
metabolites

H

OH

OH

Article

A Distinctive Human Metabolomics Alteration Associated with
Osteopenic and Osteoporotic Patients

Shereen M. Aleidi 1,† , Eman A. Alnehmi 2,†, Mohammed Alshaker 3, Afshan Masood 4 ,
Hicham Benabdelkamel 4 , Mysoon M. Al-Ansari 2 and Anas M. Abdel Rahman 5,6,*

����������
�������

Citation: Aleidi, S.M.; Alnehmi, E.A.;

Alshaker, M.; Masood, A.;

Benabdelkamel, H.; Al-Ansari, M.M.;

Abdel Rahman, A.M. A Distinctive

Human Metabolomics Alteration

Associated with Osteopenic and

Osteoporotic Patients. Metabolites

2021, 11, 628. https://doi.org/

10.3390/metabo11090628

Academic Editor: Daniel Monleon

Received: 19 August 2021

Accepted: 13 September 2021

Published: 16 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan,
Amman 11942, Jordan; s.aleidi@ju.edu.jo

2 Department of Botany and Microbiology, College of Science, King Saud University,
Riyadh 11451, Saudi Arabia; eman.nahmi@gmail.com (E.A.A.); myalansari@ksu.edu.sa (M.M.A.-A.)

3 Department of Family Medicine and Polyclinic, King Faisal Specialist Hospital & Research Center,
Riyadh 11211, Saudi Arabia; shaker@kfshrc.edu.sa

4 Proteomics Resource Unit, College of Medicine, King Saud University, P.O. Box 2925 (98),
Riyadh 11461, Saudi Arabia; afsmasood@ksu.edu.sa (A.M.); hbenabdelkamel@ksu.edu.sa (H.B.)

5 Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal
Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia

6 Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University,
Riyadh 11533, Saudi Arabia

* Correspondence: aabdelrahman46@kfshrc.edu.sa
† Equal contribution.

Abstract: Osteoporosis is a common progressive metabolic bone disease resulting in decreased
bone mineral density (BMD) and a subsequent increase in fracture risk. The known bone mark-
ers are not sensitive and specific enough to reflect the balance in the bone metabolism. Finding
a metabolomics-based biomarker specific for bone desorption or lack of bone formation is crucial
for predicting bone health earlier. This study aimed to investigate patients’ metabolomic profiles
with low BMD (LBMD), including those with osteopenia (ON) and osteoporosis (OP), compared to
healthy controls. An untargeted mass spectrometry (MS)-based metabolomics approach was used to
analyze serum samples. Results showed a clear separation between patients with LBMD and control
(Q2 = 0.986, R2 = 0.994), reflecting a significant difference in the dynamic of metabolic processes
between the study groups. A total of 116 putatively identified metabolites were significantly associ-
ated with LBMD. Ninety-four metabolites were dysregulated, with 52 up- and 42 downregulated
in patients with LBMD compared to controls. Histidine metabolism, aminoacyl-tRNA biosynthesis,
glyoxylate, dicarboxylate metabolism, and biosynthesis of unsaturated fatty acids were the most
common metabolic pathways dysregulated in LBMD. Furthermore, 35 metabolites were significantly
dysregulated between ON and OP groups, with 11 up- and 24 downregulated in ON compared to
OP. Among the upregulated metabolites were 3-carboxy-4-methyl-5-propyl-2-2furanopropionic acid
(CMPF) and carnitine derivatives (i.e., 3-hydroxy-11-octadecenoylcarnitine, and L-acetylcarnitine),
whereas phosphatidylcholine (PC), sphingomyelin (SM), and palmitic acid (PA) were among the
downregulated metabolites in ON compared to OP. This study would add a layer to understanding
the possible metabolic alterations associated with ON and OP. Additionally, this identified metabolic
panel would help develop a prediction model for bone health and OP progression.

Keywords: metabolomics; bone mineral density (BMD); osteoporosis; osteopenia; mass spectrometry

1. Introduction

Osteoporosis (OP) is a chronic progressive metabolic bone disease characterized by
low bone mineral density (LBMD). The deterioration in microarchitecture and decreased
strength of bone increase bone fragility and the risk of fractures [1,2]. OP is an asymptomatic
disease, where the patient usually remains undiagnosed until a low-trauma osteoporotic
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fracture occurs [1]. Mostly, OP manifests later in life, particularly in postmenopausal
women [3]. Its prevalence is higher in the aging population of both men and women [4–6].
OP has become a serious public health concern worldwide. It negatively impacts patients’
health and quality of life and results in high healthcare expenditures caused by fractures,
disability, nursing home placement, and death [6,7].

