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Abstract

Background: The underlying neuropathological process of amyotrophic lateral

sclerosis (ALS) can be classified in a four-stage sequential pTDP-43 cerebral

propagation scheme. Using diffusion tensor imaging (DTI), in vivo imaging of

these stages has already been shown to be feasible for the specific corticoefferent

tract systems. Because both cognitive and oculomotor dysfunctions are associ-

ated with microstructural changes at the brain level in ALS, a cognitive and an

oculomotor staging classification were developed, respectively. The association

of these different in vivo staging schemes has not been attempted to date. Meth-

ods: A total of 245 patients with ALS underwent DTI, video-oculography, and

cognitive testing using Edinburgh Cognitive and Behavioral ALS Screen (ECAS).

A set of tract-related diffusion metrics, cognitive, and oculomotor parameters

was selected for further analysis. Hierarchical and k-means clustering algorithms

were used to obtain an optimal cluster solution. Results: According to cluster

analysis, differentiation of patients with ALS into four clusters resulted: Cluster

A showed the highest fractional anisotropy (FA) values and thereby the best

performances in executive oculomotor tasks and cognitive tests, whereas cluster

D showed the lowest FA values, the lowest ECAS scores, and the worst execu-

tive oculomotor performance across all clusters. Clusters B and C showed inter-

mediate results regarding parameter values. Discussion: In a multimodal

dataset of technical assessments of brain structure and function in ALS, an arti-

ficial intelligence-based cluster analysis showed high congruence of DTI, execu-

tive oculomotor function, and neuropsychological performance for mapping

in vivo correlates of neuropathological spreading.

Introduction

Amyotrophic lateral sclerosis (ALS) is characterized by

the progressive degeneration of both upper motor neu-

rons and lower motor neurons, which is fatal after an

average of 3 years.1 Despite the clinical emphasis on

motor deficits, ALS is now regarded a multisystem disor-

der.2 At motor onset, depending on cutoffs for neuropsy-

chological tests – up to 50% of patients show cognitive

impairment and/or behavioral changes3,4; although evi-

dence for worsening in advanced disease is equivocal.5–8

Although not a predominant symptom, a number of

mostly subclinical oculomotor alterations has been

observed in patients with ALS.9,10

Anatomical post-mortem analyses show that the distri-

bution of phosphorylated 43 kDa TAR DNA-binding pro-

tein (pTDP-43) follows a sequential pattern with four

neuropathological stages in the central nervous sys-

tem.11,12 Initially, the ALS pathology spreads from the

motor neocortex via corticoefferent pathways toward the

spinal cord and brainstem,13 then to the frontal, parietal

and, finally, anteromedial temporal lobes.14 Diffusion ten-

sor imaging (DTI) has been used for the in vivo analysis

of white matter neuronal pathways and, thus, the identifi-

cation of pathways associated with sequential ALS pro-

gression.15 A characterization of the microstructural

properties of the involved tract systems based on frac-

tional anisotropy (FA) allowed for an in vivo staging
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classification at individual level and quantitative mapping

of disease progression in the brain.16

Inasmuch as regional microstructural changes and dif-

ferent cognitive domains are closely linked, cognitive

symptoms show a distinct pattern for in vivo staging of

cognition.3 In cognitively impaired patients with ALS,

altered executive functions showed congruence with DTI-

based stage 2, disinhibited behavior with stage 3, and

impaired memory with stage 4. Eye movement dysfunc-

tions measured with video-oculography (VOG) are also

associated with brain dysfunction in ALS and have been

characterized by a sequential pattern parallel to the first

two neuropathological stages.17 Thereby, VOG stage 1 is

confined to executive oculomotor deficits, that is,

increased anti-saccade error rates, saccadic intrusions, or

a lower number of voluntary gaze shifts, whereas VOG

stage 2 is associated with prolonged reactive saccades and

disturbed smooth pursuit eye movements. Although the

type of affected oculomotor parameters suggests conclu-

sions to be drawn about the brain regions involved, there

is still a missing link between the alignment of the VOG

staging pattern with the DTI pattern, on the one hand,

and the cognitive staging pattern on the other.

