soil depth significant for N and P concentrations and N: P ratios; MAT significant for N: P ratios; MAP

significant for N concentration; longitude and latitude significant for N and P concentrations and N: P ratios; slope of

sampling plot significant for P concentration and N:P ratio. Two-way ANOVA: soil depth × MAT interaction signifi-

cant for P concentration; soil depth × MAP interaction and MAT × MAP interaction significant for N and P concen-

trations and N: P ratios.

Factors N concentration P concentration N: P ratio

F-stat p-value F-stat p-value F-stat p-value
Soil depth 21.93 0.00�� 4.99 1.16E-5�� 2.08 0.04�

Elevation 0.76 0.74 0.67 0.79 2.73 0.12

MAT 1.01 0.48 0.89 0.62 1.07 0.05�

MAP 2.00 0.01�� 1.22 0.25 1.45 0.13

Longitude 11.28 3.54E-8�� 4.09 2.34E-3�� 4.00 5.44E-3��

Latitude 4.37 3.07E-3�� 3.89 6.14E-3�� 3.73 2.83E-2�

Slope 0.38 0.76 7.88 1.03E-3�� 2.06 0.13

Soil depth × Elevation 2.41 0.33 136.91 0.07 1.68 0.56

Soil depth × MAT 1.02 0.46 3.16 2.42E-4�� 1.89 0.02�

Soil depth × MAP 2.18 6.99E-3�� 5.57 2.48E-7�� 1.76 0.03�

Elevation× MAT 0.03 1.00 4.18E-3 1.00 4.24 1.00

Elevation × MAP 0.04 1.00 4.78E-3 1.00 4.79 1.00

MAT × MAP 2.85 2.87E-3�� 3.05 2.85E-3�� 2.84 3.60E-3��

�� statistical significance at p < 0.01

� statistical significance at p < 0.05.

https://doi.org/10.1371/journal.pone.0204130.t002
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Fig 3. Relationship between the N and P stocks and N: P ratios with the MAT (a-c), and MAP (d-f).

https://doi.org/10.1371/journal.pone.0204130.g003

Fig 4. Relationship between the N and P concentrations and N: P ratios with longitude (a, d, g), latitude (b, e, h) and

slope (c, f, i).

https://doi.org/10.1371/journal.pone.0204130.g004
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lower coefficient of determination and F-value were obtained (r2 of 0.04 and F-value of 1.83

for the combination of elevation and MAP, as shown in Table 3).

As shown in Table 4, the N concentration showed a positive correlation with the soil CEC

and SC, with correlation coefficients of 0.25 (p< 0.05) and -0.29 (p< 0.01), respectively.

Although insignificant (p = 0.10), the P concentration was positively correlated with the CEC

(Table 4). The N: P ratios were positively correlated with the CC (p< 0.05).

The correlations between the N and P stocks at the different soil depths were positive and

significant (Table 5). At the surface (i.e., 0–10 cm) and parent material (i.e., 60–70 and 70–80

cm) soils, the correlations between the N and N: P ratios were weak. The determination of the

P concentrations on the N: P ratios was higher than that of N (only at the 20–30 cm layer, the

correlation between the N and N: P ratios was higher than that of the P and N: P ratios, as

shown in Table 5). Pearson’s r between N and P increased with soil depth, indicating a closer

relationship between N and P in deep soils than in shallow soils (Table 5). In contrast, Pear-

son’s r between the N and N: P ratios and between the P and N: P ratios exhibited no differ-

ences among the different soil depths (Table 5).

Table 3. Results of multiple regression analysis between dependent variables (N and P concentrations and N: P ratios) and independent variables (elevation, MAT

and MAP).

