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Abstract The lateral prefrontal cortex (LPFC) of humans enables flexible goal-directed behavior. 
However, its functional organization remains actively debated after decades of research. Moreover, 
recent efforts aiming to map the LPFC through meta-analysis are limited, either in scope or in the 
inferred specificity of structure-function associations. These limitations are in part due to the limited 
expressiveness of commonly-used data analysis tools, which restricts the breadth and complexity of 
questions that can be expressed in a meta-analysis. Here, we adopt NeuroLang, a novel approach 
to more expressive meta-analysis based on probabilistic first-order logic programming, to infer the 
organizing principles of the LPFC from 14,371 neuroimaging studies. Our findings reveal a rostro-
caudal and a dorsoventral gradient, respectively explaining the most and second most variance in 
meta-analytic connectivity across the LPFC. Moreover, we identify a unimodal-to-transmodal spec-
trum of coactivation patterns along with a concrete-to-abstract axis of structure-function associations 
extending from caudal to rostral regions of the LPFC. Finally, we infer inter-hemispheric asymmetries 
along the principal rostrocaudal gradient, identifying hemisphere-specific associations with topics 
of language, memory, response inhibition, and sensory processing. Overall, this study provides a 
comprehensive meta-analytic mapping of the LPFC, grounding future hypothesis generation on a 
quantitative overview of past findings.

Editor's evaluation
A meta-analysis of over 14,000 fMRI studies revealed a principle rostral-caudal gradient in the lateral 
prefrontal cortex. This gradient reflected an internal/external axis, which helps to organize the 
LPFC's involvement in widespread processes from affect, to memory, to control, and action. This is 
an important contribution to the literature, particularly as a meta-analytic approach has not been 
applied to this axis of organization and can complement the limitations of single studies. The paper 
is strengthened by the authors addressing a potential bias in the analysis and drawing a clearer rela-
tionship to functional networks.

Introduction
The lateral prefrontal cortex (LPFC) supports a wide variety of cognitive processes considered hall-
mark features of the human brain (Fuster, 2015; Petrides, 2005). Understanding the functional orga-
nization of the LPFC is thus important to studying adaptive human behavior. Yet, the overarching 
organizing principles of the LPFC are still actively debated, with a variety of proposals on whether 
it is unitary, hierarchical, or constitutes a set of essentially separable networks subserving distinct 
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functions (Badre and D’Esposito, 2009; Duncan, 2010; Goulas et al., 2012; Nee and D’Esposito, 
2016; Reynolds et al., 2012; Nee, 2021). Recently, there have been a few large-scale attempts to 
map the entire LPFC using both conventional and meta-analytical approaches. So far, these mappings 
have lacked specificity partly due to the limited breadth and complexity of queries that widely used 
tools can express and solve. In this study, we adopt a novel approach to expressive neuroimaging 
meta-analysis based on symbolic artificial intelligence to infer the organizing principles of the LPFC 
from thousands of studies with enhanced specificity.

The versatility of the LPFC suggests that it is far from being a unitary brain structure (de la Vega 
et al., 2018; Dixon et al., 2018; Goulas et al., 2012; Koechlin et al., 2003; Nee and D’Esposito, 
2016). An influential class of hypotheses emerging from the domain of abstraction and hierarchical 
cognitive control proposes a rostrocaudal gradient in the LPFC. In this spatial layout, caudal regions 
respond to immediate sensory stimuli, middle regions select actions based upon a prevailing context, 
and rostral regions integrate concrete representations into more abstract rules to enable top-down 
temporal control of behavior (Azuar et al., 2014; Badre, 2008; Badre and D’Esposito, 2009; Botvi-
nick, 2008; Christoff and Gabrieli, 2000; Fuster, 2015; Koechlin et  al., 2003; Jeon and Fried-
erici, 2013; Nee and D’Esposito, 2016; Petrides, 2005). A second class of hypotheses holds that 
a dorsoventral functional gradient, separating regions involved in distinct stimulus domains, governs 
the distribution of functions in the LPFC (Rahm et al., 2013; Petrides, 2005; Parlatini et al., 2017). 
More recent results suggest that the functionally distinct ventral and dorsal LPFC are each organized 
along the rostrocaudal axis according to the level of abstraction in task representations (Petrides, 
2005; Bahlmann et al., 2015; Blumenfeld et al., 2013).

Extensive evidence from systems neuroscience further suggests that the LPFC comprises separable 
functional networks sub-serving different roles. The networks are the dorsal and ventral attention 
networks, default mode network, salience network, and most importantly the frontoparietal cogni-
tive control network (Cole et al., 2014; Dixon et al., 2018; Fedorenko et al., 2011; Marek and 
Dosenbach, 2018; Yeo et al., 2011). These networks are believed to be situated upon a brain-wide 
connectivity gradient wherein the transmodal regions of the default mode network are maximally 
distant from unimodal regions of the sensorimotor/attention networks (Huntenburg et  al., 2018; 
Margulies et al., 2016), with the salience and frontoparietal control networks occupying interme-
diate zones. One proposal holds that this spatial principle ascribes the LPFC with the role of inte-
grating concrete and abstract representations following an external/present-oriented to internal/
future-oriented gradient extending outwardly from the motor cortex (Nee, 2021). However, studies 
of the causal interplay between LPFC regions argue against such a linear gradient and rather support 
the hypothesis of distinct networks interacting within global and local hierarchies (de la Vega et al., 
2018; Bzdok et al., 2016; Dixon et al., 2018; Reynolds et al., 2012; Nee and D’Esposito, 2016; 
Nee and D’Esposito, 2017; also see Badre and Nee, 2018 for a comprehensive review). Within this 
systems-based framework, the middle LPFC, rather than the rostral LPFC, is believed to act as the 
focal point that integrates concrete and abstract representations, with increasingly rostral and caudal 
LPFC regions acting in their specific domains (e.g. internally or externally focused cognition) (Badre 
and Nee, 2018; Nee and D’Esposito, 2017; Nee, 2021).

The LPFC is also characterized by inter-hemispheric functional asymmetries, most notably for 
language (Abbott et al., 2010; Fedorenko et al., 2011) and inhibitory control processes (Garavan 
et al., 1999; Aron, 2007). Functional asymmetries between hemispheres are believed to arise from 
dynamic patterns of inter- and intra-hemispheric connectivity that represent organizing principles of 
functional specializations whose putative role is to promote efficient control of behavior (Hartwigsen 
et al., 2019; Gonzalez Alam et al., 2021). Thus, mapping the LPFC must take into account differences 
across hemispheres, especially in the distribution of lateralized functional associations. While there is 
a preponderance of research on the organization of the left LPFC in the fields of hierarchical control 
and language (Nee, 2021), a comprehensive comparison is yet to draw firm conclusions regarding the 
specifc functional associations of both left and right LPFC.

The multitude of proposals on the LPFC organization mainly arises from the diversity of proto-
cols and researchers’ degrees-of-freedom across studies. Thus, the idiosyncrasies of individual fMRI 
studies (e.g. task type, timing, magnitude of stimuli/responses, data analysis methods, and publication 
bias) can limit generalizability (Botvinik-Nezer et al., 2020; Jennings and Van Horn, 2012). And 
besides concerns of small sample sizes (Turner et al., 2018), each individual study probes a narrow 
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scope of a wide range of functions that putatively engage the LPFC, posing a risk of interpreting 
the results based on a small set of task contrasts. Therefore, it remains unclear to what extent the 
functional boundaries derived from each individual study correspond to the gross organization of 
the LPFC. Ultimately, a comprehensive meta-analysis is needed to synthesize the findings and infer 
consensus on the organization of the LPFC. Unlike individual studies, meta-analysis offers an over-
arching perspective on brain activity, mapping a wide range of functions onto structures in a single 
statistical framework (Fox et al., 2014; Müller et al., 2018; Yarkoni et al., 2011).

Notwithstanding, the existing meta-analyses to map the LPFC, although informative, have been 
limited in scope and, more importantly, in tools. These limitations preclude a reliable distinction of 
closely related LPFC regions. On the one hand, due to the difficulty of the manual compilation of acti-
vation peaks from the literature, most meta-analyses have been restricted to some regions (e.g. right 
inferior frontal gyrus Hartwigsen et al., 2019) or functions (e.g. working memory Nee et al., 2013). 
On the other hand, large-scale automated meta-analyses have assumed that LPFC regions are clusters 
of piece-wise constant coactivation, ignoring gradual functional transitions from one region to another 
(de la Vega et al., 2018). Finally, commonly used tools, such as Neurosynth (Yarkoni et al., 2011), 
are not expressive enough to represent complex hypotheses of specific functional associations in the 
LPFC. For example, it is arguably difficult to query a database on the probability that a function is 
associated with a study, given that it reports activation in one region and the simultaneous absence of 
activation in another region. This expressivity limitation becomes more challenging when performing 
a meta-analysis with multiple psychological concepts and regions that may coactivate across several 
tasks.

In this study, we overcome these challenges by using NeuroLang, a domain-specific programming 
language based on probabilistic first-order logic (Iovene and Wassermann, 2020). More specifi-
cally, we perform a coordinate-based meta-analysis on 14,371 articles from the Neurosynth dataset 
(Yarkoni et al., 2011) along with a gradient-mapping approach (Margulies et al., 2016) to identify 
the organizing principles of activity in the LPFC. NeuroLang provides a structured and more expres-
sive formalism to test neuroscience hypotheses and solve complex queries on large databases (Iovene 
and Wassermann, 2020). For instance, we can express queries of functional specificity in the likes of: 
“What is the probability that empathy is associated with a given activation in the rostral LPFC and 
there does not exist any activation reported in caudal or middle LPFC?". Moreover, NeuroLang brings 
the power of probabilistic reasoning to account for uncertainty in heterogeneous data, such as in peak 
locations, region coactivations, and functional associations, all in a unifying framework. Importantly, a 
meta-analysis performed using NeuroLang is highly reproducible; the same queries used in this study 
can be used by future studies to validate or update the results as more data becomes available.