Here, we provide an approach to differentiate groups

of patients with ALS according to DTI, cognitive, and

oculomotor parameters using artificial intelligence (AI),

that is, unsupervised clustering algorithms which are able

to explore complex datasets.18 In multivariate datasets,

these methods can identify groups of data with similar

measurement results without prior knowledge of class

membership.

Given the advantages of AI over traditional patient

classification strategies,19 the current study aims to show

whether the microstructural, oculomotor, and cognitive

alterations in patients with ALS are associated with one

another and whether the joint analysis of the three

domains can serve as a marker for the stratification of the

neuropathological disease stage.11,12 Multimodal

approaches are prospective advances for patient classifica-

tion early in the disease course to facilitate timely inclu-

sion in individualized therapeutic trials in the future.

Thus, an AI clustering approach is introduced as a novel

multimodal technique to improve the results of previ-

ously established techniques.3,15,17

Materials and Methods

Participants

For this study, we collected data from 245 patients (146

male/99 female) with clinically definite or probable spo-

radic ALS according to the revised El Escorial diagnostic

criteria20 who received a magnetic resonance imaging

(MRI)-based DTI scan, a VOG examination, and neu-

ropsychological testing within 2 weeks between the years

2013 and 2021. None of the patients had any clinically

suspected form of dementia and/or clinical signs of fron-

totemporal lobar degeneration. Severity of physical symp-

toms was measured with the revised ALS functional

rating scale (ALS-FRS-R).21 Detailed sample characteris-

tics are given in Table 1. In addition, VOG data of 64

healthy controls (age 50.6 � 13.4 years, 37 male/27

female) and MRI data of 75 healthy controls (age

60.0 � 13.4 years, 39 male/36 female) were used. Those

two groups of healthy controls were completely indepen-

dent.

All participants provided written consent according to

institutional guidelines, and the study was approved by

the Ethics Committee of the University of Ulm, Germany

(reference # 19/12).

MRI data acquisition and processing

DTI datasets were acquired on a 1.5 T clinical scanner

(Magnetom Symphony, Siemens Medical, Erlangen, Ger-

many). For this purpose, 185 patients with ALS and 28

healthy controls underwent a protocol consisting of 52

gradients including four b0 gradient directions

(b = 1000 sec/mm2, voxel size (2.0 9 2.0 9 2.8) mm3,

128 9 128 pixels, 64 slices, TE = 95 msec,

TR = 8000 msec). Sixty patients with ALS and 47 healthy

controls underwent a different protocol consisting of 62

gradients including two b0 directions (b = 1000 sec/mm2,

voxel size (2.5 9 2.5 9 2.5) mm3, 128 9 128 pixels, 64

slices, TE = 28 msec, TR = 3080 msec). Every MRI scan

included a T1-weighted sequence in addition to the DTI

sequence.

For post-processing, the DTI analysis software “Tensor

Imaging and Fiber Tracking” (TIFT)22 was used. Prior to

preprocessing, DTI data underwent quality control for

Table 1. Clinical sample characteristics and cognitive performance of

245 patients with ALS.

Mean Standard deviation Range

Age/years 62.2 11.1 24.6–83.3

Duration since onset/month 21 29 2–251

ALS-FRS-R 39.4 6.0 14–48

Total ECAS score 100.3 20.1 20–128

ECAS fluency 16.9 5.5 0–32

ECAS language 23.7 4.3 6–28

ECAS executive function 34.6 7.9 6–47

ECAS memory 14.6 5.4 0–26

ECAS visuospatial function 11.2 1.8 0–22

ALS, amyotrophic lateral sclerosis; ALS-FRS-R, revised ALS functional

rating scale; ECAS, Edinburgh Cognitive and Behavioral ALS Screen.
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motion and eddy current correction. DTI datasets were

resampled to an isotropic 1 mm grid, followed by nonlin-

ear spatial normalization to the Montreal Neurological

Institute (MNI) stereotaxic standard space using study-

specific b0 and FA templates sets iteratively. This normal-

ization procedure was described in more detail previ-

ously.23 Calculated FA maps of each dataset were

smoothed with a Gaussian filter of 8 mm full-width-at-

maximum. Subgroups of age- and sex-matched controls

from both scanning protocols were used for calculation of

protocol differences and harmonization.24,25

Fiber tracking

For identification of the relevant tract systems by a tract

of interest-based approach, an averaged dataset from con-

trol data were used. According to the DTI staging sys-

tem,15,16 the following brain structures were defined with

a seed-to-target approach: the corticospinal tract (CST)

(stage 1), the corticorubral and corticopontine tracts

(stage 2), the corticostriatal pathway (stage 3), and the

proximal portion of the perforant pathway (stage 4).