Independent variable Regression coefficients of dependent variables Interception N r2 F-stat
Elevation MAT MAP

N concentration -1.41E-4 -0.02 0.63 81 0.04 1.65

9.84E-5 -1.28E-3 0.48 0.21 10.54��

-7.67E-3 -1.14E-3 0.66 0.21 10.21��

8.13E-5 -2.01E-3 -1.26E-3 0.51 0.21 6.95��

P concentration -6.31E-6 -7.77E-3 0.15 76 0.10 4.06�

8.76E-5 -3.98E-4 0.06 0.21 9.49��

-7.15E-3 -2.90E-4 0.23 0.20 9.18��

5.94E-5 -3.94E-3 -3.56E-4 0.13 0.22 6.81��

N: P ratio -2.18E-3 -0.31 7.93 85 0.12 5.44��

4.70E-4 -6.42E-3 3.86 0.04 1.83

-0.17 -5.49E-3 4.75 0.10 4.43�

-1.74E-3 -0.28 -2.63E-3 7.73 0.12 3.79�

�� statistical significance at p < 0.01

� statistical significance at p < 0.05.

https://doi.org/10.1371/journal.pone.0204130.t003

Table 4. Correlations (Pearson’s r) among soil N and P concentrations and N: P ratio with parameters of parent materials.

CEC CC SNC SLC pH AWC

N concentration 0.25� 0.20 0.10 -0.29�� -0.04 -0.03

P concentration 0.18 3.61E-3 0.04 -0.05 -0.13 -0.06

N: P ratio 0.00 0.23� 0.02 -0.19 0.06 -0.1

CEC, cation exchange capacity (cmolc/kg); CC, clay content (%); SNC, sand content (%); SLC, silt content; AWC, available soil water capacity (volumetric fraction in

cm3�cm−3).

Significance levels are given as ��

p < 0.01; �

p < 0.05; no symbol, p > 0.05.

https://doi.org/10.1371/journal.pone.0204130.t004
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Discussion

N and P concentrations and N: P ratios with soil depth

To our knowledge, this study is the first to investigate the depth pattern of soil N and P con-

centrations and N: P ratios in Schrenk’s spruce forest. Our results showed that the soil N stock

ranged from 0.03 kg m−2 to 4.05 kg m−2, with an average of 1.84 ± 0.94 kg m−2. The soil N sig-

nificantly decreased with soil depth (Fig 2 and Table 1), indicating a high concentration of N

in shallow soils. Specifically, we calculated the proportion of the N stock in the upper soils (0–

20 and 0–40 cm) to that in the entire soil profile. The results showed that 41.67% and 69.29%

of N were stored in the surface 0–20 and 0–40 cm soils, respectively (Fig 5). In general, N

decreased with the increase in soil depth in forest ecosystems [22, 33, 51, 52]. A few exceptions

found no relationship between the N concentration and the soil depth due to the disturbance

caused by human activities in planted forests [53–55]. The P stock in Schrenk’s spruce forest

ranged from 0.16 kg m−2 to 1.38 kg m−2, with an average of 0.70 kg m−2. It should be noted

that in the present study, the P concentration was the total P concentration that was obtained

by the perchloric digestion method. Since there are two essential P cycles in forest soils (i.e.,

the inorganic cycle driven by leaching and acid formation, the fast cycling, and the biological

cycle driven by plants and microbes, the slow cycling), the P content in soils may vary due to

variations in the inorganic and biological cycles.

Similar to the N stock, the P concentrations and stock in Schrenk’s spruce forest also signif-

icantly decreased with soil depth (Fig 2 and Table 1). This result is in accordance with that of a

pioneering synthesis work, which discussed the variation in element stocks of forest soils from

local to global scales [56]. Recent investigations conducted in different forest ecosystems have

also confirmed such reductions in P concentrations with soil depth [55, 57, 58]. Given that

plant uptake may play a role in determining the soil nutrient status at different spatial and tem-

poral scales [59], particularly in arid environments [60], the decrease in the soil N and P con-

centrations with soil depth in Schrenk’s spruce forest could be primarily explained by the root

characteristics of this species. Since Schrenk’s spruce is a shallow-root species (the roots of

Schrenk’s spruce are found at depths shallower than 1 m) with more fine roots in deep soils

[61], the corresponding increase in the nutrient uptake resulted in the decrease in the N and P

concentrations. By comparing the N and P concentrations at different soil depths, we found

that the variation in the N concentrations was higher than that of the P concentrations, espe-

cially in deep soils. Similarly, variation in N was higher than that in P in shallow soils in a sub-

tropical forest [62], suggested that the supply of P from weathering of the parent material may

also affect the depth distribution of soil P in forest ecosystems [18, 63, 64].