Results
A principal rostrocaudal and a secondary dorsoventral gradient explain 
most of the variance in meta-analytic connectivity in the LPFC
In the first analysis, we assess the extent to which LPFC regions are similar in their coactivation patterns 
across the literature. In other words, we want to identify the main gradients of meta-analytic connec-
tivity in the LPFC (Margulies et  al., 2016; Huntenburg et al., 2018). We start by reducing high-
dimensional voxel-level data to lower-dimensional region-level data to increase interpretability and 
alleviate computational burdens. To do this, we project voxel activation data onto 1024 continuously-
valued regions from the Dictionaries of Functional Modes (DiFuMo) atlases (Dadi et al., 2020). The 
DiFuMo is a set of probabilistic brain atlases created using data from thousands of subjects across 27 
studies, comprising 2192 task-based and resting-state fMRI sessions publicly available on OpenNeuro 
(Markiewicz et al., 2021). Second, we write a program in NeuroLang that infers the probability for 
each DiFuMo brain region to be reported active given activation in each LPFC region and the proba-
bility that a brain region is active given no activation in each LPFC region. We then compute the loga-
rithm of the odds ratio (LOR) or the difference of the logits of the odds of these two events for each 
pair of regions. This yields a N × M matrix that encodes meta-analytic connectivity between N LPFC 
regions and M brain regions. To derive the gradients of meta-analytic connectivity in the LPFC, we 
apply a non-linear dimensionality reduction technique known as diffusion embedding (Coifman et al., 
2005; Margulies et al., 2016) for the left and right LPFC separately. The resultant low-dimensional 
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embeddings situate each LPFC region along multiple axes, also known as gradients, each repre-
senting a direction of gradual variation in connectivity and explaining a proportion of the variance. 
The axis that accounts for the greatest amount of variance in meta-analytic connectivity is called the 
principal gradient, which will be the focus of the rest of the study.

Results are depicted in Figure 1 and Figure 2. Figure 1A shows the principal gradient of meta-
analytic connectivity in the LPFC. This gradient is anchored at one end by caudal LPFC regions and 
the other end by rostral LPFC regions, supporting a dominant rostrocaudal organization in the LPFC. 
The rostrocaudal spatial layout of the principal gradient is clearly expressed in terms of the posterior-
to-anterior and inferior-to-superior positions of brain regions grouped in successive twenty-percentile 
gradient segments in Figure 2. One interesting question is whether the principal LPFC gradient is a 
local processing stream within the macroscale gradients described by Margulies et  al., 2016, like 
the first gradient (separates sensiromotor from default mode regions) and the third gradient (sepa-
rates task-positive regions from the default mode network), or it represents a region-specific gradient. 
Therefore, within an LPFC mask, we compare the spatial layout of principal LPFC gradient (Figure 2—
figure supplement 1) with that of the macroscale resting-state gradients from Margulies et al., 2016, 
namely gradient 1 and gradient 3. We observe a moderate positive correlation with gradient 1, and a 
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A Second Gradient of Meta-Analytic Connectivity in the LPFC
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Components in the Right LPFC

Principal Gradient of Meta-Analytic Connectivity in the LPFC
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Figure 1. Meta-analytic connectivity gradients of the LPFC. The rostrocaudal and dorsoventral gradients explain the greatest amount of variance in 
meta-analytic connectivity in the LPFC. (A) The principal gradient in both hemispheres echoes a widely proposed rostrocaudal organization in the 
LPFC. This gradient represents the dominant direction of variations in connectivity patterns. (B) The gradient that explains the second-most variance 
in meta-analytic connectivity in the LPFC echoes a dorsoventral organization extending from ventrolateral to dorsolateral PFC regions. (C) and (D) The 
percentage of variance explained by the first 20 diffusion embedding components in the left and right LPFC, respectively.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The spatial layout of the principal LPFC gradient across 5000 re-runs of the meta-analysis on random sub-samples of the 
Neurosynth dataset.

Figure supplement 2. Percentage of variance explained by diffusion embedding components across 5000 re-runs of the meta-analysis.

Figure supplement 3. The principal LPFC gradient of long range coactivations.

Figure supplement 4. The principal LPFC gradient at the single-subject level.

Figure supplement 5. Spatial correlation between the subject-level and literature-level LPFC gradients.
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weak negative correlation with gradient 3, in both the left and right LPFC. These data show that the 
distribution of activity in the LPFC is dominated by a rostrocaudal gradient that fits within a more global 
gradient separating sensorimotor systems from higher-order association regions often implicated in 
abstract mental functions (Margulies et al., 2016; Huntenburg et al., 2018). Moreover, the principal 
gradient seems to be robust to different methodological choices, such as the choice of studies to be 
included in the meta-analysis (Figure 1—figure supplement 1 and Figure 1—figure supplement 2) 
and the choice of coactivation distances between regions (Figure 1—figure supplement 3). Interest-
ingly, the spatial layout of the principal LPFC gradient can be reproduced at the single-subject level, 
albeit individual-specific variations are observable (Figure 1—figure supplement 4 and Figure 1—
figure supplement 5). For a detailed description of the supplementary results and methods, please 
refer to Appendix 1. On the other hand, Figure 1B shows the secondary gradient of meta-analytic 
connectivity in the LPFC. This gradient extends along the dorsoventral axis of the LPFC, anchored at 
one end by ventral LPFC regions and the other end by dorsal LPFC regions. The topographies of the 
estimated gradients are consistent with those described in previous literature (Petrides, 2005; Nee 
and D’Esposito, 2016; Bahlmann et al., 2015). However, the extent to which each gradient explains 
the variation of activity in the LPFC across different brain states has remained unclear.
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Figure 2. Positions along the posterior-to-anterior and inferior-to-superior axes in MNI space of quintile bins along the principal LPFC gradient. 
(A) Positions of quintile bins in the left LPFC. (B) Positions of quintile bins in the right LPFC. Each colored sphere represents a brain region, with the 
color reflecting its network membership within the 17-Networks atlas (Yeo et al., 2011). SomMot: SomatoMotor, VisCent/Peri: Visual Central/Peripheral, 
SalVentAttn: Salience/Ventral Attention, DorsAttn: Dorsal Attention, TemPar: Temporo-Parietal, Cont: Executive Control, Default: Default Mode.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Spatial correlation between the meta-analytic and resting-state connectivity gradients in the LPFC.
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Coactivation patterns along the rostrocaudal axis of the LPFC follow a 
unimodal-to-transmodal organization
In the second main analysis, we characterize the principal LPFC gradient in terms of varying coacti-
vation patterns of successive quintile bins and their overlap with canonical brain networks (Figure 3). 

Right LPFC

Left LPFC

B

A
Left LPFC Right LPFC

Bin 1 Bin 1

Bin 2 Bin 2

Bin 3 Bin 3

Bin 4 Bin 4

Bin 5 Bin 5

Coactivation Patterns Along the Principal Gradient of Meta-Analytic Connectivity in the LPFC 
Coactivation PatternCoactivation Pattern

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

Number of Regions from each Network that is Covered by the Coactivation Patterns of 
Quintile Bins Along the LPFC Gradient  

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

Figure 3. Coactivation patterns along the principal LPFC gradient. The coactivation patterns of quintile bins along the principal gradient in the LPFC 
capture a unimodal-to-transmodal spatial layout in brain network connectivity. (A) Coactivation patterns along the principal gradient in the left and right 
LPFC. Each brain map shows the regions that have a least three times the odds of being reported active given activation in a quintile bin relative to 
being active when activation is not reported in the quintile bin. Note that cerebellar and sub-cortical regions, although included in the analysis, are not 
shown in the figures. (B) Bar plots showing the number of regions from each network that overlaps with the coactivation pattern of each quintile bin. The 
data shown here suggests that the dorsal attention (green) and sensorimotor networks (blue) coactivate with the caudal bins (i.e. bins 1 and 2) more than 
with more rostral bins. On the other hand, the default mode network coactivates more with the rostral bins (i.e. bins 4 and 5) than with caudal bins.
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For this purpose, we write a NeuroLang program that first applies a smoothing spherical kernel with 
a 10mm radius around each peak in each study (Wager et al., 2007). The resulting binary activation 
maps (one map per study) are then projected onto 1024 functional regions defined by the DiFuMo 
atlas. However, this is not the case for quintile bins, where activation is considered reported in a 
quintile bin when at least one voxel is reported active within or near its vicinity (‍< 3mm‍). Finally, we 
estimate the LOR of the event that a brain region is reported active given activation in a quintile bin 
to the event that a brain region is active when no activation is reported in the bin.

Results are shown in Figure 3. Figure 3A depicts cortical coactivation maps of regions that exhibit 
at least threefold the odds (or ‍LOR > 0.5‍) of coactivating with a bin than not. Figure 3B depicts bar 
plots showing the number of regions from each network that falls within each quintile bin’s coacti-
vation pattern. We observe a change in network connectivity profiles from a pattern dominated by 
unimodal dorsal attention/sensorimotor regions to one where overlap with the transmodal default 
mode regions becomes increasingly visible. In the middle zones, coactivation patterns overlap mostly 
with the salience and cognitive control networks that collectively are known to be part of the ‘multiple 
demand network’ (Duncan, 2010). These data support recent proposals of domain-general processing 
in the mid-LPFC regions as opposed to more domain-specificity at the extremities of the rostrocaudal 
LPFC gradient (Nee, 2021). Here, ‘domain-specific’ denotes a region's involvement in either internal/
present-oriented or external/future-oriented processing, whereas ‘domain-general’ is used to indicate 
possible a region's involvement in both types of processes.

Mapping specific topic associations in the LPFC supports the 
hypothesis of increasing abstract representations extending along the 
rostrocaudal gradient
In the third analysis, we characterize the principal LPFC gradient in terms of associations with 38 
topics chosen from an original set of 100 topics (version-5 of topic modelling from Neurosynth) 
(Poldrack et al., 2012). These topics are data-driven aggregations of single terms that co-occur in 
article abstracts and cover broad cognitive and behavioral domains often studied in cognitive neuro-
science. Refer to Table 1 to see the five strongest loading terms on each topic listed in descending 
order of association strength. We perform the topic-based decoding using what we call ‘segregation 
queries’. A segregation query infers the probability “that a topic is associated with activation in a set 
of regions given the absence of activation in another set of regions”. Expressing segregation queries 
using NeuroLang is straightforward and enables inferring more specific structure-functions relation-
ships. In conventional non-segregation inferences, these associations may be blurred due to regions 
coactivating across many studies and tasks (Figure  4—figure supplement 1). The most probable 
reason for this blurring is that typical fMRI task contrasts rarely isolate regions underlying distinct but 
related processes, which likely need to be probed across multiple tasks to ensure the independence 
of regions (Poldrack et al., 2011).

