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Abstract: The resistance of the notorious rice pest Nilaparvata lugens to many insecticides has caused
significant concerns. Our previous study demonstrated that the fungus Metarhizium anisopliae
CQMa421 shows great potential for the control of this pest, but the interactions between them are still
unclear. Thus, we further investigated fungal infection-related microRNAs (miRNAs) in N. lugens
during M. anisopliae CQMa421 challenge using Illumina sequencing. In this study, we constructed
twenty-four small RNA libraries over different time courses (i.e., 4 h, 8 h, 16 h, and 24 h). A total
of 478.62 M clean reads were collected, with each sample producing more than 13.37 M reads, after
the removal of low-quality reads. We identified 2324 miRNAs and their 11,076 target genes within
the twenty-four libraries by bioinformatics analysis. Differentially expressed miRNAs (DEmiRNAs),
including 58 (32 upregulated vs. 26 downregulated), 62 (30 upregulated vs. 32 downregulated), 126
(71 upregulated vs. 55 downregulated), and 109 (40 upregulated vs. 69 downregulated) DEmiRNAs
were identified at 4 h, 8 h, 16 h, and 24 h post-infection, respectively. We further conducted Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to predict
the functions of all target genes of DEmiRNAs. These DEmiRNAs targets identified during 24 h of
infection were primarily involved in energy metabolism, lysine degradation, the FoxO signaling
pathway, ubiquitin-mediated proteolysis, the mRNA surveillance pathway, and the MAPK signaling
pathway. Taken together, our results provide essential information for further study of the interactions
between the entomopathogenic fungus M. anisopliae and N. lugens at the posttranscriptional level.

Keywords: entomopathogenic fungus; Metarhizium anisopliae; fungal infection; Nilaparvata lugens;
microRNAs; pest control

1. Introduction

The rice planthopper Nilaparvata lugens is one of the prominent insect pests associated
with rice growth and production [1,2]. The area affected by rice planthoppers in China
reached 23 million ha. in 2020 alone. This pest not only sucks the phloem sap of rice plants,
causing direct damage [3], but also transmits plant viruses such as rice grassy stunt virus,
resulting in indirect damage to rice plants [4]. Currently, the most common and effective
approaches for the control of this pest depend on the use of chemical insecticides, whereas
the misuse of insecticides has contributed undesirable effects on the ecological environment
and nontargets as well as human health [5,6]. This species also rapidly develops resis-
tance, adapting to insecticides after several generations, thus resulting in resurgence [1,7].
Transgenic rice varieties and approaches such as RNAi have been developed for insect
pest control and achieved some success, but these methods are limited in terms of their
effectiveness and availability for field applications [8–10]. Thus, more effective alternative
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approaches are needed to replace/reduce the use of chemical insecticides for pest control,
especially under field conditions.

Entomopathogenic fungi are one of most important factors regulating the insect
populations under natural conditions [11,12]. In contrast to the side effects of chemical
insecticides, insects do not easily become resistant to fungal infection, which also poses
lower risks to the environment and human health [11]. Several entomopathogenic fungal
strains have been isolated from natural hosts and used for the control of some insect pests.
For instance, two important fungal agents, Metarhizium anisopliae and Beauveria bassiana,
showed good potential against insect pests such as Locusta migratoria [13], Alphitobius
diaperinus [14], Chironomus riparius [15], and Helicoverpa armigera [16]. Additionally, a
few specific M. anisopliae strains can be used against insecticide-resistant pests [17]. The
engineered fungal strains transformed with genes encoding products such as an insecticidal
scorpion toxin (Bjα IT) and Manduca sexta diuretic hormone (MSDH) showed improved
virulence for the target pests [18,19]. The combined use of M. anisopliae and RNAi can affect
the reproduction of N. lugens and has shown good potential for the control of this pest [20].
In our previous study, we found that the fungus M. anisopliae CQMa421 exhibited great
potential for the control of major rice pests, including the rice planthopper N. lugens [21].
This fungal agent can also suppress the population of rice planthoppers to a low level
under field conditions [22,23]. However, the underlying molecular interactions between
the rice planthopper and the fungus are poorly understood, although this knowledge may
enhance potential fungal agents for other pest control.