The N: P ratios decreased with soil depth, as shown in Fig 2 and Table 1. Given that the N

and P concentrations decreased, the decrease in the N: P ratios with soil depth indicated the

Table 5. Correlations (Pearson’s r) among soil N and P concentrations and N: P ratios at different soil depths.

Soil depth 0–10 cm 10–20 cm 20–30 cm 30–40 cm 40–50 cm 50–60 cm 60–70 cm 70–80 cm

Component P N: P

ratios

P N: P

ratios

P N: P

ratios

P N: P

ratios

P N: P

ratios

P N: P

ratios

P N: P

ratios

P N: P

ratios

N 0.22� 0.11 0.24�� 0.06� 0.38�� 0.49�� 0.46�� 0.27� 0.31�� 0.35�� 0.21 0.27� 0.33� 0.04 0.51�� 0.07

P -0.47� -0.42�� -0.37�� -0.45�� -0.47�� -0.53�� -0.34�� -0.45��

Significance levels are given as ��

p < 0.01

�, p < 0.05

no symbol, p > 0.05.

https://doi.org/10.1371/journal.pone.0204130.t005
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dominance of N on the ratios. Actually, N decreased from 0.56 g kg−1 in 0–10 cm soil to 0.15 g

kg−1 in 70–80 cm soil, which indicated a 73.21% decrease in the concentrations; furthermore,

this decrease was higher than that of P, which had a 43.75% decrease (0.16 g kg−1 to 0.09 g kg−1

from 0–10 cm to 70–80 cm soils). Similar results were also reported in [65], where the soil P

concentration decreased more slowly than did the N concentration. This could be because (1)

there was an accumulation of nutrients at the surface caused by the return of dead biomass

debris, (2) the leaching was the result of water infiltration, and (3) the P supply from weathered

parent materials was higher than the supply of N [6].

N and P concentrations and N: P ratios with elevation

Our data showed no significant response of the soil N and P stocks to elevation (Fig 2D and

2E). Contrasting influences of elevation on N and P stocks have been reported in different for-

est ecosystems. For instance, soil N stock was highly positively correlated with the elevation in

subtropical open forests [66]. Similarly, significantly more N was stored in the high-elevation

northern hardwood soil than in the low-elevation soil [67]. However, in a northern hardwood

forest ecosystem, the soil N stock was not correlated with the elevation [68]. The soil P stock in

forest ecosystems might be positively [69, 70] or negatively [71–74] correlated with the eleva-

tion. In contrast, no significant differences in the P stocks among soils obtained along an eleva-

tional gradient in tropical rainforest [75].

Fig 5. Average proportion of N and P stocks in the 0–20 and 0–40 cm soils to the stocks in the entire soil profile.

https://doi.org/10.1371/journal.pone.0204130.g005
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The previously outlined correlation of the soil N and P stocks with elevation gives us a

sense of the varied responses of the N: P ratios to elevation in forest ecosystems. Actually, in an

assessment of the soil N and P stoichiometric characteristics and their impact factors along an

elevational gradient in Southwest China, soil N: P ratios were positively correlated with the ele-

vation [32]. Similar results were obtained in a subalpine forest on the southern slope of the

Himalayan Mountains [21]. In contrast, the ratios decreased significantly with the increase in

the elevation in forests of the karst area [76]. In semiarid Qilian Mountains of China, N: P

ratios of soil initially increased and subsequently decreased with the increase in elevation [34].

Similar trends were observed in tropical and subtropical monsoon forests of China [77]. The

initial increase in the N: P ratios might be due to the increase in N provided by the litter input

and microbial decomposition, which corresponds to the increase in precipitation with the

increase in elevation to a certain elevation, i.e., 3100 [34]. In contrast, the subsequent decrease

in the N: P ratios may indicate the increase in the P supply from parent materials that was

stimulated by the increase in precipitation and the decrease in temperature.