The NeuroLang program of this analysis infers the probability that a topic is present given acti-
vation between bin ‍a‍ (‍a ∈ [1, 5]‍) and a bin ‍b‍ (‍b ∈ [1, 5]‍), while there exists no activation in any bin 
outside the range ‍[a, b]‍ . The term 'there exists no’ is the segregation expression that guarantees 
more specificity of associations. For instance, in the event where ‍a = 1‍ and ‍b = 4‍, the program queries 
the database on the probability that a topic is present in a study given activation of bins 1 and 4 (or 
any region in between) and given no activation outside the quintile range ‍[1, 4]‍. In the event where 
‍a = b‍, we infer topic association given activation constrained in only one quintile bin. Concurrently, 
the program infers the probability of the opposite event by selecting the studies that do not match 
the criteria imposed by the segregation query. By computing the LOR of these two events, we obtain 
a measure of the evidence in favor of association between each topic and spatially constrained activa-
tion patterns along the principal gradient of the LPFC.

Results are depicted in Figure 4A and Figure 4B for the left and right LPFC, respectively. Topics 
are vertically ordered from top-to-bottom by the weighted mean of their location along the gradient. 
We observe a broad shift in topic associations from topics of sensorimotor/attention processing at 
more caudal regions to topics of emotion and memory-related topics at more rostral regions of the 
principal LPFC gradient. Between these extremities, we mainly observe topics related to executive 
functions and language. This pattern of topic-bin associations suggests that as activation extends 
away from the posterior towards the anterior LPFC, task representations become more abstracted 
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Table 1. Thirty-eight topics from the Neurosynth LDA-driven 100 topics set and the top five terms 
loading on each topic listed in descending order of association strength.

topics terms

Action Imitation mirror; observation; imitation; action; gestures

Attention attention; attentional; task; visual; control

Auditory Processing auditory; sounds; sound; cortex; temporal

Cognitive Control task; cognitive; performance; control; executive

Conflict Interference conflict; interference; control; incongruent; congruent

Cued Attention spatial; cues; cue; location; attention; orienting

Decision Making decision; making; risk; choice; decisions; choices

Declarative Memory memory; retrieval; episodic; mtl; memories

Emotion Regulation regulation; emotion; reappraisal; cognitive; amygdala

Emotional Valence emotional; negative; positive; amygdala; emotion

Empathy social; empathy; moral; game; people

Eye Movements eye; gaze; saccade; movements; target

Face/Affective Processing amygdala; emotional; faces; facial; emotion; expression

Feedback/Error Processing feedback; error; learning; errors; prediction

Judgement judgments; judgment; ppc; reference; drawing

Lexical Semantics semantic; words; word; lexical; verbs

Memory Encoding memory; encoding; hippocampus; hippocampal; retrieval

Memory Retrieval memory; recognition; items; retrieval; recollection

Mental Imagery imagery; mental; events; future; imagined

Mentalizing reasoning; mind; mental; social; tom

Motor Movement motor; movement; cortex; movements; hand

Multisensory Processing visual; motion; auditory; modality; sensory integration

Navigation ms; spatial; virtual; navigation; illusion

Numerical Cognition number; numerical; numbers; magnitude; size

Perception perceptual; perception; interaction; sensory; visual

Reading reading; words; word; phonological; chinese

Response Inhibition inhibition; response; control; inhibitory; task

Response Selection response; stimulus; trials; trial; presented

Reward Processing reward; striatum; ventral; anticipation; monetary

Sentence Comprehension language; comprehension; sentences; sentence; syntax

Skill Learning learning; training; sequence; performance; practice

Somatosensory Processing somatosensory; stimulation; tactile; hand; cortex

Speech Production speech; auditory; production; perception; temporal

Subjective Experience pictures; images; aversive; neutral; unpleasant

Target Detection target; detection; targets; awareness; presented

Task Switching task; switching; rule; set; switch

Visual Perception object; objects; visual; category; cortex

Working Memory memory; working; wm; task; load; verbal

https://doi.org/10.7554/eLife.76926


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Abdallah et al. eLife 2022;11:e76926. DOI: https://​doi.​org/​10.​7554/​eLife.​76926 � 9 of 31

from immediate demands of perception/action cycles. Finally, for the purpose of comparison with 
conventional decoding, we perform this analysis without using segregation queries. Here, we infer 
the probability that “a topic is present in a study given activation reported in a set of regions”. Results 
of the non-segregation-based analysis are shown in Figure 4—figure supplement 1 and show an 
ordering of topics along a roughly concrete-to-abstract axis. However, the individual associations are 
rather distributed across bins, suggesting no specificity of structure-function associations in the LPFC.

Gradient-based meta-analysis of inter-hemispheric asymmetries reveals 
lateralized associations with topics of language, memory, inhibitory 
control, sensory and error processing
The last analysis of this study aims at contrasting the two LPFC hemispheres in terms of specific topic 
associations in a gradient-like fashion. More precisely, we compare homologous quintile bins in both 
hemispheres in terms of functional associations. For this purpose, we write a NeuroLang program 
that solves segregation queries between hemispheres. Here, we infer the probabilities “that a topic is 
present in a study given activation in a quintile bin in the right (respectively left) LPFC and there exists 
no reported activation in the entire left (respectively right) LPFC”. The LOR, in this case, represents the 
amount of evidence for topic association given unilateral activation in the right hemisphere relative to 
a unilateral activation in the left hemisphere of the LPFC across quintile bins of the principal gradient.

Results are depicted in Figure 5. In general, we do not observe any systematic variation in the 
degree and nature of functional asymmetries when moving along the rostrocaudal gradient. The 
amount of evidence for hemispheric preference as well as the domains of lateralized topic associations 
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Figure 4. Inferring functional associations along the principal LPFC gradient using segregation queries. Mapping functional associations using 
segregation queries reveals a structured ordering of topics along the principal gradient in the (A) left and (B) right LPFC. Topics are ordered by the 
weighted mean of their location along the principal gradient. Topics of sensorimotor processing are mostly located at the top followed by executive 
functions and language, and finally emotion/memory/social cognition-related topics mostly occupy the bottom. Note that although the order of 
topics varies between hemispheres, the general profile of topic associations is comparable. A two-headed arrow along the horizontal axis signifies a 
coactivation constricted in a given range of quintile bins. Log-odds ratio values are thresholded at 0 to show only positive associations. White asterisks 
denote the log-odds ratio values whose 95% confidence interval estimated from 5000 re-runs of the meta-analysis on random sub-samples of the 
Neurosynth dataset does not include the value 0.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Inferring functional associations along the principal LPFC gradient without segregation queries.

https://doi.org/10.7554/eLife.76926


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Abdallah et al. eLife 2022;11:e76926. DOI: https://​doi.​org/​10.​7554/​eLife.​76926 � 10 of 31

N
eu

ro
sy

nt
h 

To
pi

cs

Log-Odds Ratio

Hemispheric Functional Asymmetries in the LPFC

Right LPFCLeft LPFC

Figure 5. Gradient-based mapping of hemispheric asymmetries in the LPFC. Meta-analysis of inter-hemispheric 
asymmetries reasserts the left-hemispheric dominance of language and memory and the right-hemispheric 
dominance of inhibition and sensory processing/monitoring in the LPFC. Positive log-odds ratios indicate evidence 
in favor of right-hemispheric preference of a topic in a given bin, whereas negative values indicate evidence in 

Figure 5 continued on next page
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in the LPFC are comparable between caudal and rostral LPFC regions in both hemispheres (Figure 5). 
Specifically, we find that language-related topics, such as ‘lexical semantics’, ‘sentence comprehen-
sion’, and ‘reading’ are more likely to be associated with left LPFC activation from bins 1–5. Like-
wise, we find that memory-related topics, ‘memory retrieval’ and ‘declarative memory’, also show 
substantial evidence for left-hemispheric preference across multiple quintile bins of the principal LPFC 
gradient. In contrast, topics such as ‘somatosensory processing’, ‘eye movements’, ‘response inhibi-
tion’, ‘feedback/error processing’ are more likely to be associated with right LPFC activation across 
multiple quintile bins. Together, these results reassert the views on hemispheric functional asymme-
tries in the LPFC, with the left LPFC being involved in language and memory processes (Abbott 
et al., 2010; Fedorenko et al., 2011; Gabrieli et al., 1998; Hartwigsen et al., 2019) and the right 
LPFC is involved in stimulus-driven action control and sensory monitoring processes (Aron, 2007; 
Bartolomeo and Seidel Malkinson, 2019; Thiebaut de Schotten et al., 2011; Garavan et al., 1999).

Discussion
In this study, we infer the LPFC gradients via a comprehensive meta-analysis. We find a principal 
rostrocaudal and secondary dorsoventral gradient that explain most of the variance in meta-analytic 
connectivity patterns in the LPFC across 14,371 studies. We also find a systematic distribution of 
network coactivation patterns along the principal gradient from regions putatively associated with 
external/present-oriented functions to regions of higher order networks associated with internal/
temporally distant cognition. Finally, by assessing inter-hemispheric functional asymmetries along the 
principal gradient, we find patterns of lateralized topic associations consistent with previous findings 
on language, memory, sensory processing/monitoring, and response inhibition. Overall, the specificity 
of findings in this study grounds future hypothesis generation on a quantitative overview of previously 
published results.

The principal meta-analytic gradient in the LPFC reflects a rostrocaudal 
organization characterized by domain-generality in the intermediate 
zone and domain-specificity at the extremities
The principal gradient of meta-analytic coactivation in the LPFC echoes a rostrocaudal organization in 
the sense that successive quintile bins along the gradient show a linear increase in their posterior—
to-anterior position from the vicinity of the motor cortex toward the anterior of the brain. Thus, this 
gradient places caudal LPFC regions at the farthest point from rostral LPFC regions on a spectrum 
of similarity in meta-analytic connectivity patterns. This result agrees with a popular class of hypoth-
eses emerging from abstraction and hierarchical control studies on a rostrocaudal gradient in the 
LPFC (Badre, 2008; Badre and D’Esposito, 2009; de la Vega et al., 2018; Koechlin et al., 2003; 
Wendelken et al., 2012). Yet, a question remains open concerning the properties and functional roles 
of different zones in the rostrocaudal LPFC gradient.