MicroRNAs (miRNAs) are a class of small noncoding RNAs consisting of ~22 nu-
cleotides, including small interfering RNAs (siRNAs) and piwi-interacting RNAs (piR-
NAs) [24,25]. These miRNAs are common in plants, insects, and microbes and play crucial
roles in regulating gene expression at the posttranscriptional level [26–28]. Many studies
have reported that miRNAs can affect diverse physiological processes in organisms, such as
development [29], metamorphosis [30,31], sexual divergence [32], and wing polyphenism
development [33,34]. On the other hand, the uncontrolled expression of miRNAs may result
in undesirable results, such as disease, unusual phenotype variation, or death [35]. With
the ongoing development of sequencing technologies, miRNAs have been evaluated in
many insect species under different conditions, including responses to stressful treatments
or pathogenic challenges, which have provided important information for investigating
the roles of miRNAs in regulating their target mRNAs [36–38]. These data also facilitate
the development of new approaches for pest control in terms of providing potential target
genes for both RNAi technology and the development of engineered fungus.

In a previous study, we evaluated the potential of M. anisopliae to infect the rice pest
N. lugens adults and nymphs [21]. A large scale application of this fungal agent may also
suppress the pest populations under field conditions, indicating that it can be employed
as an alternative to chemical insecticides [23]. Although a few studies have reported the
mRNA responses of such pests to different challenges, including insecticides, temperature
stress, or different developmental conditions, the levels of fungus-induced miRNAs in
these pests have scarcely been studied [39–41]. However, the study of miRNAs is crucial to
reveal the interactions between the fungus and the insect host at the posttranscriptional
level. Thus, we further examined the resulting miRNAs of N. lugens in response to M.
anisopliae infection during different periods by transcriptomic analysis. This investigation
may provide new insights for further study of insect host responses to entomopathogens at
the posttranscriptional level and understand the molecular mechanisms of fungal infection.

2. Methods and Materials
2.1. Insect and Sample Collection

The N. lugens insects used in this study were obtained from our insectary (Plant Ex-
perimental Base at Chongqing University, Chongqing, China). The population of N. lugens
was maintained on fresh rice seedlings under the following conditions: 27 ± 1 ◦C with a
light:dark (L:D) photoperiod of 14:10 h. To acquire the experimental insect samples, we
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randomly collected the N. lugens nymphs and then treated them with the fungal M. aniso-
pliae CQMa421. The preparation of a suspension of 1 × 108 conidia/mL of M. anisopliae
was performed as described in our previous study [21].

For individual insect treatment, we first transferred 10 fresh rice seedlings to a column
bucket with a diameter of 10 mm and a height of 150 mm. Then, nymphs of N. lugens were
inoculated on the rice plants and sprayed with the prepared M. anisopliae suspension. After
this treatment, the N. lugens nymphs were incubated in a bioassay room under a 27 ± 1 ◦C
and 14:10 h (L:D) photoperiod. The control-group individuals were treated with distilled
water using the same method indicated above. Finally, N. lugens nymphs from both the
M. anisopliae-treated and control groups were collected after incubation on the rice seedings
for 4 h, 8 h, 16 h, or 24 h. Three replicates were performed for each group, and a total of
twenty-four sample groups of N. lugens individuals were flash frozen in liquid nitrogen
and stored prior to RNA extraction.

2.2. Small RNA (sRNA) Extraction and Sequencing

The whole bodies of N. lugens nymphs from the M. anisopliae-infected or noninfected
groups were collected at 4 h, 8 h, 16 h, and 24 h posttreatment for sRNA sequencing. The
total RNA of N. lugens nymphs was extracted using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions. The purity, concentration, and
integrity of the RNA samples were tested using a NanoPhotometer® spectrophotometer
(IMPLEN, Westlake Village, CA, USA). The samples were evaluated in agarose gels to
ensure that they showed a sufficiently high quality for transcriptome sequencing. The
preparation of the sRNA sequencing library was performed as follows: first, the 3′ SR and 5′

SR adaptors were ligated to the ends of the sRNAs by using the T4 RNA ligase. Then, first-
strand cDNA was synthesized by reverse transcription. PCR amplification was performed,
and size selection was carried out via polyacrylamide gel electrophoresis (PAGE). The
PAGE was used for fragment screening purposes, with rubber cutting recycling of the
pieces to produce small RNA libraries. The PCR products were purified (AMPure XP
system), and library quality was assessed. The clustering of the index-coded samples was
performed on a cBot Cluster Generation System using the TruSeq PE Cluster Kit v4-cBot-
HS (Illumina, San Diego, CA, USA) according to the manufacturer’s instructions. After
cluster generation, the library preparations were sequenced on an Illumina platform, and
single-end reads were generated by a service provider (BioMarker Technologies, Beijing,
China). The Illumina sequence reads of N. lugens were deposited in the NCBI SRA database
(accession no. PRJNA686491).