The non-significant relationships between the N and P stocks and the N: P ratios with ele-

vation in P. schrenkiana forest, as well as in other forests, indicated that the elevation may not

be the main factor that influences the variation in nutrient stocks and stoichiometry in forest

ecosystems, especially forests in arid mountainous regions. In general, the decrease in soil

depth with the increase in elevation could reduce the stock of nutrients [34, 78]. In addition,

the average N and P concentrations at high elevations were generally lower than those at low

elevations [21, 68, 79]. However, in our study area, we did not observe significant differences

in the N and P concentrations and soil depth along the elevational gradient (S1 and S2 Figs).

Moreover, because changes in many other factors could influence the soil N and P stocks with

elevation, the relatively stable value of the N and P stocks in Schrenk’s spruce across the eleva-

tional range was unexpected.

N and P concentrations and N: P ratios with MAT and MAP

A thorough understanding of the influence of climatic variables on nutrient stocks and biolog-

ical stoichiometry provides a basis for determining the causes of nutrient cycling in terrestrial

ecosystems [80]. Our results showed that, with the increase in MAT, the N stock decreased

(Fig 3A). This result contrasts with the generally accepted relationship between the MAT and

the soil N stock; thus, these results demonstrated that, with the increase in the mass production

and litter accumulation and with the strengthened decomposition activity of microbes under

warm conditions, the N stock increased with the increase in the MAT [81, 82]. In our study

area, the decrease in the N stock with the increase in the MAT indicated the high N uptake of

trees under warm conditions [74]. In contrast, more N was deposited due the combined effects

of the reduced decomposition rate and the suppressed plant uptake. Compared with the

decrease in soil N with the increase in MAT, the soil P was higher under warmer conditions,

which suggested that the supply of P from the parent material compensated for the loss of the

element through plant uptake. Theoretically, parent material weathering was enhanced under

warmer conditions [83].

The soil N and P decreased as MAP increased, indicating precipitation has a negative effect

on the N and P stocks in Schrenk’s spruce forest. In Schrenk’s spruce forest, a high MAP actu-

ally corresponded to a high elevation. No significant differences were observed in the N and P

concentrations and soil depth with the elevation (S1 and S2 Figs); thus, the uptake by trees

might be the main factor that influenced the decrease in the N and P stocks. Specifically, high

precipitation accelerated the growth rate of trees [84, 85], consequently resulting in low soil N

and P stocks. This type of relationship between precipitation and soil nutrient status has been
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confirmed in other forest ecosystems in arid regions, such as the Loess Plateau [86, 87], the

Qinling Mountains [88] of Northwest China, and the Qilian Mountains near our study area

[89].

Our results indicated that the N: P ratios decreased as MAT increased (Fig 3C), which was

inconsistent with the large-scale studies [38]. Similar with our study, low N: P ratios at high

temperatures were reported [64, 90]. In addition, the soil N: P ratios in Schrenk’s spruce forest

also exhibited a decreasing trend as MAP increased (Fig 3F). In general, soil P decreased faster

than did soil N with the increase in precipitation, resulting in higher N: P ratios along the pre-

cipitation gradient. Large-scale studies have also confirmed such patterns in N: P ratios, i.e.,

relatively lower availability of P than N due to the high rate of P leaching in tropical and sub-

tropical forests and relatively higher availability of P than N due to the low rate of P leaching

in arid environments [91]. In the present study, the decrease in the N: P ratios with the MAT

and MAP probably indicated that N was the limiting element for biomass accumulation in

Schrenk’s spruce. This finding was consistent with the results of other large-scale investiga-

tions [9, 27]. Actually, the soil N: P ratios in Schrenk’s spruce forest (2.39) were not only lower

than the average of the global forest soil [92] but also lower than that of a mountainous forest

near our study area [34]. As a result, the warm (high MAT) and wet (high MAP) conditions

stimulated biomass accumulation in the species, thereby resulting in the high N uptake of trees

from the soil and finally contributing to the low N: P ratios of the soils.

Correlation among soil N and P concentrations and N: P ratios

The soil N concentrations were positively correlated with the N: P ratios in the Schrenk’s

spruce forest (Table 4), which was consistent with the results of other studies [4, 93, 94]. We

also found that the relationship (N concentrations and N: P ratios) diminished in deep soils

(60–70 and 70–80 cm, as shown in Table 4). The diminished relationship may indicate that the

N: P ratios at these two layers have no significant response to the N concentrations. The possi-

ble cause may include the following. First, it could be due to the relatively stable (lower varia-

tion) N concentrations at these two layers (Fig 2A). Second, it could be due to the varied P

concentrations that resulted from the P supplied by the weathering of the parent material.