Several risk factors have been identified as associated with the development of OP.
These include age-dependent bone loss, menopause, low body weight, vitamin D and
calcium deficiency, use of corticosteroid drugs, and presence of comorbidities such as
diabetes mellitus and cardiovascular diseases [1,6,8,9]. Even though OP is commonly
known to present itself in aged and postmenopausal women [10], different studies indicate
that around one in four men aged 50 and above would develop OP during their lifetime [11].

Central dual-energy X-ray absorptiometry (DXA) scanning is the gold-standard tool
for OP diagnosis, and it is based on BMD measurement [10]. DXA results are usually
presented as t-scores, calculated in standard deviation (SD), considering the mean BMD of
peak bone mass in young adults as the reference [12]. Individuals with a bone mass t-score
above −1 are considered normal. In contrast, those with a t-score between −1 and −2.5 are
deemed to have low bone mass or osteopenia (ON). In comparison, those with a t-score
equal to or less than −2.5 are regarded as having OP [13]. In addition to DXA, quantitative
calcaneal ultrasound (QUS) can predict bone fragility fractures depending on measured
BMD and bone turnover markers [14]. Despite the wide use of these screening tools for
diagnosis, they still lack sensitivity in identifying worsening of disease or patients at risk for
progressing to OP [15]. Therefore, accurate, more powerful predictive and prognostic tools
for identifying OP are required to prevent bone fragility fractures correlated with LBMD.

Metabolomics is a comprehensive analytical approach that allows qualitative and
quantitative analysis of alterations in metabolite levels within biological systems in re-
sponse to specific stimuli and pathogenesis [16,17]. It provides insight into understanding
the mechanisms and progressions underlying various physiological and pathological con-
ditions [18]. Recently, several metabolomics studies have investigated the alterations in the
metabolomic profiles associated with BMD. These studies were limited to specific effects in
postmenopausal women [19–24], animal models [25–30], or cultured osteoclastic cells [31].
Although these studies have shown promising results, it is still unclear if they can be gener-
alized to different populations. There is always a need for systemic metabolomics studies in
humans that include both genders and aim to identify metabolites associated with LBMD,
including both ON and OP conditions while excluding the confounding factors that might
affect bone density.

This study aimed to identify the metabolomic profiles associated with LBMD patients
compared to healthy controls, considering the effect of several identified confounding fac-
tors. Moreover, this study investigates the metabolic alterations associated with specifically
bone health in patients with ON and OP. The study findings can add new insight into our
understanding of the metabolomic alterations associated with LBMD, which could help
identify novel candidate metabolites as possible biomarkers to predict OP progression.

2. Results
2.1. Clinical Characteristics and Demographics of the Study Population

The clinical characteristics and demographics of the participants are presented in
Table 1. According to the DXA data, 31.88% of the participants had normal BMD (control).
Similarly, 31.88% were diagnosed with ON, and 36.23% were diagnosed with OP. Most
of the participants were females (75.36%), and almost all were in menopause (98%). The
prevalence of ON and OP increased with age. No significant difference in body mass index
(BMI) existed between the participants. Compared to the control group, ON and OP groups
had significantly lower lumbar t-score, femoral t-score, and fasting blood glucose (FBG),
triglyceride (TG), and cholesterol levels (Figure S2 and Table 1). Furthermore, the OP group
had a significantly lower lumber t-score than the ON group, as shown in Table 1.
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Table 1. Clinical characteristics and demographics of the study population (n = 69).

Ctrl ON OP

Total n (%) 22 (31.88) 22 (31.88) 25 (36.23)
Parameters Mean SEM Mean SEM Mean SEM

Age (years) 54.82 1.03 64.64 § 1.72 66.16 § 1.78
Gender (F/M) (13/9) - (15/7) - (24/1) -
Menopause * (yes/no) (13/0) - (14/1) - (24/0) -
Weight (kg) 85.13 3.63 74.21 3.88 69.23 § 2.86
Height (cm) 162.22 0.02 157.11 } 0.021 150.68 § 0.01
BMI (kg/m2) 32.21 1.1 30.38 1.84 30.70 1.4
Lumbar
t-Score 0.29 0.24 −1.25 §,} 0.21 −2.62 § 0.12