2.3. N. lugens miRNA Prediction

The raw reads in FASTQ format were first processed with in-house Perl scripts. In this
step, clean reads were obtained by removing reads containing adapters, reads containing
ploy-N sequences and low-quality reads for the raw data. In this treatment, all reads
were trimmed and cleaned by removing sequences smaller than 18 nt or longer than
30 nt. Additionally, the Q20 and Q30 values, GC contents, and sequence duplication
levels were calculated from the clean data. All downstream analyses were based on the
clean data with high quality. Clean reads were obtained using Bowtie tools software via
sequence alignment against the Silva database, GtRNAdb database, Rfam database, and
Repbase database, and ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear
RNAs (snRNAs), small nucleolar RNAs (snoRNAs), and other types of noncoding RNAs
(ncRNAs) and repeats were filtered to identify and predict miRNAs. The remaining reads
were used to identify known miRNAs and novel miRNAs by mapping with the N. lugens
genome (NCBI project accession: PRJNA177647) [42] using the Bowtie program [43].

2.4. Differential Expression Analysis and Functional Annotation

For the differential expression analysis of the M. anisopliae-infected or noninfected
N. lugens groups, we used the DESeq2 R package. DESeq2 provides statistical routines
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for determining differential expression from digital miRNA expression data by using a
model based on the negative binomial distribution. The resulting P values were adjusted
using the Benjamini and Hochberg approach for controlling the false discovery rate. All of
the miRNAs with a |log2(FC)| ≥ 1.5 and p ≤ 0.05 predicted by DESeq2 were assigned as
differentially expressed miRNAs (DEmiRNAs).

Prediction of the potential target genes of differentially expressed miRNAs was con-
ducted using the miRanda and RNAhybrid software packages [44,45]. Gene functional
annotation of N. lugens was based on the following databases: Nr (NCBI non-redundant
protein sequences); Nr (NCBI non-redundant nucleotide sequences); Pfam (Protein family);
Swiss-Prot (A manually annotated and reviewed protein sequence database); KO (KEGG
Orthologue database); and GO (Gene Ontology). The expression of miRNAs in all libraries
was normalized based on the TPM algorithm, and the formula was as follows:

TPM = Readcount × 106/MappedReads

The genome database of N. lugens (Nilaparvata lugens NilLug1.0) used as the back-
ground to determine GO and KEGG terms enriched within the predicted targets dataset.
Gene Ontology (GO) (http://www.geneontology.org/, accessed on 22 November 2019)
enrichment analysis of the DEmiRNAs was implemented by using the GOseq R package-
based Wallenius noncentral hypergeometric distribution to identify the significantly en-
riched terms [46]. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis was conducted to predict and identify the significant pathways, with datasets
generated by genome sequencing or other high-throughput experimental technologies
(http://www.genome.jp/kegg/, accessed on 22 November 2019). KO-based Annotation
System (KOBAS) is an open-access system to use KO as a controlled vocabulary to auto-
matically annotate a set of sequences, which can identify the most frequent and the most
significantly enriched pathways in a given set of sequences [47]. We used it to test the
statistical enrichment of differential expression genes in KEGG pathways.

2.5. Validation by RT-qPCR

We used real-time quantitative PCR (RT-qPCR) to analyze the expression of genes
and to confirm the results of RNA sequencing. The highly expressed 10 miRNAs among
the DEmiRNAs were randomly selected. The RT-qPCR was performed on a Bio-Rad iQ2
optical system (Bio-Rad, Hercules, CA, USA) with a QuantiNove SYBR Green PCR Kit
(QIAGEN, Dusseldorf, Germany) following the instructions of the manufacturer. The
β-actin was used as an internal control. Each experiment was repeated in triplicate. Finally,
data analysis was performed using the 2−∆∆Ct method. The primers designed for RT-qPCR
in this study are listed in Table S1.

3. Results
3.1. Overall and Size Distribution of N. lugens Total miRNAs

To identify the N. lugens miRNAs, we constructed 24 libraries after challenge with M.
anisopliae for 4 h, 8 h, 16 h, and 24 h challenge by next-generation sequencing. The libraries
generated for the control group and the M. anisopliae-infected group at different times were
designated T-4 h vs. W-4 h, T-8 h vs. W-8 h, T-16 h vs. W-16 h, and T-24 h vs. W-24 h,
respectively. In this analysis, a total of 541.47 M raw reads were generated, and 478.62 M
clean reads were retained after removing the low-quality reads. The Q30 of all samples
was greater than 94.19%, indicating good sequencing data quality without low-quality
sequences (Table S2). The mapped reads of all samples, except for T8-1 (59.08%) and W4-3
(59.18%), were more than 60% (Table S3).