The soil N and P concentrations were positively correlated. The correlation coefficient ran-

ged from 0.21 to 0.51. Most of the correlations were significant at the 0.05 level. This signifi-

cant positive relationship demonstrated that the soil N was closely coupled with the soil P in

the Schrenk’s spruce forest. The observed relationship between the N and P concentrations

was consistent with previous findings derived from foliar [9, 34, 95] and microbial communi-

ties [80, 96, 97], which jointly indicated the coherent characteristics of elemental cycles in dif-

ferent components within terrestrial ecosystems. Although a negative relationship between the

soil N and P in Betula platyphylla-planted forest was reported, this was probably due to the

influence of human activities [54].

Concluding remarks

In this study, we examined the soil N and P concentrations and the N: P stoichiometric ratios

in Schrenk’s spruce forest of Northwest China using data from soil profiles collected from

eight sites during field work conducted from 2012 to 2017. In line with other forest ecosystems,

our results indicated that the soil N and P concentrations and the N: P ratios in Schrenk’s

spruce forest decreased with the soil depth. In contrast to other studies, we did not observe a

clear trend in the N and P concentrations and N: P ratios with the increase in elevation. Nota-

bly, our results showed that the N and P stocks and N: P ratios were more significantly corre-

lated with MAT and MAP than with elevation. This finding indicated that MAT and MAP
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have direct influences on the elemental stock and biogeochemical cycles in arid mountainous

forests. In addition, linear regression indicated that the N and P concentrations and N: P ratios

increased with longitude and latitude, and the N and P concentrations decreased linearly with

slope. Furthermore, the positive correlation between the soil N and P in Schrenk’s spruce for-

est was consistent with that reported elsewhere, which jointly demonstrated that the soil N was

closely coupled with the soil P in forest ecosystems.

Supporting information

S1 Fig. Distribution of N and P concentrations with elevation.

(TIF)

S2 Fig. Distribution of soil depth along the elevational gradient.

(TIF)

S1 File. The data collected and analyzed in this study.

(RAR)

Acknowledgments

We would like to thank Dr. Abudukeremujiang Zayiti for his assistance during the laboratory

analysis. We also thank anonymous reviewers for their constructive comments and

suggestions.

Author Contributions

Formal analysis: Zhonglin Xu.

Funding acquisition: Zhonglin Xu, Yue’e Cao.

Investigation: Zhonglin Xu, Yapeng Chang, Lu Li, Qinghui Luo, Zeyuan Xu, Xiaofei Li, Xue-

wei Qiao, Xinyi Xu, Xinni Song, Yao Wang, Yue’e Cao.

Methodology: Zhonglin Xu, Yapeng Chang, Lu Li, Qinghui Luo, Zeyuan Xu, Xiaofei Li, Xue-

wei Qiao, Xinyi Xu, Xinni Song, Yao Wang.

Project administration: Zhonglin Xu.

Writing – original draft: Zhonglin Xu, Yao Wang.

Writing – review & editing: Zhonglin Xu, Yao Wang, Yue’e Cao.

References
1. Cao Y, Chen Y. Coupling of plant and soil C:N:P stoichiometry in black locust (Robinia pseudoacacia)

plantations on the Loess Plateau, China. Trees. 2017. https://doi.org/10.1007/s00468-016-1468-4

2. Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, et al. Biological stoichiometry

from genes to ecosystems. Ecol Lett. 2000; 3(6):540–50.

3. Daufresne T, Loreau M. Plant–herbivore interactions and ecological stoichiometry: when do herbivores

determine plant nutrient limitation? Ecol Lett. 2001; 4(3):196–206.

4. Liu X, Zhou G, Zhang D, Liu S, Chu G, Yan J. N and P stoichiometry of plant and soil in lower subtropical

forest successional series in southern China. Chinese Journal of Plant Ecology. 2010; 34(1):64–71.

5. Sterner RW, Elser JJ. Ecological Stoichiometry: The Biology of Elements From Molecules to The Bio-

sphere2002. 225–6 p.