Femoral
t-Score 0.34 0.29 −1.51 §,} 0.14 −1.93 § 0.13

FBG (mmol/L) 10.2 1.16 6.08 § 0.39 5.87 § 0.41
HDL (mmol/L) 1.00 0.80 1.47 § 0.12 1.42 § 0.09
TG (mmol/L) 1.85 0.15 1.23 § 0.11 1.127 § 0.08
Cholesterol (mmol/L) 5.51 0.23 4.47 § 0.19 4.27 § 0.29
Calcium (mmol/L) 2.24 0.026 2.37 § 0.025 2.33 § 0.02
Albumin (g/L) 37.65 1.14 41.98 § 2.0 42.75 § 0.86
Vitamin D 25 hydroxy
(nmol/L) 68.32 7.39 77.64 3.3 86.57 6.05

Abbreviations; ON: osteopenic, OP: osteoporotic, BMI: body mass index, FBG; fasting blood glucose, LDL; low-
density lipoprotein, HDL; high-density lipoprotein, TG; triglycerides. Data are presented as the mean ± standard
error of the mean (SEM); * menopause status in females; § p-value < 0.05 vs. control group; } p-value < 0.05 vs.
OP group.

2.2. The Overall Metabolomic Analysis and Exclusion of Confounder-Associated Metabolites

Initially, 652 metabolites were detected in the patients with LBMD using the LC–MS
approach. Metabolomics data were deposited to the EMBL-EBI MetaboLights database
with the identifier MTBLS2486. The complete dataset can be accessed at https://www.ebi.
ac.uk/metabolights/MTBLS2486 (accessed on 10 September 2021). As shown in Table 1,
age was significantly higher in patients with LBMD compared to control participants. In
addition, the proportion of females was higher than males in all the study groups.

Furthermore, vitamin D3, calcium, fasting blood glucose, and lipid profiles differed
significantly between LBMD patients and control. Therefore, the impact of these confound-
ing factors on the metabolite levels was considered in the ultimate profile. In this study,
specific metabolites associated with the different confounding factors, including type 2
diabetes (T2DM), gender, thyroid disease, drugs, BMI, calcium (Ca) levels, vitamin D3
levels, and lipid profiles, were determined and excluded from the overall analysis, as
discussed below. The exclusion of the metabolites associated with the confounding factors
can enhance the validity of our results in attributing the changes in levels of detected
metabolites to the disease-causing process leading to LBMD in the study population.

Two-way ANOVA with FDR-corrected p-value (FDRp) cutoff = 0.05 was performed
for each group confounder. Groups of 442, 497, and 489 metabolites were significantly dys-
regulated due to the LBMD combined with the primary confounders (T2DM, gender, and
thyroid disorder), respectively (Figure 1). Venn diagram analysis of the two-way ANOVA
comparisons (i.e., LBMD, T2DM, LBMD + T2DM) resulted in 355 metabolites associated
mainly with LBMD after excluding T2DM and LBMD + T2DM-related metabolites (T2DM-
independent, Figure 1A). Similarly, 271 metabolites were associated with LBMD after ex-
cluding gender, and LBMD + gender (gender-independent, Figure 1B), and 404 metabolites
were associated with LBMD regardless of thyroid disease (thyroid-independent, Figure 1C).
Overlapping the T2DM, gender, and thyroid disorder-independent metabolic panels with
the overall detected metabolites (n = 652) revealed 188 metabolites primarily connected to
LBMD (Figure 1D).

https://www.ebi.ac.uk/metabolights/MTBLS2486
https://www.ebi.ac.uk/metabolights/MTBLS2486
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Figure 1. Determination and exclusion of primary confounder (T2DM, gender, and thyroid disease)-related metabolites
from the overall detected metabolites. The panels from (A–C) show Venn diagrams displaying the number of significantly
altered metabolites in patients with LBMD, regardless of the effects of primary confounders (T2DM, gender, and thyroid
disease), using two-way ANOVA statistical analysis with an FDR-corrected p-value cutoff = 0.05. (A) The highlighted
metabolites depict the number of T2DM-independent metabolites (n = 355) from 442 metabolites significantly dysregulated
due to the LBMD combined with T2DM. (B) The highlighted metabolites depict the number of gender-independent
metabolites (n = 271) from a group 497 metabolites significantly dysregulated due to LBMD combined with gender.
(C) The highlighted metabolites depict the number of thyroid disease-independent metabolites (n = 404) from a group
489 metabolites significantly dysregulated due to LBMD combined with thyroid disease. (D) Venn diagram illustrating
overlapping among the confounder (T2DM, gender, and thyroid disease)-independent metabolites with the overall detected
metabolites (n = 652), considering a corrected p-value cutoff = 0.05; 188 metabolites were found to remain after exclusion
and were considered as significantly connected to LBMD (primary confounder-independent metabolites).