Fiber tracking was a deterministic streamline tracking

approach.26 The FA threshold was set at 0.2,27 the Eigen-

vector scalar product threshold was set at 0.9, the seed

regions had a radius of 5 mm, and the target regions had

a radius of 10 mm. Tract-wise FA statistics was applied to

select FA values underlying the fiber tracks for arithmetic

averaging. The averaged FA values were tract-wise cor-

rected for age according to a previous study.28 Bihemi-

spheric FA values were averaged, as well as the results of

corticopontine and corticorubral tracts since both were

involved in DTI stage 2. Tract-wise group comparison

with healthy controls were performed using Mann–Whit-

ney U tests.

Eye tracking

Eye movements were recorded using the VOG device Eye-

SeeCamTM (EyeSeeTec GmbH, F€urstenfeldbruck, Ger-

many) in our oculomotor laboratory which is certified in

accordance with DIN EN ISO 14971.29,30 Participants

were seated in a comfortable chair facing a white hemi-

cylindrical screen with their head stabilized by an adjusta-

ble chin rest. Visually guided reactive saccades (VGRS)

were pseudo-randomly elicited in horizontal (32 target

steps between 5° and 40° distance) and in vertical direc-

tions (36 target steps between 5° and 30° distance) by

lighting red light emission diodes as described previously

in more detail.30 Participants were instructed to re-fixate

the new target and withhold their gaze shift until the next

diode was lit. Rapid alternating voluntary gaze shifts were

evoked in horizontal and vertical directions by requesting

participants to perform saccades for 30 sec between two

steady green targets with 20° distance.17 Delayed saccades

were tested by presenting a new additive target in 5, 10,

20, and 40° distance when participants were asked to

withhold saccades toward the new target until an acoustic

“go” cue was given. Anti-saccades were tested by present-

ing targets at �5°, �10°, �15°, and �20° eccentric hori-

zontal positions. Participants were asked to instantly

initiate a gaze shift toward the opposite direction of the

new target. Prior to the delayed saccade and anti-saccade

condition, a training session was administered.17

Analysis of eye movements

Analysis of eye movement recordings was carried out with

the MATLAB� (The Mathworks Inc., Natick, MA)-based

in-house software package “OculoMotor Analysis”.17,29,30

The preprocessing pipeline included low-pass filtering,

cross-talk suppression, calibration, quality check, and

averaging to a cyclopean signal, as described previously in

detail.17 VGRS were characterized by the primary saccade

gain and peak eye velocity for horizontal, up, and down.

Saccadic intrusion rate was examined during fixation in

between VGRS target steps and was computed as the

accumulated amplitude of saccades divided by trial time

that is, given as “prevalence” in degrees per second. Rapid

alternating gaze shifts were counted in both directions

and averaged. For delayed and anti-saccade tasks, the per-

centage of errors was calculated. Parameters were adjusted

for age based on the results of the controls.29 Group com-

parisons of VOG parameters with healthy controls were

performed using Mann–Whitney U tests.

Cognitive assessment

Cognitive profile was assessed using the German version

of the Edinburgh Cognitive and Behavioral ALS Screen

(ECAS)31,32 with subdomains of ALS-specific functions

(executive function, language, and verbal fluency) and

non-ALS-specific functions (memory, visuospatial percep-

tion). Age and education adjusted cutoffs were used.32 A

lower score was taken to indicate lower cognitive perfor-

mance. Behavioral changes were assessed by caregiver

interviews with regard to disinhibition, apathy, loss of

sympathy/empathy,33 perseverative/stereotyped behavior,

hyperorality/altered eating behavior, and psychotic symp-

toms.