Early studies on the matter have ascribed the rostral LPFC with the roles of integrating concrete 
information from caudal regions and relaying back top-down control signals (Koechlin et al., 2003; 
Badre, 2008; Petrides, 2005; Wendelken et al., 2012). In contrast, recent studies relying on causal 
evidence argue against a unidimensional linear gradient and rather place the mid-LPFC as the nexus 
of both concrete and abstract representations (Nee and D’Esposito, 2016; Badre and Nee, 2018; 
Nee, 2021). Although we cannot infer such integrative processing by means of causality in the current 
study, we find that the mid-LPFC regions are situated in the intermediate zones of the principal 
gradient. Technically speaking, this means that the whole-brain coactivation profile of the mid-LPFC 
is not totally similar nor dissimilar to those of the caudal and rostral LPFC, but somewhat overlaps 
with them. Indeed, we observe that intermediate gradient zones coactivate more with the salience 

favor of left-hemispheric preference of a topic in a given bin. Error bars represent the 95% confidence intervals 
estimated from 5000 re-runs of the meta-analysis on random sub-samples of the Neurosynth dataset. Each random 
sub-sample comprises 60% of the studies of the original dataset (around 8623 studies). Topics are ordered from 
most-left dominant to most-right dominant based on the average of the log-odds ratio values over the five quintile 
bins.

Figure 5 continued
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(SalVentAttnB) and control networks (ContA and ContB) and to a lesser extent with both the attention 
(DorsAttnA and DorsAttnB) and default mode networks (DefaultA and DefaultB). This pattern is not 
observed for the two extremities of the gradient (bins 1 and 5), where networks involved either in 
external processing (SomMotA, DorsAttnA, and SalVentAttnA) or internal cognition (DefaultA and 
DefaultB) are respectively more dominant along with the salience and cognitive control networks 
(Figure 3). The salience and control networks are believed to be integrative and to mediate the interac-
tion of the default and attention networks to control the transition between external/present-focused 
and internal/temporally-distant processing (Menon and Uddin, 2010; Nee, 2021). Finally, as further 
support, when activation is restricted within the caudal-to-middle zones of the gradient (bins 1–4), we 
mainly observe associations with topics of action execution, sensory perception, language, and exec-
utive control (Figure 4). In contrast, when coactivation is restricted within the middle-to-rostral zones 
(bins 2–5), we observe associations with topics of memory, emotion, and social cognition—functions 
that rely on abstract representations untethered from immediate environmental demands (Buckner 
and Krienen, 2013). These patterns of network and function associations support a domain-general 
role of mid-LPFC regions and a more domain-specific role (i.e. either internally or externally oriented 
processing) for caudal and rostral LPFC regions.

The principal gradient of meta-analytic connectivity in the LPFC echoes 
the principle gradient of brain-wide intrinsic connectivity
As seen in Figure 2—figure supplement 1, the topography of the principal LPFC gradient correlates 
with the overall layout of the principal brain-wide gradient described in Margulies et al., 2016, which 
represents the dominant spatial principle governing resting-state connectivity throughout the entire 
cerebral cortex. This spatial principle conceptualizes higher order cognition as emerging from dynamic 
interactions of large-scale networks, systematically organized along an axis of abstraction that extends 
from unimodal sensorimotor regions to transmodal default mode regions (Mesulam, 1998; Margu-
lies et al., 2016; Huntenburg et al., 2018). Importantly, it incorporates the seemingly isolated local 
processing streams across the cortex within a continuous global framework. In this sense, the spatial 
location of a brain region is not arbitrary; a region’s position along the principal gradient is a major 
determinant of its connectivity profile, its network membership and consequently its functional role. 
Specifically, it has been found that the longer the spatial distance between a region and the primary 
cortices, the more distant are its functional connections and the more it is dispositioned to subserve 
abstract mental functions (Oligschläger et al., 2017). The default mode network occupies the top 
end of the global intrinsic connectivity gradient and exhibits the greatest geodesic distance from the 
sensorimotor cortices, allowing it to process highly internalized information abstracted from imme-
diate sensory input (Margulies et al., 2016; Smallwood et al., 2021). In a similar sense, we find that 
the rostrocaudal gradient in the LPFC captures systematic transitions in large-scale functional networks 
(Figure 2 and Figure 3), such that caudal zones pre-dominantly coactivate with sensorimotor/atten-
tion networks, middle zones coactivate with salience/executive control networks, and increasingly 
rostral gradient zones coactivate more with the default mode network. This result confers a spectrum 
of increasing abstraction on the LPFC that follows the transition from unimodal to transmodal regions.

Further supporting this view are the specific topic associations along the principal LPFC gradient 
inferred using segregation queries (Figure  4). These patterns of functional associations are not 
evident from the non-segregation-based topic association analysis, although the topics seem to follow 
a roughly concrete-to-abstract ordering. As shown in Figure 4—figure supplement 1, topic associa-
tions are either equal to zero for all bins or cover the entire LPFC gradient, suggesting no specificity 
in structure-function associations. Thus, our results stress the importance of using segregation queries 
to infer relatively specific associations often masked in conventional functional decoding analyses. 
Overall, the rostrocaudal LPFC gradient described herein represents a literature-inferred map of a 
concrete-to-abstract organizing principle, wherein globally interacting networks interface locally in 
the LPFC to support adaptive behavior within dynamic contexts (Badre and Nee, 2018; Nee and 
D’Esposito, 2016).

https://doi.org/10.7554/eLife.76926
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Meta-analysis of LPFC inter-hemispheric asymmetries reasserts the left-
hemispheric preference of language and memory processes and the 
right-hemispheric preference of inhibitory and sensory processes
Segregation-based meta-analysis of inter-hemispheric asymmetries reveals associations with 
language, memory, response inhibition, error-processing, and somatosensory processing in the LPFC. 
The importance of segregation queries, in this case, is in inferring the structure-function associations 
whose presence is only predicted by unilateral activation in the LPFC. Previously, the lateralization of 
function in the brain has been well documented for certain functions, notably language (Abbott et al., 
2010; Fedorenko et al., 2011) and response inhibition (Aron, 2007). More recently, an effort to map 
hemisphere-specific functions across the whole brain (Karolis et al., 2019) has uncovered four global 
dimensions of laterlization: symbolic communication, perception and action, emotion, and decision 
making. However, a comprehensive comparison of hemisphere-specific functional associations within 
the LPFC remains lacking, especially when taking into account the principal organizing gradient in 
each hemisphere. The analysis carried out in this study is one step forward toward filling this gap.

In general, we do not observe any systematic variations in the degree nor nature of lateralized 
topic associations along the principal LPFC gradient (Figure 5). That is, unilateral structure-function 
association patterns seem to be comparable throughout the rostrocaudal gradient. For instance, the 
greatest observed evidence for left-hemispheric preference in the LPFC is attributed to language and 
memory-related topics, which is consistent with a long line of research on the linguistic and semantic 
selectivity of the left hemisphere (Gonzalez Alam et  al., 2021). In contrast, the greatest amount 
of evidence for right-hemispheric preference in the LPFC is attributed to ‘response inhibition’ and 
‘somatosensory processing’, and to a lesser extent ‘feedback/error processing’ and ‘eye movements’. 
These results are consistent with the role of the right hemisphere, in general, in sensory monitoring 
and the inhibitory processes. Notwithstanding, we observe relatively weak evidence (Figure 5) for 
right-hemispheric preference of attention-related topics, such as ‘attention’, ‘cued attention’, and 
‘navigation’, although such topics are often attributed to the right brain hemisphere (Bartolomeo 
and Seidel Malkinson, 2019; Thiebaut de Schotten et al., 2011). While there may be more than one 
explanation for these observations, a plausible one is related to the data-driven nature of topics. More 
specifically, given that topics are ‘bags’ of words that frequently co-occur in the abstracts of articles, 
they are at best proxies to the actual mental functions. This means that topics can not be specific 
enough to capture finely grained cognitive constructs. Nonetheless, topics are relatively better repre-
sentatives of psychological domains than individual terms that pose the risk of being interpreted out 
of context (Poldrack et al., 2012). Overall, the current findings support the preferential roles of the 
left LPFC in language, semantics, and memory processes and the right LPFC in sensory monitoring 
and cued inhibition of behavior.

Limitations
While the present results provide a relatively unbiased mapping of the organizing gradients in the 
LPFC through meta-analysis, several caveats and limitations are worth noting. First, although meta-
analysis is arguably one of the best techniques to synthesize findings across the literature, it amplifies 
spatial uncertainty by combining a large number of different datasets and hence might overly smooth 
the gradients. In addition, the methods adopted here, such as the spatial smoothing prior (10mm 
radius) and the use of a brain atlas, may further exacerbate the problem and make the organization of 
the LPFC appear more spatially continuous than it actually might be. Indeed, the actual steps along 
the rostrocaudal axis might be discrete/areal, separating disparate networks as in clustering-based 
representations (e.g. Yeo 17 atlas), may approach total continuity, or something in between. Although 
the supplementary subject-level analysis shows that individual gradients are more granular than the 
literature-based gradient (Figure 1—figure supplement 4), we do not make any claims about the 
ground truth spatial resolution of the principal LPFC gradient, as no evidence has been observed to 
support any of the hypotheses.

Second, we make simplifying assumptions to alleviate computational burdens, notably the use of 
1024 functional regions from the DiFuMo atlases (Dadi et al., 2020) and the choice of 20-percentile 
gradient bins as units of analysis. These assumptions might impose a fixed dimensionality and force 
voxels to be grouped in static regions, which ignores dynamics in brain activity observed at multiple 
timescales within and across individuals (Salehi et al., 2020). Another simplifying assumption is the use 
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of topics that represent broad concepts built upon the frequency with which simpler terms co-occur 
in studies, ignoring more finely-grained cognitive structures. Moreover, some of the simple terms may 
seemingly not fit within the most likely description of the topic. Integrating ontologies, such as the 
Cognitive Atlas (Poldrack et al., 2011), will arguably improve the ability of automated meta-analyses 
to differentiate fine-grained cognitive constructs. In fact, NeuroLang is well-equipped to integrate 
ontologies into meta-analyses, and this will be our next step toward improving the precision of meta-
analytic queries.