Furthermore, given that patients’ drugs could influence the metabolic expression, the
drug-associated metabolites were determined and excluded from the study’s metabolic
profile of primary confounders shown in Figure 1D (n = 188 metabolites). Metabolites that
were dysregulated by the intake of antidiabetic drugs (n = 10), antihypertensive drugs
(n = 5), proton pump inhibitor (PPI) drugs (n = 10), thyroid hormone drugs (n = 2), anti-
hyperlipidemic drugs (n = 9), and anti-osteoporotic drugs (n = 8) were detected using a
moderated t-test considering fold-change with cutoffs of 0.05 (p-value) and 1.5 (FC), respec-
tively (Supplementary Figure S1). The common drug-related metabolites were excluded
from confounder-independent metabolites (n = 188) (Figure 1D); therefore, 178 metabolites
were identified as confounders and drug-independent panels (Figure 2A,B).
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Figure 2. A sequential exclusion of drug- (A,B) and secondary confounder-related metabolites (C,D) from the panel of
primary confounder-independent metabolites. (A,B) Venn diagrams illustrating the overlap between the drug-related
metabolites and primary confounder-independent metabolites (n = 188), using a moderated t-test considering fold-change
(FC) = 1.5 and cutoff p-value < 0.05. A total of 178 metabolites were identified as both drug- and primary confounder-
independent metabolites after the exclusion of 10 metabolites. (C) Venn diagram illustrating the overlap between metabolites
independent of secondary confounders (cholesterol, BMI, and triglycerides (TG)) (n = 169, 171, and 130, respectively) and
the primary confounder- and drug-independent metabolites identified in (B) (n = 178), using a moderated t-test considering
fold-change (FC) = 1.5 and cutoff p-value < 0.05. A total of 126 metabolites were identified as metabolites independent from
the effects of the primary confounders, drugs, lipid profile, and weight. (D) Venn diagram demonstrating further overlap
between secondary confounder (FBG, vitamin-D3, and calcium)-independent metabolites (n = 177, 152, and 135, respectively)
with the primary confounder, drug, lipid profile, and independent weight metabolites identified in (C) (n = 126), using a
moderated t-test considering fold-change (FC) = 1.5 and cutoff p-value < 0.05. A total of 116 metabolites were identified as
significantly associated with LBMD independent of the effect of primary and secondary confounders and drugs.

Metabolite levels in human serum are susceptible to specific parameters, including
BMI and low-density lipoprotein cholesterol (LDL-C) [32,33]. Additionally, in this study,
the triglyceride (TG) levels, fasting blood glucose (FBG), calcium, and vitamin D3 were
considered secondary confounders, and their values were integrated into the metabolomics
dataset. After excluding these confounder-based metabolites from the identified inde-
pendent metabolites (n = 178), using a moderated t-test (p-value < 0.05) and fold-change
(FC cutoff 1.5), 116 metabolites were obtained (Figure 2C,D). These putatively identified
metabolites (n = 116) were significantly associated with LBMD regardless of the primary
and secondary confounders and drug-related metabolites.

2.3. Metabolomics Profiling of LBMD and Control Groups

The metabolomics pattern associated with LBMD was examined through an orthogo-
nal partial least squares discriminant analysis (OPLS-DA) score plot. As shown in Figure 3a,
a clear separation and grouping between patients with LBMD and control groups was
demonstrated (Q2 = 0.986, R2 = 0.994), reflecting a significant difference in the metabolic
expression study groups.
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Figure 3. Metabolomics profiling of LBMD and controls. (a) An orthogonal partial least squares discriminant (OPLS-DA)
analysis of the LBMD versus control metabolomics profile demonstrating clear cluster segregation between both groups
(Q2 = 0.986, R2 = 0.994). (b) Venn diagram showing the dysregulated metabolites detected between LBMD and control
groups after applying the fold-change (FC cutoff = 1.5 and p-value < 0.05), where 52 and 42 metabolites were up- and
downregulated (total 94 metabolites) in LBMD patients compared to control, respectively. (c) A pathway analysis plot
demonstrating the main pathways involved in the metabolic alterations based on the 94 dysregulated metabolites.