Clustering

The general procedure of data preprocessing and subse-

quent clustering, implemented using Scikit-learn (version

0.24.2) Python-toolbox,34 is shown in (Fig. 1). First, for
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the three domains microstructure, oculomotor function,

and cognition, we defined a total of 15 parameters

(Table 2) associated with the respective staging crite-

ria.3,15,17 Because missing values are a common challenge

in clustering, we excluded datasets with missing parame-

ter values. To account for different scales, all indicator

parameters were standardized into z-scores. Relations

between the individual variables were determined as Pear-

son correlation coefficient with a Bonferroni-corrected

significance level. Beyond the domains covered by the

cognitive staging approach,3 especially language and ver-

bal fluency are impaired in patients with ALS.4,35,36 In

order to evaluate whether these two ECAS subdomains

can usefully extend the chosen parameter set with regard

to multimodal staging and also to test for stability of the

multi-parametric analysis, the clustering analysis was

additionally performed with this extended parameter set

of 17 parameters including ECAS language and ECAS ver-

bal fluency.

To overcome indicator redundancy due to some highly

correlated parameters, principal component analysis

(PCA) was used to reduce indicator dimension while

retaining underlying trends and patterns.37 Briefly, the

PCA transforms the parameter into so-called “principal

components” (PCs), which are orthogonal and uncorre-

lated to each other. Each PC is a linear combination of

the original parameters and the first PC is aligned with

the direction of maximal variance in the parameter space.

Thus, PCA is a technique to represent the whole parame-

ter set in a new linear combination of the original param-

eters, that way per se not reducing the dimensions; in

order to select the relevant parameters (and that way to

reduce the parameter set for consecutive cluster analysis),

Horn’s parallel analysis38 was applied to determine the

number of PCs to retain and to use for cluster analysis.

Agglomerative hierarchical clustering18 with Ward’s

linkage criterion was used to detect structures in the

dataset without a priori specifying the number of clusters

since the present dataset has no ground truth regarding

the neuropathological staging of patients. In this cluster-

ing algorithm, each data point, in our case each patient

with ALS, starts in its own cluster, which is then itera-

tively merged pairwise by minimizing the distance until

all data points have been merged into one single cluster.

A validation via a random division of the sample into a

training and validation subsample as commonly used in

supervised AI approaches to assess the quality of the algo-

rithm has no advantage for the ex post facto data sample

Figure 1. Workflow scheme of multi-parametric cluster analysis in patients with amyotrophic lateral sclerosis (ALS). Input are four microstructural

parameters from diffusion tensor imaging (DTI), nine oculomotor parameters obtained by video-oculography (VOG), and two cognitive parameters

tested with the Edinburgh Cognitive and Behavioral ALS Screen (ECAS). After standardization, the parameters, some of which were highly corre-

lated, were reduced to four principal components which have the highest explained variance ratio by principal component analysis. Hierarchical

and k-means clustering are applied to the remaining PCs to find an optimal cluster solution.

Table 2. Definition of parameters for clustering.

Domain Abbreviation Parameter

Diffusion

metrics

d1 FA along CST

d2 FA along corticorubral and

corticopontine tracts

d3 FA along corticostriatal pathway

d4 FA along proximal portion of

perforant path

Oculomotor

function

o1 VGRS horizontal latency

o2 VGRS vertical latency

o3 VGRS horizontal peak eye velocity

o4 VGRS up peak eye velocity

o5 VGRS down peak eye velocity

o6 Delayed-saccades error rate

o7 Anti-saccades error rate

o8 Number of voluntary gaze shifts

o9 VGRS intrusion rate

Cognition c1 ECAS memory

c2 ECAS executive function

The selected parameters are associated with the respective staging

approaches of the modalities and characterize diffusion metrics, ocu-

lomotor functions, and cognition of patients with amyotrophic lateral

sclerosis (ALS). Fractional anisotropy (FA) of the tract systems involved

in ALS was studied using a tract-of-interest-based approach. CST, cor-

ticospinal tract; ECAS, Edinburgh Cognitive and Behavioral ALS

Screen; VGRS, visual guided reactive saccades.

1072 ª 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

Multimodal AI-Based In Vivo Staging in ALS A. Behler et al.



of the current study. Since the characteristics of the sam-

ple are obligatorily randomly distributed, the results of

randomly selected training and validation samples per se

would be almost identical and, therefore, the clustering

algorithm was performed on the entire sample. Because

hierarchical clustering does not present an exact number

of clusters as an optimal solution, the number of clusters

in the dataset was chosen based on the dendrogram that

graphically summarizes cluster partitions and dissimilari-

ties given by the distance between two clusters. To mini-

mize the with-in cluster variances, k-means clustering18

was performed with the centroids of the hierarchical clus-

ter partition as initial centroids. To assess between-cluster

variability, Kruskal–Wallis tests were performed with a

Bonferroni-corrected significance level.