Third, small sample sizes per study and potential publication bias, or the tendency of authors and 
journals to only publish positive and statistically significant results (Jennings and Van Horn, 2012), 
might impact the reliability of the current findings. Even though spatial smoothing priors and proba-
bilistic brain atlases may alleviate some bias, future meta-analyses should rely on complete data like 
unthresholded statistical images stored in large repositories, such as NeuroVault (Gorgolewski et al., 
2015), to validate the results. Finally, an important limitation, not specific to this meta-analysis, is that 
the current knowledge of task-dependent activations in the brain is as good as the task paradigms 
that induce these activations (Poldrack and Yarkoni, 2016). More broadly, an ongoing endeavor in 
cognitive neuroscience is developing the appropriate paradigms that isolate cognitive processes of 
closely related brain regions (Poldrack and Yarkoni, 2016). Studies in the domain of abstraction and 
hierarchical control use nested tasks classed by different levels of abstraction, which can uncover func-
tional gradients in the LPFC (e.g. Koechlin et al., 2003; Nee and D’Esposito, 2016). However, these 
studies are not common in the literature and are limited to a small range of functions. In contrast, the 
bulk of tasks included in the Neurosynth dataset, while not hierarchical, captures a much wider variety 
of brain states, but at the expense of losing some level of specificity.

Conclusion
In conclusion, the present study provides a meta-analytic mapping of the principal organizing gradi-
ents in the LPFC of humans. The LPFC appears to be organised along two spatial gradients, rostro-
caudal and dorsoventral, that respectively explain the most and second-most variance in meta-analytic 
connectivity. We also find that the principal gradient captures a unimodal-to-transmodal spectrum 
of increasing abstraction in network connectivity and functional associations. Importantly, we over-
come the limitations of previous large-scale attempts using a novel domain-specific query language, 
NeuroLang, to formulate expressive queries on the largest coordinate-based meta-analysis database 
to date. As more studies are aggregated into future databases, the analyses carried out in this study 
can be reproduced using the same queries as well as extended to explore other brain regions.

Methods
Data and software
We use the latest version of the Neurosynth dataset (Yarkoni et al., 2011) last updated in July 2018 
to include 14,371 articles that include more than 500,000 activation coordinates covering the whole 
brain. Each study in the database is represented by a PubMed ID, peak activation coordinates and 
weighted topic associations. Neurosynth’s peak activation coordinates are either reported in MNI 
space or Talairach space. However, we re-sampled all activation data to the symmetric 3 mm MNI 
template before any analysis took place. Moreover, all analysis are carried out in volumes, while 
surfaces are used for visualization only. To assess topic-associations in the LPFC, we use the set of 
100 Neurosynth topic terms (version 5) previously generated by applying latent Dirichlet allocation to 
the abstracts of articles in the database (Poldrack et al., 2012). Out of the 100 topics, we include 38 
topics (shown in Table 1) that represent coherent cognitive functions, excluding those that correspond 
to subject populations (e.g. brain disorders, age, sex), brain anatomy, imaging modalities and anal-
ysis techniques. All analyses and visualizations are implemented in python. In particular, we use the 
NeuroLang (https://github.com/NeuroLang/NeuroLang; Wassermann et al., 2022) library to perform 
all meta-analysis steps and the BrainSpace library (https://github.com/MICA-MNI/BrainSpace; Vos de 
Wael et al., 2022) to estimate low-dimensional embeddings of meta-analytic connectivity patterns in 
the LPFC (Vos de Wael et al., 2020). All source code and data files used in this study will be publicly 
available to be openly accessed on github at https://github.com/majdabd/lpfc_gradients-meta-anal-
ysis (copy archived at swh:1:rev:7ab4efcbc9875b92745b7b1c43864d7352fd3b90; Abdallah, 2022).

https://doi.org/10.7554/eLife.76926
https://github.com/NeuroLang/NeuroLang
https://github.com/MICA-MNI/BrainSpace
https://github.com/majdabd/lpfc_gradients-meta-analysis
https://github.com/majdabd/lpfc_gradients-meta-analysis
https://archive.softwareheritage.org/swh:1:dir:4d67d4eadc69ba05c04b4efeb0ba1a5450617c87;origin=https://github.com/majdabd/lpfc_gradients-meta-analysis;visit=swh:1:snp:6d325b4f77e9030593d9bcb87a8a553487c1d008;anchor=swh:1:rev:7ab4efcbc9875b92745b7b1c43864d7352fd3b90
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The lateral prefrontal cortex mask
To facilitate the selection of regions in the LPFC for meta-analysis, a spatial mask of the LPFC is 
needed. We rely on a previously created mask of the lateral frontal lobe created from de la Vega 
et al., 2018. However, we exclude voxels with less than 25% probability of falling in the grey matter 
as well as voxels located at ‍x < 18‍ or ‍x > −18‍ from the midline of the brain to ensure that regions 
in the anterior and superior parts of the medial prefrontal cortex are not included. We also exclude 
voxels in the orbitofrontal cortex and anterior insula, while making sure to include voxels of the lateral 
orbitofrontal cortex. Finally, to focus our analysis on the association regions of the lateral frontal lobe 
(i.e, the LPFC), we exclude voxels in the motor cortex as defined by the somatomotor networks of the 
17-Networks atlas (Yeo et al., 2011). The LPFC mask is shown in Figure 6A.
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Figure 6. Schematic overview of our analysis pipeline. (A) Inputs and outputs of NeuroLang. Inputs are represented using blue arrows and include: Peak 
activations and topics from the Neurosynth dataset, the lateral PFC mask, and the 1024 regions from the DiFuMo atlases are represented in a unifying 
framework within NeuroLang. Two examples of outputs are shown here and represented using red arrows. (B) The main steps of the meta-analysis 
carried out in this study. (1) Spatial smoothing with 10 mm kernel around each peak. (2) The binary activation map of each study is projected onto 
1024 functional regions. Varying shades of red signify that regions have different probabilities of being reported by a study depending on the location 
of voxels within each region. (3) The meta-analytic connectivity matrix encodes the log-odds ratios of coactivation between each region in the LPFC 
and every region in the brain. (4) A similarity matrix encodes the degree of correspondence between LPFC regions in their meta-analytic connectivity 
profiles, estimated by the eta-squared similarity metric. (5) The principal gradient of meta-analytic connectivity in each hemisphere is then derived from 
the similarity matrix using diffusion embedding. (6) Coactivation patterns of successive quintile gradient bins are inferred (7) Specific topic associations 
along the principal gradient are inferred using segregation queries. (8) Finally, a gradient-based meta-analysis of hemispheric asymmetries is performed.
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The 1024 functional regions dictionary from DiFuMo
To increase the interpretability of our findings and alleviate computational burdens, we reduce voxel-
level data to region-level data. In particular, we adopt the 1024 functional regions dictionary from the 
Dictionaries of Functional Modes (DiFuMo) atlases (Dadi et al., 2020). The DiFuMo is a set of multi-
scale functional atlases estimated via massive online dictionary learning (Mensch et al., 2016) applied 
to functional brain volumes of thousands of subjects across 27 large-scale studies, forming a total of 
2192 task-based and resting-state MRI sessions. Reducing voxel data to 1024 functional regions has 
been argued to capture the functional neuroanatomy of the brain equally well as voxel-level anal-
ysis while reducing computational burdens (Dadi et al., 2020). Unlike other dimensionality-reduction 
techniques, massive online dictionary learning assigns non-negative continuous loadings to each 
voxel designating its relative weight on each region. Voxels with a loading value equal to 0 on any 
given region do not belong in a given region. Finally, to identify the DiFuMo regions in the LPFC, we 
recover those that have at least 50% of their volume fall within the LPFC mask described earlier. See 
the next section on Representing heterogeneous data in a single framework with NeuroLang for more 
details. Note that we do not mask out region voxels outside the LPFC mask—we either include or 
exclude entire DiFuMo regions without breaking continuity. This means that some functional regions 
can include voxels outside the LPFC mask. The reason for this crossover is that functionally defined 
regions seldom conform to anatomical landmarks in the brain. Comprehensive details on the DiFuMo 
atlas can be found in the original study by Dadi et al., 2020.

Representing heterogeneous data in a single framework with 
NeuroLang
The goal behind developing NeuroLang is to create a universal language that reduces the likelihood 
of miscommunication within the cognitive neuroscience community by enabling databases, hypoth-
eses, and questions to be defined in a formal, shareable, and reproducible manner. This is believed to 
be a critical step toward advancing the field of cognitive neuroscience (Poldrack and Yarkoni, 2016).

In this study, we represent data types from heterogeneous sources, such as peak coordinates, topic 
models, anatomical masks, and brain atlases in a single framework. More precisely, these data and 
the relationships among them can be represented as facts and rules using declarative logic-based 
statements. The user only has to specify what is to be found rather than how to find it. Facts and 
rules in NeuroLang are tuple sets or tables structured in rows. Each row is a sequence of ‍k‍ elements 
representing a piece of data, such as the MNI coordinates of a reported peak in a study, and can be 
implicitly assigned a probability that quantifies the level of uncertainty in this data. Fact tables repre-
sent explicit information present in the data, while rule tables represent inferred relationships among 
different data elements. The goal is to declare these tables as predicates in a probabilistic logic 
program that solves complex queries on them. For a survey on probabilistic databases and probabi-
listic programming, the reader is referred to Van den Broeck and Suciu, 2015.

To concretely showcase how we represent data in NeuroLang, we start with the Neurosynth dataset. 
The database includes studies that report peak activations coordinates in standard space (Figure 6A). 
In NeuroLang, we represent these peaks in a fact table called PeakReported. This table contains a 
row (x, y, z, study) for each peak with coordinates (x, y, z) that has been reported active by a study. 
Also, the studies themselves are represented in a fact table called Study that contains a row for each 
study containing a single element, (study), representing its PubMed identifier. Similarly to Neurosynth, 
we assume each study within the database to be an independent equiprobable sample of neurosci-
entific knowledge (Yarkoni et al., 2011). This assumption is represented by another fact table we call 
SelectedStudy, which simply assigns a uniform probability (‍1/N ‍, ‍N = 14, 370‍) for each study to be 
selected in any possible world of events. In other words, this assumption allows the studies to have 
equal weights in the meta-analysis (Yarkoni et al., 2011; Iovene and Wassermann, 2020).