A binary comparison between metabolite panels of LBMD (independent of confound-
ing metabolites associated with diseases and drugs (n = 116) and control groups identified
significant dysregulation of 94 metabolites between the two groups (Figure 3b). After
applying fold-change analysis (FC = 1.5, and cutoff p-value < 0.05) to these 94 metabolites,
52 and 42 metabolites were observed to be up- and downregulated, respectively, in patients
with LBMD compared to controls (Figure 3b). Furthermore, metabolic pathway analysis
revealed that the most relevant metabolic pathways related to the dysregulation of the
identified 94 metabolites included histidine metabolism, aminoacyl-tRNA biosynthesis,
glyoxylate and dicarboxylate metabolism, and biosynthesis of unsaturated fatty acids
(Figure 3c).

2.4. Metabolomics Profiling between ON and OP Groups

The LBMD patients were further classified into ON and OP groups according to
their t-scores. According to the clinical characteristics and demographic data presented in
Table 1, there was no significant difference between ON and OP groups in any mentioned
parameters, except for lumber and femoral t-scores, along with a slight height difference
(Table 1). The metabolomics pattern associated with each group was examined through
OPLS-DA (Figure 4a). A relative sample clustering and group separation were noted
between ON and OP groups (Q2 = 0.316, R2 = 0.988) (Figure 4a), indicating a good metabolic
profile and differentially expressed metabolites between these two groups. Volcano plot
analysis revealed that 35 metabolites were significantly dysregulated between ON and OP
groups considering an FDR-corrected p-value < 0.05 and FC > 1.5 or <0.67. Among those
dysregulated, 11 were up-and 24 were downregulated in ON compared to the OP group
(Figure 4b, Table S1).
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Figure 4. Metabolomics profiling and biomarker evaluation between ON and OP. (a) An OPLS-DA analysis of the
metabolomics profile of ON versus OP groups showing the separation between these two groups (Q2 = 0.316, R2 = 0.988).
(b) Volcano plot showing the statistically significant dysregulated metabolites (FDR-corrected p-value < 0.05, and FC >1.5 or
<0.67). The levels of 12 metabolites were upregulated, whereas 24 were downregulated in ON compared to the OP group.
(c) An exploratory ROC curve was generated by the OPLS-DA model, with AUC values calculated from the combination of
five, 10, 15, 25, 50, and 100 proteins. (d) Frequency plot showing 15 positively identified metabolites. (e,f) Representative
area under the curve (AUC) for two significantly dysregulated metabolites (S-adenosylmethionine, AUC = 0.851, and
phosphatidylcholines PC (18:0/20:3), AUC = 0895).

Additionally, a multivariate exploratory receiver operating characteristic (ROC) anal-
ysis based on the identified significantly dysregulated metabolites between ON and OP
(n = 35) was generated using OPLS-DA as a classification and feature ranking method.
Combining the top 10 metabolites in the exploratory ROC curves indicates the maxi-
mum confidence of differentiation and detection of metabolites in the ON versus OP
group, with the area under the curve (AUC) = 0.886 (Figure 4c). The significant fea-
tures of the positively identified metabolites are presented in Figure 4d. Furthermore,
representative AUCs for two downregulated metabolites in ON compared to OP (S-
adenosylmethionine, AUC = 0.851, and phosphatidylcholine PC (18:0/20:3), AUC = 0.895)
are shown in Figure 4e,f.

3. Discussion

Our study aimed to identify metabolomic profiles associated with LBMD in humans
and specifically investigate the metabolic changes associated with ON and OP. Different
metabolomics studies of OP in human and animal models were conducted (reviewed
in [34]). You et al. were the first research group to investigate the association between
the plasma metabolome and BMD in humans using a proton nuclear magnetic resonance
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spectroscopy (1H-NMR) metabolomics approach. They identified significant alterations
in four metabolites: lactate, acetone, acetate, and glutamine [19]. Subsequently, several
metabolomics studies have highlighted the importance of amino-acid metabolism, lipid
metabolism, and bile-acid biosynthesis concerning bone health [23,24,35–38]. This is the
first metabolomics study of LBMD that considers and excludes the effects of several
confounding factors that affect bone density to the best of our knowledge. Therefore, our
study’s findings can enable a screening of metabolites that would be possible biomarkers
related to OP risk prediction or progression. Additionally, it can provide insights into the
understanding of metabolomics pathway alterations associated with LBMD.

In this study, patients were classified into normal, ON, and OP groups. An apparent
sample clustering and group separation was demonstrated, suggesting the role of LBMD
in the revealed distinct serum metabolomics profiles. Several previous studies have enu-
merated the different factors associated with OP [12,39,40]. It has been shown that T2DM is
related to OP and associated with adverse effects on bone formation osteocyte function [39],
while antidiabetic drugs might possibly impact OP [40]. Recent studies have shown that
thyroid dysfunction has a detrimental effect on bone metabolism, and hyperthyroidism
reduces BMD [41].