6. Tian H, Chen G, Zhang C, Melillo JM, Hall CAS. Pattern and variation of C:N:P ratios in China’s soils: a

synthesis of observational data. Biogeochemistry. 2010; 98(1):139–51. https://doi.org/10.1007/s10533-

009-9382-0

Climatic variables control soil nitrogen: Phosphorus ratios in Picea schrenkiana forest

PLOS ONE | https://doi.org/10.1371/journal.pone.0204130 November 1, 2018 14 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204130.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204130.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204130.s003
https://doi.org/10.1007/s00468-016-1468-4
https://doi.org/10.1007/s10533-009-9382-0
https://doi.org/10.1007/s10533-009-9382-0
https://doi.org/10.1371/journal.pone.0204130


7. Harris GP. Biogeochemistry of nitrogen and phosphorus in Australian catchments, rivers and estuaries:

effects of land use and flow regulation and comparisons with global patterns. Mar Freshwat Res. 2001;

52(1):139–49.

8. Yang YH, Fang JY, Guo DL, Ji CJ. Vertical patterns of soil carbon, nitrogen and carbon: nitrogen stoichi-

ometry in Tibetan grasslands. Cancer epidemiology, biomarkers & prevention: a publication of the

American Association for Cancer Research, cosponsored by the American Society of Preventive Oncol-

ogy. 2010; 9(6):631–3.

9. Han W, Fang J, Guo D, Zhang Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial

plant species in China. New Phytol. 2005; 168(2):377. https://doi.org/10.1111/j.1469-8137.2005.01530.

x PMID: 16219077

10. Ågren GI. Stoichiometry and Nutrition of Plant Growth in Natural Communities. Annual Review of Ecol-

ogy Evolution & Systematics. 2008; 39(39):153–70.

11. Schmidt SK, Porazinska D, Concienne BL, Darcy JL, King AJ, Nemergut DR. Biogeochemical Stoichi-

ometry Reveals P and N Limitation Across the Post-glacial Landscape of Denali National Park, Alaska.

Ecosystems. 2016; 19(7):1164–77.

12. Jiao F, Wen ZM, An SS, Yuan Z. Successional changes in soil stoichiometry after land abandonment in

Loess Plateau, China. Ecol Eng. 2013; 58(10):249–54.

13. Sinsabaugh RL, Lauber CL, Weintraub MN, Bony A, Allison SD, Chelsea C, et al. Stoichiometry of soil

enzyme activity at global scale. Ecol Lett. Ecol Lett. 2008; 11(11):1252–64. https://doi.org/10.1111/j.

1461-0248.2008.01245.x PMID: 18823393

14. Delgado-Baquerizo M, Reich PB, Khachane AN, Campbell CD, Thomas N, Freitag TE, et al. It is ele-

mental: Soil nutrient stoichiometry drives bacterial diversity. Environ Microbiol. 2017;19. https://doi.org/

10.1111/1462-2920.13634

15. Fuhrer E. Forest functions, ecosystem stability and management. Forest Ecology & Management.

2000; 132(1):29–38.

16. Mcgroddy ME, Daufresne T, Hedin LO. Scalling of C:N:P stoichiometry in forests worldwide: implica-

tions of terrestrial redfield-type ratios. Ecology. 2004; 85(9):2390–401.

17. Stephan H, Helenebracht J. Carbon quality rather than stoichiometry controls litter decomposition in a

tropical rain forest. J Ecol. 2010; 98(4):754–63.

18. Sardans J, Alonso R, Janssens IA, Carnicer J, Vereseglou S, Rillig MC, et al. Foliar and soil concentra-

tions and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: relation-

ships with climate, N deposition and tree growth. Funct Ecol. 2016; 30(5):676–89.

19. Zhu Q, Xing X, Zhang H, An S. Soil ecological stoichiometry under different vegetation area on loess hil-

lygully region. Acta Ecologica Sinica. 2013; 33(15):4674–82.

20. van Huysen TL, Perakis SS, Harmon ME. Decomposition drives convergence of forest litter nutrient

stoichiometry following phosphorus addition. Plant & Soil. 2016; 406(1):1–14.
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