Further, the spatial uncertainty surrounding the reported location of each peak in a given study can 
be represented in a rule table named VoxelReported. In this rule table, a multilevel kernel density 
analysis (MKDA) (Wager et al., 2007) assumes each peak’s 10mm neighboring voxels to be equiva-
lently reported (Wager et al., 2007). Thus, the VoxelReported table contains a row (x, y, z, study) for 
each voxel at location (x, y, z) and falls within 10mm Euclidean distance from a peak reported by a 
study. As Neurolang is based on Datalog (Abiteboul et al., 1995), a declarative logic programming 
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language designed to solve queries on large databases, the program that computes VoxelReported 
is written as follows:

VoxelReported(x, y, z, study):-  
   GreyMatterVoxel(x, y, z) & PeakReported(x2, y2, z2, study)  
   & distance = EUCLIDEAN(x, y, z, x2, y2, z2) & distance < 10  
 
ans(x, y, z, study):- VoxelReported(x, y, z, study)

The answer states that "a voxel at location (x, y, z) in grey matter is considered active in a study 
if it is situated within 10mm radius from a peak reported by study at location (x2, y2, z2)". GreyMat-
terVoxel is also a fact table representing a grey matter mask in MNI space. This table contains a row 
(x, y, z) for each brain voxel having at least 25% chance of being found in grey matter. The distance 
variable is estimated using the built-in function EUCLIDEAN, which computes the distance between 
two locations in standard space.

The Neurosynth dataset also includes topics that have been derived using latent Dirichlet alloca-
tion applied to the abstracts of the articles (Poldrack and Yarkoni, 2016). Each study in the database 
has a loading value on each topic, which can be considered as a proxy to the probability that a topic 
is present in a study. This weighted topic-study association is represented in a probabilistic fact table 
named TopicInStudy. This table contains a row (topic, study) for each topic present in a study, and the 
study has a non-zero loading on the topic. The reason for calling this table probabilistic is that the 
study-on-topic loading is implicitly embedded as a measure of uncertainty in the presence of a topic 
in a given study.

Anatomical masks and functional atlases can also be represented in NeuroLang. For instance, we 
represent the LPFC mask described previously in a fact table called LPFCVoxel. This table contains a 
row (x, y, z) for each voxel belonging to the LPFC mask. Moreover, we represent the 1024 functional 
regions from DiFuMo in a fact table called RegionVoxel, which contains a row (r, x, y, z, w) for each 
voxel at location (x,y,z) in MNI space having a non-zero weight w on a DiFuMo region r. Similar to the 
case of topic-study association, the voxel-on-region weight can be used as a measure of uncertainty in 
a voxel belonging to a region. This is achieved by first scaling the weight of every voxel in each region 
to the maximum weight in that region. In this sense, the voxel with the maximum loading will have a 
probability of 1 of belonging to a given region. Finally, regions belonging to the LPFC can be repre-
sented in a rule table called LPFCRegion. This table contains a row (r), where r is a brain region that 
have at least 50% of its volume overlapping with the LPFC mask. The following NeuroLang program, 
written in Datalog syntax, infers this table:

RegionVolume(r, count(x, y, z)):- RegionVoxel(r, x, y, z, w) 
  
VolumeOfOverlapWithMask(r, count(x, y, z)):-  
  RegionVoxel(r, x, y, z, w) & LPFCVoxel(x, y, z)  
 
LPFCRegion(r):-  
  RegionVolume(r, v0) & VolumeOfOverlapWithMask(r, v) & (v/v0 >0.5) 
  
ans(r):- LPFCRegion(r)

We start by declaring the predicates to be used in solving the query. These predicates are the 
RegionVolume and VolumeOfOverlapWithMask. These encode the total volume and the volume of 
overlap with the LPFC mask of each brain region r, respectively. The LPFCRegion is the final answer 
of this program and states that: “A brain region r belongs to the LPFC if its volume of overlap, v, 
with an LPFC mask makes up more than 50% of its total volume, v0”. Volume variables v and v0 are 
estimated by the built-in function count(x, y, z), which simply counts the number of voxels in a brain 
region.
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Estimating the meta-analytic connectivity matrix with NeuroLang
To infer a whole-brain meta-analytic connectivity profile for each LPFC region, we query the data-
base on the probability that a brain region is reported active given the presence or absence of 
activation in a LPFC region. For this purpose, we write a NeuroLang program that first projects the 
voxels reported active in each study onto the 1024 functional regions to determine which ones are 
reported by the study (step 2 in Figure 6B). In this context, the program regards the reporting of 
a brain region by a study as a probabilistic event rather than a deterministic one. That is, if a voxel 
reported active has a weight w on a functional region r, then the region is assigned a probability w 
of being reported by the study. If multiple voxels with distinct weights are reported active within a 
region, then the maximum weight is considered as the probability for the region to be reported by 
the study. Second, we infer the probabilities of observing activation in every brain region given the 
presence, and subsequently given the absence, of activation in each LPFC region. We then compute 
the logarithm of the odds ratio, the difference of the logits of the probabilities. This yields a vector 
for each LPFC region whose elements represent the amount of evidence for pairwise meta-analytic 
connectivity with every brain region. A positive LOR indicates more evidence for coactivation, a 
negative LOR implies more evidence independent activation, and a LOR equal to 0 implies that 
evidence is inconclusive for either hypotheses. The program that infers the meta-analytic connec-
tivity matrix is as follows:

RegionMaxWeight(r, max(w)):- RegionVoxel(r, x, y, z, w)  
 
RegionVoxelNormalizedWeight(r, x, y, z):: w/W:-  
  RegionVoxel(r, x, y, z, w) & RegionMaxWeight(r, W)  
 
LPFCRegionActive(r, study):-  
  RegionVoxelNormalizedWeight(r, x, y, z)  
  & VoxelReported(x, y, z, study)  
  & LPFCRegion(r)  
 
LPFCRegionNotActive(r, study):-  
  LPFCRegion(r)  
  & ~LPFCRegionActive(r, study)  
  & Study(study)  
 
BrainRegionActive(r, study):-  
  VoxelReported(x, y, z, study)  
  & RegionVoxelNormalizedWeight(r, x, y, z)  
 
ProbabilityOfCoactivation(r, r2, PROB):-  
  BrainRegionActive(r, study) //  
(LPFCRegionActive(r2, study)  
& SelectedStudy(study))  
 
ProbabilityOfNoCoactivation(r, r2, PROB):-  
  BrainRegionActive(r, study) // 
  (LPFCRegionNotActive(r2, study)  
  & SelectedStudy(study))  
 
MetaAnalyticConnectivityMatrix(r2, r, LOR):-  
  ProbabilityOfCoactivation(r, r2, p1)  
  & ProbabilityOfNoCoactivation(r, r2, p0)  
  & LOR = log10((p1/(1-p1))/(p0/(1-p0)))  
 
ans(r2, r, LOR):- MetaAnalyticConnectivityMatrix(r2, r, LOR)
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In order to solve the query, we first need to declare the predicates. First, we get the maximum 
weight of each DiFuMo brain region in RegionMaxWeight using the built-in function max(w). This will 
be used to declare a probabilistic table RegionVoxelNormalizedWeight, which implicitly incorporates 
the normalized weight w/W of each voxel (x, y, z) in each DiFuMo-1024 region r. The normalized 
weight is represented by the (:: w/W). Second, we define the probabilistic tables LPFCRegionActive 
and BrainRegionActive, wherein each row carries a probability that a brain or LPFC region is reported 
active by a study. Similarly, we define LPFCRegionNotActive, a probabilistic table wherein each row 
carries the probability that a study does not report activation in a LPFC region. We then infer Prob-
abilityOfCoactivation, which encodes the probability (PROB) of activation being reported in brain 
region r given (//) that activation is also reported in LPFC region r2. Likewise, we infer ProbabilityOf-
NoCoactivation, which encodes the probability of activation being reported in a brain region given 
that activation is not reported in a LPFC region. The SelectedStudy table sets the program to assign 
an equal weight (‍1/N ‍, ‍N = 14, 371‍) to all the studies in the meta-analysis. Finally, the MetaAnalyticCon-
nectivityMatrix rule table is inferred by computing the LOR of the two events (i.e. coactivation and no 
coactivation) as a measure of meta-analytic connectivity between each LPFC region and every brain 
region.

Diffusion map embedding using the BrainSpace toolbox
To recover a low-dimensional embedding of the meta-analytic connectivity matrix, we choose to 
apply diffusion embedding (Coifman et al., 2005), an unsupervised nonlinear dimensionality reduc-
tion method. The low-dimensional embeddings represent the axes of variation of coactivation-based 
connectivity patterns in the LPFC, and can be recovered with two steps. First, we estimate the simi-
larity between LPFC regions in terms of their coactivation patterns. Here, we quantify the similarity 
between each pair of LPFC regions using the eta-squared coefficient following Haak et al., 2018, 
yielding a square affinity matrix (step 4 in Figure  6B). The eta-squared coefficient represents the 
fraction of the variance in one meta-analytic connectivity profile that is accounted for by the variance 
in another and ranges from 0 (totally dissimilar) to 1 (perfectly similar). Diffusion embedding then 
represents this similarity structure as an arrangement of regions in an embedding space spanned 
by 20 components known as ‘gradients’. Gradients are conceptually similar to the components of 
principal components analysis and represent unidimensional axes, each explaining a fraction of the 
variance in a given feature (Margulies et al., 2016), in our case, meta-analytic connectivity. In each 
gradient, regions that have very similar meta-analytic connectivity patterns occupy nearby zones, 
while regions with dissimilar patterns are situated further apart. The first or principal gradient is the 
most informative component as it captures the dominant axis of variation of meta-analytic connec-
tivity patterns within the LPFC.