Furthermore, various in vitro, animal, and clinical studies (reviewed in [42]) investi-
gated the molecular mechanisms of cholesterol-mediated bone deterioration. They demon-
strated that hyperlipidemia is negatively correlated with BMD, while treatment with
cholesterol-lowering drugs (statin) enhances BMD [42]. Therefore, our study detected and
excluded the metabolites related to T2DM, thyroid diseases, hyperlipidemia, gender, drugs,
and other confounding factors from the analysis dataset.

The results showed that 116 putatively identified metabolites were independent of
the determined confounders and utilized for studying the metabolic expression associ-
ated with LBMD. Ninety-four metabolites were dysregulated, with 52 upregulated and 42
downregulated in LBMD compared to controls. Furthermore, investigating the most rele-
vant metabolic pathways associated with dysregulation of these 94 metabolites in LBMD
showed histidine metabolism, aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate
metabolism, and biosynthesis of unsaturated fatty acids (FAs) were the most common with
the highest impact value. These findings are consistent with several previous metabolomics
studies that emphasized the potential roles of amino-acid, carbohydrate, nucleoside, lipid,
and FA metabolism in bone health [23,24,36]. In addition, urinary metabolomics profile
analysis of pre-and postmenopausal OP indicated that amino-acid metabolism (such as
taurine and β-alanine) and energy metabolism pathways were related to LBMD [35].

Furthermore, the results indicated that 35 metabolites were significantly dysregulated
between ON and OP groups, with 11 up- and 24 downregulated in ON compared to OP.
Among the upregulated metabolites were 3-carboxy-4-methyl-5-propyl-2-2furanopropionic
acid (CMPF) and carnitine derivatives (i.e., 3-hydroxy-11-octadecenoylcarnitine and L-
acetylcarnitine), whereas phosphatidylcholine (PC), sphingomyelin (SM), and palmitic
acid (PA) were among the downregulated metabolites in ON compared to OP.

CMPF is a metabolite derived from furan fatty acids; it is not de novo synthesized in
humans but found in marine animals [43]. It is detected in human urine [44]. In addition,
it is known to be accumulated in the serum of patients with chronic kidney disease (CKD)
as a uremic toxin [45,46]. Recent metabolomic work has indicated that CMPF levels may
be associated with LBMD in postmenopausal women [38]. In line with this, our results
showed that levels of CMPF were negatively associated with LBMD. However, further
studies are required to prove this hypothesis in both genders; notably, the CMPF serum
levels could be altered according to the patient dietary choices [47].

In LBMD, there is a decrease in osteoblast differentiation and mineralization and an
increase in osteoclast activity, which results in ON and more severe progressive OP [48].
The decreased osteoblast activity in OP is possibly related to the decrease in energy pro-
duction [49]. Carnitines are acyl group transporters from the cytoplasm to mitochondria
for energy production and FA metabolism [50]. Long-chain acetylcarnitine esters transport
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fatty acyl moieties across the inner mitochondrial membrane into the mitochondrial matrix
for β-oxidation and energy production [50]. Our study results indicated that levels of
carnitine derivatives (3-hydroxy-11-octadecenoylcarnitine and L-acetylcarnitine) were sig-
nificantly downregulated in the OP group compared to ON (upregulated in ON compared
to OP). 3-Hydroxy-11-octanecenoylcarnitine is one of the acylcarnitines believed to have
about 1000 molecules expressed in the human body [51]. It is considered one of the long-
chain acylcarnitines formed through esterification with long-chain fatty acids obtained
from the diet [51]. In particular, 3-hydroxy-11Z-octadecenoylcarnitine is elevated in the
blood or plasma of individuals with chronic fatigue syndrome [51], mitochondrial trifunc-
tional protein deficiency [52], and psoriasis [53]. Previous metabolomic studies showed that
L-carnitine [25] and carnitine derivatives such as glutarylcarnitine [37], acetylcarnitine [37],
and isovaleryl-carnitine [24] were significantly associated with BMD. Therefore, a change
in carnitine levels is a possible indicator of bone health and disease progression.