Results

Correlation analysis

The correlation coefficients between the selected parame-

ters revealed several strong associations (Fig. 2A). Specifi-

cally, the FA values of the studied tract systems were very

strongly correlated with each other, and the results of the

ECAS executive function part strongly correlated with the

results of all executive oculomotor tasks and the ECAS

Figure 2. Correlation between the

parameters and results of principal

component analysis (PCA). (A)

Heatmap of statistically significant

Pearson correlation coefficients

between different diffusion tensor

imaging-based microstructural met-

rics (d1–d4), oculomotor saccadic

metrics (o1–o5), performance in

executive oculomotor tasks (o6–o9),

and cognitive parameters (c1–c2) of

patients with amyotrophic lateral

sclerosis (ALS). (B) Eigenvalues for

each principal component (PC) after

PCA. The first four PCs were retained

for cluster analysis.
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memory part. In contrast, there were no correlations

between any VOG parameter and FA values in the ALS-

associated tract systems. Saccadic metrics that is, VGRS

latencies and peak eye velocities, showed no or weak cor-

relations with microstructural, executive oculomotor, and

cognitive parameters.

Cluster partition

As only participants with complete datasets including all

selected VOG parameters were allowed, 53 patients were

excluded prior to performing further analyses. According

to Horn’s analysis after the PCA, the PC set was reduced

to the first four PCs with eigenvalues above 1 (Fig. 2B),

in sum, explaining 67.21% of the dataset’s total variance.

PC 1 accounted for 29.38% of the total variance, whereas

PC 2, 3, and 4 accounted for 14.60%, 12.97%, and

10.26%. These four PCs were then used for agglomerative

hierarchical clustering. The obtained hierarchy of patient

cluster arrangements is shown as dendrogram (Fig. 3A).

A partition into four clusters provided a good balance

between distances and traceability of the number of clus-

ters and their characteristics. After partition refinement

using the k-means algorithm, cluster A contained 79

patients, cluster B 55 patients, cluster C 37 patients, and

cluster D 21 patients. In (Fig. 3B), the cluster arrange-

ment after k-means is shown.

Statistical analysis

Statistical analysis showed that clusters significantly dif-

fered in all 15 parameter means with corrected p < 0.003.

The distribution of all parameters resulting from the par-

tition is shown in (Fig. 4). In general, there was a gradi-

ent that is, a decline, in executive VOG performance

(anti-saccade and delayed saccades error rate, number of

voluntary gaze shifts, VGRS intrusion rate; see (Fig. 4J–
M), and cognitive performance (memory and executive

function ECAS; Fig. 4N and O) across clusters A to D. A

decrease of FA values in all tract systems was also

observed simultaneously (Fig. 4A–D). Thus, cluster A was

found to have the highest FA scores and simultaneously

the best performance in executive VOG tasks and cogni-

tive testing, whereas patients with ALS in cluster D

showed the lowest FA scores, the worst executive VOG

performance with high anti-saccade and delayed saccades

error rates, low numbers of voluntary gaze shifts, high

saccadic intrusion rates, and the lowest memory and exec-

utive function ECAS scores. A group comparison of VOG

parameters between patients belonging to cluster A and

Figure 3. Cluster partition obtained from hierarchical and k-means clustering of principal components. (A) The dendrogram of hierarchical clus-

tering was partitioned at a distance threshold of 15. The resulting solution with four clusters is indicated by four colored panels. (B) Scatter plots

indicating how clusters were distributed on principal components (PCs) 1–3 after k-means clustering (PC 4 was not shown to simplify visualiza-

tion).
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healthy controls showed no differences for VGRS laten-

cies, VGRS velocities, VGRS intrusion rate, and number

of voluntary gaze shifts. The delayed and anti-saccades

error rates were already increased for cluster A (p < 0.001

vs. healthy controls), although these were the lowest com-

pared to the other clusters. The obtained metrics of VGRS

that is, latencies and peak eye velocities, did not fall into

this pattern; cluster C showed the lowest peak eye veloci-

ties (Fig. 4G–I), whereas the latencies of cluster A were

the shortest.