Inferring whole-brain coactivation patterns of quintile bins along the 
principal gradient using NeuroLang
To be able to infer varying coactivation patterns along the principal gradient in the LPFC, we first 
create regions-of-interest from successive twenty-percentile gradient bins (i.e. five quintile bins) in 
the right and left LPFC. Then, we infer each quintile bin’s coactivation pattern and characterize the 
variation of network connectivity along the principal gradient (step 6 in Figure 6B). We represent the 
voxels of the quintile bins in each hemisphere as fact tables LeftBinVoxel and RightBinVoxel for the left 
and right LPFC, respectively. Each of these tables includes a row (bin, x, y, z) for each voxel at location 
(x, y, z) in MNI space and belonging to a quintile bin. Moreover, we declare another fact table Bin 
whose rows contain only the labels of the quintile bins (i.e. bin1 to bin5).

We write a NeuroLang program that infers the conditional probability of a brain region to be 
reported active given activation reported in a bin as well as when given no bin activation. Specifical-
ly,the program infers the LOR of these two hypotheses as a measure of evidence for coactivation. A 
cortical coactivation pattern for each quintile bin is then constructed by recovering the brain regions 
that exhibit at least threefold the evidence (or LOR >0.5) of being reported active when given activa-
tion in a bin relative to no bin activation. The NeuroLang program that infers coactivation patterns of 
quintile bins in the left LPFC is as follows:

LeftBinActive(bin, study):-  
  LeftBinVoxel(bin, x, y, z)  

https://doi.org/10.7554/eLife.76926
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& PeakReported(x2, y2, z2, study)  
& distance == EUCLIDEAN(x, y, z, x2, y2, z2)  
& distance < 3  
 
LeftBinNotActive(bin, study):-  
  Study(study)  
& Bin(bin)  
& ~LeftBinActive(bin, study)  
 
BrainRegionActive(r, study):-  
  VoxelReported(x, y, z, study)  
& RegionVoxelNormalizedWeight(r, x, y, z)  
 
ProbabilityOfCoactivation(r, bin, PROB):-  
  BrainRegionActive(r, study) //  
(LeftBinActive(bin, study)  
& SelectedStudy(study))  
 
ProbabilityOfNoCoactivation(r, bin, PROB):-  
  BrainRegionActive(r, study) //  
(LeftBinNotActive(bin, study)  
  & SelectedStudy(study))  
 
CoactivationPattern(bin, r):-  
  ProbabilityOfCoactivation(r, bin, p1)  
& ProbabilityOfNoCoactivation(r, bin, p0)  
& LOR == log10((p1/(1 p1))/(p0/(1 p0)))  
& LOR > 0.5  
 
ans(bin, r):- CoactivationPattern(bin, r)

As in the program of the previous section, we first declare the predicates that will be used to find 
the answer to our query. We set the program to consider activity in a quintile bin to be reported by a 
study if at least one peak activation is reported within the bin or within its near vicinity (distance <3). 
The program stores the results in the rule table LeftBinActive, which includes a row (bin, study) for 
each bin in which activation is reported by a study. The program then derives the studies that do not 
report activity within each bin using the negation operator and stores them in another rule table Left-
BinNotActivate. This rule table includes a row for each bin wherein no activation has been reported by 
a study. Similarly as the program in the previous section, the program considers activation reporting 
in individual brain regions as a probabilistic rather than deterministic event depending on the location 
of active voxels within each region, and stores the results in the rule table BrainRegionActive. The 
program then infers the conditional probabilities of the two hypotheses and stores them in the rule 
tables ProbabilityOfCoactivation and ProbabilityOfNoCoactivation. Finally, the answer to our query 
CoactivationPattern is derived by estimating the LOR as a measure of evidence in favor of coactivation 
between each brain region r and each quintile bin and thresholding it at LOR >0.5. Below is a similar 
program that infers coactivation patterns of quintile bins in the right LPFC:

RightBinActive(bin, study):-  
  RightBinVoxel(bin, x, y, z)  
  & PeakReported(x2, y2, z2, study)  
  & distance == EUCLIDEAN(x, y, z, x2, y2, z2)  
  & distance < 3  
 
RightBinNotActive(bin, study):-  
  Study(study)  
  & Bin(bin)  
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  & ~RightBinActive(bin, study)  
 
BrainRegionActive(r, study):-  
  VoxelReported(x, y, z, study)  
  & RegionVoxelNormalizedWeight(r, x, y, z)  
 
ProbabilityOfCoactivation(r, bin, PROB):-  
  BrainRegionActive(r, study) //  
  (RightBinActive(bin, study)  
  & SelectedStudy(study)) 
ProbabilityOfNoCoactivation(r, bin, PROB):- 
   BrainRegionActive(r, study) // 
   (RightBinNotActive(bin, study) 
    & SelectedStudy(study)) 
 
CoactivationPattern(r, bin, PROB):-    
  ProbabilityOfCoactivation(r, bin, p1)  
  & ProbabilityOfNoCoactivation(r, bin, p0)  
  & LOR == log10((p1/(1 p1))/(p0/(1 p0)))  
  & LOR > 0.5  
 
ans(bin, r):- CoactivationPattern(bin, r)

Inferring specific structure-function associations using NeuroLang 
segregation queries
We infer specific structure-function associations by estimating the extent to which a spatially-localized 
activation along the principal gradient in the LPFC predicts a Neurosynth topic’s presence in a study. 
For this purpose, we write NeuroLang programs that include what we call ‘segregation queries’. 
Segregation queries infer the probability that a topic is present in a study given spatially constrained 
activation within a range of quintile bins and the simultaneous absence of activation outside this range 
within the same hemisphere. Concurrently, a segregation query infers the probability of the opposite 
event: a topic is present given no activation within the range of quintile bins or there exists activa-
tion outside the range. The LOR of these two hypotheses gives us a measure of evidence in favor 
of association between a topic and patterns of activity along the principal gradient. The NeuroLang 
program that infers specific structure-function associations in the left LPFC using segregation queries 
is as follows:

LeftBinActive(bin, study):-  
  LeftBinVoxel(bin, x, y, z)  
  & PeakReported(x2, y2, z2, study)  
  & distance == EUCLIDEAN(x, y, z, x2, y2, z2)  
  & distance < 3  
 
SegregationRule(bin1, bin2, study):-  
  LeftBinActive(bin1, study)  
  & LeftBinActive(bin2, study)  
  & (bin2 ≥ bin1)  
  & ~exists(bin3;  
    Bin(bin3) & (bin3<bin1 | bin3>bin2)  
    & Study(study) & LeftBinActive(bin3, study))  
 
NoSegregationRule(bin1, bin2, study):-  
  Study(study)  
  & Bin(bin1) & Bin(bin2)  
  & ~SegregationRule(bin1, bin2, study)  
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TopicPresentGivenSegregationRule(topic, bin1, bin2, PROB):-  
  TopicInStudy(topic, study) //  
  (SegregationRule(bin1, bin2, study)  
  & SelectedStudy(study))  
 
TopicPresentGivenNoSegregationRule(topic, bin1, bin2, PROB) :- 
  TopicInStudy(topic, study) // 
  (NoSegregationRule(bin1, bin2, study) 
   & SelectedStudy(study)) 
LeftBinActive(bin, study):-  
  LeftBinVoxel(bin, x, y, z)  
  & PeakReported(x2, y2, z2, study)  
  & distance == EUCLIDEAN(x, y, z, x2, y2, z2)  
  & distance < 3  
 
SegregationRule(bin1, bin2, study):-  
  LeftBinActive(bin1, study)  
  & LeftBinActive(bin2, study)  
  & (bin2 ≥ bin1)  
  & ~exists(bin3;  
    Bin(bin3) & (bin3<bin1 | bin3>bin2)  
    & Study(study) & LeftBinActive(bin3, study))  
 
NoSegregationRule(bin1, bin2, study):-  
  Study(study)  
  & Bin(bin1) & Bin(bin2)  
  & ~SegregationRule(bin1, bin2, study)  
 
TopicPresentGivenSegregationRule(topic, bin1, bin2, PROB):-  
  TopicInStudy(topic, study) //  
  (SegregationRule(bin1, bin2, study)  
  & SelectedStudy(study))  
 
TopicPresentGivenNoSegregationRule(topic, bin1, bin2, PROB) :- 
  TopicInStudy(topic, study) // 
  (NoSegregationRule(bin1, bin2, study) 
   & SelectedStudy(study)) 
 
TopicAssociationMatrix(topic, bin1, bin2, LOR) :- 
  TopicPresentGivenSegregationRule(topic, bin1 , bin2, p1) 
  & TopicPresentGivenNoSegregationRule(topic, bin1, bin2, p0) 
  & LOR == log10((p1/(1 - p1))/(p0/(1 - p0))) 
 
ans(topic, bin1, bin2, LOR) :- TopicAssociationMatrix(topic, bin1, bin2, 
LOR)

We first declare the studies that report activations in each quintile bin of the left principal LPFC 
gradient in a rule table LeftBinActive. Then, we declare a segregation query which first identifies 
the studies that report coactivation between each pair of quintile bins along the principal gradient, 
named bin1 and bin2, under the conditions that (bin2 ≥ bin1) and there exists no activation reported 
in any bin3, such that bin3 <bin1 or bin3 >bin2. That is, activation in any bin that is outside the range 
[bin1, bin2] should not be present according to the segregation rule, whereas activation within the 
range between the bins can exist. Here, ‘there exists no’ is represented by "~exists", which is a 
combination of the negation operator and the existential quantifier. The results are represented in 
a SegregationRule rule table, which includes a row (bin1, bin2, study) for bins (bin1, bin2) between 
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which activation is reported in study that also satisfies the segregation condition. Concurrently, we 
declare the studies that do not match the conditions of the segregation query, and represent them in 
the rule table NoSegregationRule. After defining the predicates, the program infers the conditional 
probability that a topic is present in a study given the presence as well as absence of the segregation 
condition. The results are represented in the tables TopicPresentGivenSegregationRule and TopicPre-
sentGivenNoSegregationRule. Finally, the answer to our query, represented in the rule table TopicAs-
sociationMatrix, is derived by computing the LOR of the two hypotheses as a measure of evidence in 
favor of association between each topic and activation in a quintile range [bin1, bin2] along the prin-
cipal gradient. The NeuroLang program that infers specific topic associations of coactivation patterns 
within the right LPFC is as follows:

RightBinActive(bin, study):-  
  RightBinVoxel(bin, x, y, z)  
& PeakReported(x2, y2, z2, study)  
& distance == EUCLIDEAN(x, y, z, x2, y2, z2)  
& distance < 3  
 
SegregationRule(bin1, bin2, study):-  
  RightBinActive(bin1, study)  
  & RightBinActive(bin2, study)  
  & (bin2 ≥ bin1)  
  & ~exists(bin3;  
   Bin(bin3)  
   & (bin3<bin1 | bin3>bin2)  
   & Study(study) & RightBinActive(bin3, study))  
 
NoSegregationRule(bin1, bin2, study):-  
  Study(study)  
  & Bin(bin1)  
  & Bin(bin2)  
  & ~SegregationRule(bin1, bin2, study)  
 
TopicPresentGivenSegregationRule(topic, bin1, bin2, PROB):-  
  TopicInStudy(topic, study) //  
  (SegregationRule(bin1, bin2, study)  
  & SelectedStudy(study))  
 
TopicPresentGivenNoSegregationRule(topic, bin1, bin2, PROB):-  
  TopicInStudy(topic, study) //  
   (NoSegregationRule(bin1, bin2, study)  
    & SelectedStudy(study))  
 
TopicAssociationMatrix(topic, bin1, bin2, LOR):-  
  TopicPresentGivenSegregationRule(topic, bin1, bin2, p1)  
  & TopicPresentGivenNoSegregationRule(topic, bin1, bin2, p0)  
  & LOR == log10((p1/(1-p1))/(p0/(1-p0)))  
 
ans(topic, bin1, bin2, LOR):- TopicAssociationMatrix(topic, bin1, bin2, 
LOR)

Finally, we write a program that applies inter-hemispheric segregation queries to infer the proba-
bility “that a topic is present given activation in a right lpfc quintile bin and there exists no activation in 
the entire left lpfc.” The program also infers the probability of the opposite event; “a topic is present 
given activation in a left LPFC quintile bin, and there exists no reported activation in the entire right 
LPFC.” The neurolang program that infers hemisphere-specific topic-bin associations is as follows:
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LeftBinActive(bin, study):-  
  LeftBinVoxel(bin, x, y, z)  
  & PeakReported(x2, y2, z2, study)  
  & distance == EUCLIDEAN(x, y, z, x2, y2, z2)  
  & distance < 3  
 
RightBinActive(bin, study):-  
  RightBinVoxel(bin, x, y, z)  
  & PeakReported(x2, y2, z2, study)  
  & distance == EUCLIDEAN(x, y, z, x2, y2, z2)  
  & distance < 3  
 
OnlyLeftBinActive(bin, study):-  
  LeftBinActive(bin, study)  
  & ~exists(bin2;  
     Bin(bin2)  
     & Study(study) & RightBinActive(bin2, study))  
 
OnlyRightBinActive(bin, study):-  
  RightBinActive(bin, study)  
  & ~exists(bin2;  
    Bin(bin2)  
  & Study(study) & LeftBinActive(bin2, study))  
 
TopicPresentGivenOnlyLeftBinActive(topic, bin, PROB):-  
  TopicInStudy(topic, study) //  
  (OnlyLeftBinActive(bin, study)  
  & SelectedStudy(study))  
 
TopicPresentGivenOnlyRightBinActive(topic, bin, PROB):-  
  TopicInStudy(topic, study) //  
  (OnlyRightBinActive(bin, study)  
   & SelectedStudy(study))  
 
InterHemisphereTopicBinAssociation(topic, bin, LOR):-  
  TopicPresentGivenOnlyRightBinActive(topic, bin, p1)  
& TopicPresentGivenOnlyLeftBinActive(topic, bin, p2)  
& LOR == log10((p1/(1-p1))/(p2/(1-p2)))  
 
ans(topic, bin, LOR):- InterHemisphereTopicBinAssociation(topic, bin, 
LOR)

In this program, we define the predicates LeftBinActive and RightBinActive that represent the 
studies reporting activation in each quintile bin of the principal gradient in the left and right LPFC, 
respectively. Then we declare the inter-hemispheric segregation queries using the negation operator 
and the existential quantifier, ~exists, and stores the results in OnlyLeftBinActive and OnlyRightBinAc-
tive. Subsequently, the program infers the conditional probabilities that a topic is present in a study 
when given activation either in a left or a right quintile bin. The final answer, InterHemisphereTopicBi-
nAssociation, is derived by computing the LOR of the two hypotheses.

Data availability statement
All data used in this study is available in open-source databases. Meta-analytic data comes from 
Neurosynth (Yarkoni et  al., 2011), and the human data comes from the Individual Brain Charting 
database (Pinho et al., 2020). Code for NeuroLang version 0.1a11 is freely available at https://github.​
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Appendix 1
The principal LPFC gradient is robust and reproducible across different 
methodological paradigms
To assess potential biases that can arise from the choice of data and methods, we perform the 
following three supplementary validation analyses.

Bootstrap Analysis via Sub-sampling of the Neurosynth Dataset
To assess the variation of the resultant principal gradient when the choice of studies included in a 
meta-analysis varies, we create 5000 random sub-samples of the Neurosynth dataset and re-run the 
meta-analysis and gradient mapping on each one. The results are summarized in Figure 1—figure 
supplement 1 and Figure 1—figure supplement 2. Figure 1—figure supplement 1 shows that 
most LPFC regions in both hemispheres are assigned to the same quintile bin along the principal 
gradient in the majority of sub-samples. The results shown in Figure 1—figure supplement 2 show 
that the percentage of variance explained by diffusion embedding components does not vary 
significantly across the sub-samples.

Accounting for Spatial Auto-correlation within the LPFC
To account for the possibility of bias due to spatial auto-correlation among nearby LPFC regions, 
we re-perform the gradient-mapping using longer coactivation distances between regions. The 
coactivation distance is the Euclidean distance between the centers of mass of each region. The 
results are shown in Figure 1—figure supplement 3 and reveal that although the shape of principal 
LPFC gradient at different coactivation distances (20mm, 40mm, and 60mm) varies, its general 
rostrocaudal profile is preserved. This suggests that spatial auto-correlation among nearby regions 
does not induce systematic bias to the overall shape of the principal gradient.

Single-Subject Meta-Analysis and Gradient Mapping
To show that the principal LPFC gradient is not a result of spatial smoothing arising from peak 
location uncertainty across different studies, we re-infer the gradient at the single subject level 
(Figure 1—figure supplement 4 and Figure 1—figure supplement 5) using data from the Individual 
Brain Charting (IBC) dataset (Pinho et al., 2020). The IBC subjects underwent an extensive set of 
tasks ranging from simple motor tasks to long-term memory and social cognition tasks. The single-
subject principal LPFC gradients are shown in Figure 1—figure supplement 4. These gradients are 
seemingly different from the literature-inferred principal gradient, exhibiting more granularity and 
abrupt transitions than the latter. However, Figure 1—figure supplement 5 shows a moderate-to-
strong correlation between most single-subject gradients and the literature gradient in both LPFC 
hemispheres. This indicates that the gross spatial layout of the principal LPFC gradient is spatially 
determined at the single subject level. In contrast, the spatial correlation of single-subject gradients 
with a randomized literature-driven gradient is significantly lower (Figure 1—figure supplement 
5). The latter gradient is estimated from a randomized version of the Neurosynth database, where 
peak coordinates are shuffled 1000 times between studies. More details on the single-subject meta-
analysis are found below.

The Individual Brain Charting Dataset
We assess the reproducibility of the principal LPFC gradient at the subject-level by re-running the 
meta-analysis and the gradient mapping on activation data from the Individual Brain Charting (IBC) 
dataset (Pinho et al., 2018; Pinho et al., 2020). The IBC dataset is a free and open dataset devoted 
to providing a deep phenotyping characterization of brain systems within the scope of cognitive 
neuroscience. In the IBC project, 12 subjects are scanned extensively, and a huge number of imaging 
contrasts (both anatomical and functional) are extracted in order to create a sharp definition of the 
role of each brain region. The dataset contains dozens of tasks, addressing both low- and high- level 
cognitive functions, including motor tasks, working memory, language tasks, relational tasks, social 
tasks, mental time travel, reward, theory-of-mind, pain, numerosity, self-reference effect and speech 
recognition (Pinho et al., 2018; Pinho et al., 2020). This extensive set of tasks yielded a total of 750 
contrasts for each individual subject. These contrasts are publicly available on NeuroVault at https://​
neurovault.org/collections/6618/.
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Peak Extraction from the IBC dataset
After downloading the subject-level contrasts and before re-running the coordinate-based meta-
analysis, we need to extract the peak activations locations in MNI space. For this purpose, we 
perform cluster-extent-based thresholding that controls the family-wise error rate (FWER) (Woo 
et al., 2014). In this context, we use a primary threshold ‍α < 0.001‍, a fixed cluster volume threshold 
equal to 5 ‍mm3‍, minimum distance between peaks of 10mm, and a spherical smoothing kernel with 
‍FWHM = 4mm3‍ for all subjects. We use nilearn (version 0.9.1) python package to perform the peak 
extraction.

Single-Subject Meta-Analysis and Gradient Mapping of the LPFC
The single-subject meta-analysis and gradient mapping of the LPFC follow the same steps and use 
the same queries as the literature-based analyses (Figure 6). This includes applying a 10mm spherical 
smoothing kernel around each peak, projecting the binary activation maps onto the 1024 DiFuMo 
atlas, inferring a meta-analytic connectivity matrix for each subject, computing a similarity matrix, 
and finally estimating the gradients using diffusion embedding. However, the main difference is that 
instead of using studies as in conventional meta-analysis, the unit of analysis here is the individual 
contrast. For each subject, the ‍≈ 750‍ contrasts are treated as separate studies carrying the same 
weight in a meta-analysis. While this assumption might be imperfect, it serves to simplify the analysis 
by assuming that each contrast represents an independent equiprobable sample of neuroscientific 
knowledge. We only focus on the principal LPFC gradient of each subject for the current study. 
Future investigations should embark on more extensive attempts to map the brain’s organizing 
principles in the single subject.
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