Interestingly, the biosynthesis of unsaturated FAs was among the significantly altered
metabolic pathways according to the dysregulated metabolic panel. In detail, different FAs,
whether free or incorporated in PC and SM structures, were dysregulated between ON and
OP. Previous evidence indicated that FAs have a vital role in stimulating osteoclastogenesis
and osteolysis [28,54]. It has been shown that the saturated FA, palmitic acid (PA, 16:0), pro-
motes receptor activator of NF-κB ligand (RANKL)-stimulated osteoclastogenesis and can
also induce osteoclast differentiation even in the absence of RANKL [54]. In addition, high
PA levels in an animal model negatively affected osteoblast function and bone health [55].

Moreover, levels of metabolites containing PA, such as phosphatidylcholine (PC
(16:0/18:3)), were associated with a higher prevalence of LBMD in postmenopausal Chinese
women [38]. Consistent with these previous findings, our metabolomics analysis revealed
that PA, PCs, and SMs were significantly changed between ON and OP groups, and their
levels were negatively associated with BMD. This suggests that FAs and some lipid classes
are closely related to the pathogenesis of the bone disease. Therefore, further lipidomics
analysis is required to investigate the changes in lipid classes associated specifically with
ON and OP.

In this study, confounder-connected metabolites were excluded from the BMD- related
profile, using an analytical approach that would enhance the validity of the results by
eliminating the effect of confounders on the metabolomics profile. The number of putative
metabolites associated with BMD was identified. However, validation of these putative
metabolites is required using an independent cohort from different backgrounds. In
addition, the sample size in this study was relatively small. Recruiting control participants
was challenging since looking for healthy, medically free, and age-matched participants
with a normal DXA scan was difficult.

4. Materials and Methods
4.1. Patients

This exploratory cohort study involved 69 participants recruited from December
2017–January 2019 from the OP Clinic at King Faisal Specialist Hospital and Research
Center (KFSHRC), Riyadh, Saudi Arabia. Lumbar and femoral t-scores were measured
using a DXA scan. According to the WHO diagnostic criteria and the BMD t-score, par-
ticipants were categorized into three groups. Those with a BMD t-score less than −2.5
were considered the osteoporotic group (OP, n = 25), those with a t-score between −1
and −2.5 were considered the osteopenic group (ON, n = 22), and those with a t-score
greater than −1.0 were the healthy control group (Ctrl, n = 22). Both ON and OP groups
were initially considered together as the LBMD group. Inclusion criteria were males and
females ≥50 years old with clinical confirmation of either ON or OP diagnosis. Participants
under 50 and those diagnosed with concomitant hyperparathyroidism, chronic infectious
arthritis, chronic lung disease, hepatic disease, cardiovascular diseases, and renal failure
were excluded from this study. In addition, patients on medications such as glucocorticoids
or hormonal replacement (estrogen and androgen therapy) were excluded. Participants’
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demographic and clinical data were collected using an approved questionnaire from the
primary physician (M.S.).

4.2. Metabolomic Analysis

Serum samples were analyzed using label-free untargeted liquid chromatography-
mass spectrometry (LC–MS), as described elsewhere [56]. Briefly, 300 µL of cold acetonitrile
and 10 µL of 2.8 mg/mL DL-o-chlorophenyl alanine internal standard were added to a
100 µL serum sample, followed by vortex mixing for 30 s. The samples were allowed to
stand for 1 h at −20 ◦C to enhance the protein precipitation, centrifuged at 15,000 rpm
at 4 ◦C for 15 min, and dried in a vacuum concentrator. Dry residue was re-dissolved in
methanol/water in a ratio of (1:1) before LC–MS analysis.

The separation was performed by an Ultimate 3000LC combined with Q Exactive MS
(Thermo Fisher Scientific, Carlsbad, CA, USA) and screened with electrospray ionization
(ESI)-MS. The extracted metabolites were chromatographed using an ACQUITY UPLC
HSS T3 (100 × 2.1 mm, 1.8 µm) column. The mobile phase was composed of solvent A
(0.05% formic acid–water) and solvent B (ACN) with a gradient elution (1–16 min, 95–5%
A; 16–18 min, 5% A; 18–19 min, 5–95% A; 19–20 min, 95–95% A). The flow rate of the
mobile phase was 300 µL/min. The column temperature was maintained at 40 ◦C, and
the sample manager temperature was set at 4 ◦C. Mass spectrometry parameters in ESI+
and ESI− modes were kept as follows: heater temperature, 300 ◦C; sheath gas flow rate,
45 arb; aux gas flow rate, 15 arb; sweep gas flow rate, 1 arb; spray voltage, 3.0 kV; capillary
temperature, 350 ◦C; S-Lens RF level, 30%.