The comparison of the FA values of cluster D with

healthy controls showed statistically significant differences

(p < 0.001) in all four tract systems, whereas cluster A

did not show any significant differences from healthy

controls at group level. Cluster B showed lower FA values

in the CST, the corticopontine and corticorubral tract

systems, and the corticostriatal pathway. Cluster C

showed lower FA values only in the CST. Note in this

context that, based on distances and hierarchy (see

Fig. 3A), cluster B is more similar to A than it is to C,

and cluster C is more similar to D than it is to B.

Extended parameter set

The same clustering procedure including PCA was per-

formed with the extended parameter set that is, including

ECAS language and ECAS verbal fluency. With the addi-

tion of these two parameters, the PCA resulted in new

PCs of the dataset. Now, the selection of PCs used for

clustering of this extended parameter set was oriented to

the sum of the explained variance of the four PCs used

for the 15-parameters-based cluster analysis (i.e., 67.21%).

Therefore, the first five PCs were kept, which in sum

explained 70.45% of the total variance (Supplementary

Figure 4. Distribution of parameters within the clusters of patients with ALS. Scatter plots show z-scores of microstructural (A–D), oculomotor

(E–M), and cognitive parameters (N and O) for the four clusters A, B, C, and D. Owing to the z-standardization, the values can be interpreted as

a deviation from the mean of patients with ALS. Gray line works as a guide to the eye. ALS, amyotrophic lateral sclerosis; CST, corticospinal tract;

VGRS, visual guided reactive saccades; ECAS, Edinburgh Cognitive and Behavioral ALS Screen.
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Fig. S1); based on those five PCs, agglomerative hierarchi-

cal clustering was performed. Again, a partition into four

clusters provided a good balance between distances and

traceability of the number of clusters and their character-

istics (Supplementary Fig. S2). After partition refinement

using the k-means algorithm, cluster A contained 99

patients, cluster B 13 patients, cluster C 21 patients, and

cluster D 55 patients.

The statistical analysis showed that the mean values of

the considered parameters differed less than in the clus-

tering based on 15 parameters. Thus, the differences in

saccade latencies, VGRS velocities, and the saccadic intru-

sion rate were not significant. The general trend that is, a

decrease or increase in the parameter values across the

clusters, was still existent (Supplementary Fig. S3). Thus,

cluster A was found to have the highest FA scores and

simultaneously the best performance in executive VOG

tasks and cognitive testing, whereas patients with ALS in

cluster D showed the lowest FA scores, the worst execu-

tive VOG performance with high anti-saccade and

delayed saccades error rates, low numbers of voluntary

gaze shifts, high saccadic intrusion rates, and the lowest

memory and executive function ECAS scores.

Discussion

Here, we employed an AI-based approach to investigate

the associations between cerebro-microstructural, oculo-

motor, and cognitive parameters in ALS and, in so doing,

incorporated further non-imaging parameters into the

in vivodisease stage categorization. The correlation

between cognitive parameters and microstructural mea-

surements in ALS-associated tract systems could be vali-

dated.3 Furthermore, we could demonstrate that the

performance of patients with ALS in executive oculomo-

tor tasks, such as anti-saccades or saccadic intrusion rate,

correlated strongly with cognitive test scores regarding

memory and executive function, which was anticipated

owing to frontal involvement in both domains.39,40 The

additional analysis of further cognitive domains to the

staging-related parameters did not improve the results of

the clustering analysis that is, the multimodal mapping of

neuropathological stages. This constellation supports the

selected parameter set (of executive functions and mem-

ory) for cognitive staging in ALS.3

AI and machine learning models have been increasingly

used in subtype classification in neurological diseases

using technical parameters such as imaging41 and should

be explored in ALS for diagnostic, prognosis, and risk

stratification applications, inasmuch as they have the

potential to surpass traditional approaches.19 Individual-

ized therapeutic approaches ask for precise patient classi-

fication for subgrouping early in the disease course. Thus,

data-driven approaches will extend clinical examination

for future clinical trials. Besides promising pilot studies of

AI-based diagnostic applications to MRI data of patients

with ALS versus healthy controls,42 large multivariant

datasets might play a role in further improving diagnostic

models by incorporating different domains.43 In addition,

by including different parameters in subgroup modeling,

the impact of bias and confounders in some parameters

will be reduced for example, education bias in cognitive

function or motor dysfunction in both MRI or oculomo-

tor measurements.