Metabolomics and lipidomics in this manuscript were reported according to the most
acceptable guideline for metabolomics identification and annotation [57]. The precursor
and product ion spectra were matched to the aligned feature with a precursor tolerance
(m/z) and retention time tolerance of 5 ppm and 15 s, respectively. The identification was
performed using several databases such as Human Metabolome Database (www.hmdb.ca
(accessed on 19 August 2021)), METLIN (www.metlin.scripps.edu (accessed on 20 March
2020)), and Mass Bank (www.massbank.jp (accessed on 20 March 2020)). The library search
was obtained at a precursor m/z tolerance of 5 ppm combined with a 500 MS/MS score
threshold and isotope pattern match of 100 (mSigma).

The unidentified features were putatively identified by mass match with an m/z
tolerance of 5.0 ppm. Some lipid molecules detected in this study had isomeric or isobaric
structures. The identification possibilities for each detected feature within the m/z tolerance
of 5.0 mDa were ranked by the filtering and scoring approach described previously [58,59].
Isomeric or isobaric identifications that had elution within the expected retention time
range for each lipid class or subclass, the most likely adduct form, the smallest m/z error,
and an even number of carbons in fatty acyl side chains were selected as the most likely
identification for the choice of lipid subclass. Other isomeric and isobaric possibilities that
passed the retention time and adduct filters were kept but not considered to determine
lipid subclass.

The putatively identified lipids (MS/MS or mass match) were divided into subclasses
and categories following the classification system proposed by the International Lipid
Classification and Nomenclature Committee (ILCNC), the LipidMaps database, and the
Lipidomics Standard Initiative (https://lipidomics-standards-initiative.org (accessed on 1
April 2020)) [60]. Abbreviations of lipid classes and subclasses are defined in Table S1. The
positions of double bonds and the stereospecific configuration of glycerol derivatives were
not determined in this study.

4.3. Statistical Analysis

MetaboAnalyst version 5.0 (McGill University of Montreal, Montreal, QC, Canada)
was used to process the study MS metabolomics data [61]. The raw data were normalized
to the total sample median, log-transformed, and Pareto-scaled to provide all the Gaussian-
distributed signals. A univariate analysis using a volcano plot analysis was performed

www.hmdb.ca
www.metlin.scripps.edu
www.massbank.jp
https://lipidomics-standards-initiative.org
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for each binary comparison to identify significantly differentially expressed metabolites
based on a fold-change criterion greater than 1.5 or less than 0.67 with a false discovery
rate (FDR)-adjusted p-value less than 0.05. The x-axis on the volcano plot represents the
fold-change (FC) between two comparison groups, while the y-axis represents the p-value.
Multivariate analysis (orthogonal partial least squares discriminant analysis (OPLS-DA))
was carried out to identify any clustering or separation between the compared datasets.

For statistical analysis among the groups, analysis of variance (ANOVA) using a post
hoc Tukey analysis method, with multiplicity-adjusted p-values for each comparison, was
used. This analysis seemed best to reduce the probability of making a type 1 error. As seen
in our cohorts, it supports the testing of pairwise differences due to the unequal group sizes
among the experimental and the control groups. A Pearson similarity test, hierarchical
clustering combined with heat maps, and Venn diagram analyses including the two-way
ANOVA were performed between the study groups using Multiple Professional Profiler
(MPP) software (Agilent In., Santa Clara, CA, USA). According to this study’s metabolic
dysregulation, the list of significantly identified metabolites was entered into the pathway
analysis module for significant pathway identification. The potential biomarkers were
evaluated for their sensitivity and specificity to show bone health using receiver operating
characteristic (ROC) curves based on the OPLS-DA method (MetaboAnalyst software
version 5.0, Alberta, AB, Canada).

5. Conclusions

This study presented a metabolomics pattern associated with LBMD compared to
control participants with normal BMD using an analytical approach that excluded the effect
of several identified confounding factors. In addition, metabolomic analysis between ON
and OP groups identified several dysregulated metabolites (either up- or downregulated)
in ON compared to OP, which are sensitive to determining the bone density status in these
patients. The findings of this study can add a layer of information to understanding the
possible metabolic alterations associated with LBMD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11090628/s1: Figure S1. Determination of drug-related metabolites (drug-dependent)
from the overall detected metabolites; Figure S2: Comparisons of clinical characteristics and demo-
graphic data between ON and OP groups, Table S1: List of the dysregulated metabolites (11 up- and
24 downregulated in ON compared to OP).
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