Our multimodal clustering approach was able to show

that patients with ALS who performed worst in cognitive

tests used to assess memory and executive functions and

in tests of executive oculomotor tasks for example, high

error rates in delayed and anti-saccade tasks, also showed

the lowest FA values across all investigated tracts. In line

with this finding, one group of patients (cluster A) was

identified, in whom all oculomotor and cognitive parame-

ters were least affected and FA values were the highest.

Associations with neuropathological stages could be

inferred from group comparisons of patients’ FA values

with healthy controls. Cluster A with the best executive

oculomotor and cognitive performance and the highest

FA scores may correspond to neuropathological stage 1.

Because significant differences were observed in cluster D

in all ALS-associated tract systems, this cluster may repre-

sent neuropathological stage 4. It seems safe to assume

that in early and late pathological stages, the different

modalities show a very high congruence. Aligned between

these two clusters, cluster B and C presented with a

decreasing congruence of modalities. In cluster C, com-

parison of microstructural parameters with those of

healthy controls showed only a significant difference in

FA of the CST, with declined performance in executive

oculomotor tasks and cognitive tests compared to cluster

B. Based on the alterations in the involved tract systems,

there are indications that cluster C may be associated

with neuropathological stage 2 and cluster B with neu-

ropathological stage 3. This constellation might indicate

that brain dysfunction in distinct areas may be modified

by additional factors in different patients with ALS. For

instance, asymptomatic C9orf72 gene carriers exhibit exec-

utive oculomotor and cognitive dysfunctions29,44 of non-

progressive nature which is potentially due to

developmental deficits. AI-based diagnostic applications

may enable future stratification of disease pathology even

in the preclinical phase. During disease progression, there

is a close association of clinical subtypes and parameters

that could be used for AI-based approaches for example,

bulbar involvement is associated with cognition and

behavior.5,45 Characteristics of saccadic parameters also

differ between patients with bulbar or spinal onset, given

1076 ª 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

Multimodal AI-Based In Vivo Staging in ALS A. Behler et al.



that dysmetric saccades are more common in patients

with bulbar onset,46 whereas upward saccades are delayed

in patients with spinal onset.17 An over-representation of

patients with spinal onset in cluster C might be a possible

reason why the VGRS down peak eye velocity of this

group alone was altered. It has to be noted that, in this

approach, only the ALS-associated multisystem pathology

according to the proposed propagation pattern11 and not

the peripheral pathology (such as the involvement of the

second motor neuron) has been addressed because we

limited our assessments to central nervous system dys-

function. This constellation might explain why the more

altered clusters were not necessarily associated with higher

disease burden, which might prominently be linked with

the lower motor neuron involvement that was not

addressed by the current approach.

This study has further limitations. The results were not

confirmed by postmortem examination. Therefore, a

combination of multimodal cluster classification and

definitive neuropathological stage classification was not

possible. Because only cross-sectional data were used, no

conclusions can be drawn about whether patients change

cluster attribution during disease progression. A final

issue could be the selection of the indicators on which

the PCA and cluster analysis was based. Behavioral defi-

cits and smooth pursuit eye movement impairment were

excluded for methodological reasons, although they play a

role in VOG and cognitive staging decisions.3,17 Since no

multimodal datasets of healthy controls were available,

the patients’ parameters were compared with different

control groups in each modality.

In conclusion, our results support the enormous aca-

demic and clinical potential of AI-based approaches in

ALS.19,47 Cluster analysis of multimodal parameters asso-

ciated with the respective criteria for staging in DTI,

VOG, and cognitive testing displayed a high congruence

of these approaches in patients with ALS. The combina-

tion of measures of structural changes in diffusion-

weighted MRI with measures of cognition and oculomo-

tor function was capable of assessing neuropathological

stages 1 and 4 in particular and could provide the basis

for a future multimodal extension of the in vivo staging

system. Such approaches of a deep patient characteriza-

tion by multiple domains might be further expanded by

the use of a greater number of clinical parameters and

have the potential to substantially guide patient stratifica-

tion for clinical trials and for individualized patient care.
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