We noted that the peak of the total miRNA read length distribution occurred at
22 nt, representing the typical lengths of conserved miRNAs; and next most abundant
lengths were 25 nt, corresponding to piRNA-like sequences (Figure 1A). Additionally, the
examination of the first nucleotide bias of the miRNAs showed a strong preference for
uracil “U” and adenine “A” (Figure 1B). The 5′ terminus of miRNA residues from 2 to 8 is

http://www.geneontology.org/
http://www.genome.jp/kegg/
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believed to recognize the target mRNAs and repress posttranscription. The most abundant
bases in such residues were U, U, U, A, U, U, and guanine “G”, respectively (Figure 1B).
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Figure 1. The length distribution and nucleotide bias of unique small RNA reads in the libraries of
N. lugens. (A) The total length distribution of N. lugens small RNAs in the twenty-four libraries (4 h,
8 h, 16 h, and 24 h) generated after M. anisopliae infection; (B) the first nucleotide bias at each position
among miRNAs of different lengths in the twenty-four libraries.

3.2. DEmiRNA Analysis of N. lugens after Fungal Treatment

To identify N. lugens DEmiRNAs after M. anisopliae challenge, we calculated the read
counts for each of the miRNAs and compared their expression levels during the time-
course of infection using DESeq2 according to the criteria of a p value < 0.05 and FC > 1.5.
After filtration, a total of 355 DEmiRNAs were identified between all libraries from the
infected and uninfected groups with the 24 h experiments. Specifically, 58 DEmiRNAs
were identified after 4 h of infection, including 32 upregulated and 26 downregulated
miRNAs (Figure 2A). After 8 h of fungal infection, 62 DEmiRNAs were identified, including
30 upregulated vs. 32 downregulated miRNAs (Figure 2B). We identified 126 DEmiRNAs
at 16 h, including 71 upregulated and 55 downregulated miRNAs (Figure 2C). Finally,
109 DEmiRNAs were identified after 24 h of infection, including 40 upregulated and
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69 downregulated miRNAs (Figure 2D). Only 1 DEmiRNA was identified in all four time-
course treatment groups. Moreover, we found that the number of DEmiRNAs was variable
at different times, showing an increasing tendency over time after fungal infection. The top
ten N. lugens DEmiRNAs (up- or downregulated) after M. anisopliae infection also showed
significant differences over the time course (Table S4).
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3.3. Functional Analysis of DEmiRNAs in N. lugens

To further examine the functions of all DEmiRNAs in N. lugens, we predicted the
target genes of the miRNAs in the GO databases and mapped them to different functions
(Table S5). The annotated GO terms of the 4360 target mRNAs for the total DEmiRNAs
predicated using RNAhybrid and miRanda algorithms were divided into the biological
process, cell component, and molecular function categories. The differences in the abun-
dances and numbers of the mRNAs associated with the four examined infection periods
are shown according to the different GO categories of the 1036, 814, 1867, and 2171 target
mRNAs identified after 4 h, 8 h, 16 h, and 24 h of infection, respectively. In the biological
process category, the target genes of miRNAs were majorly associated with the in cellular
process and metabolic process functions. Membrane and cell components were the most
enriched cellular component categories, while binding and catalytic activity were the most
enriched molecular functions. Interestingly, there were no target mRNAs associated with
detoxification functions identified at 4 h (Figure 3A), while this functional category showed
enrichment at 8 h, 16 h, and 24 h after infection (Figure 3B–D). Additionally, no target mR-
NAs were associated with the functions of antioxidant activity and electron carrier activity
after 4 h of infection, but these two metabolic activity categories showed enrichment at 8 h
and 16 h post-infection (Figure 3B,C).

We further used KEGG to identify the metabolic and signal transduction pathways
associated with the targets of the DEmiRNAs after M. anisopliae infection (Table S6). The tar-
get genes of 323 differentially expressed mRNAs identified after 4 h infection were mapped
to 77 pathways in the KEGG database, including the FoxO signaling pathway, notch signal-
ing pathway, steroid biosynthesis, etc. (Figure 4A). When N. lugens was challenged by M.
anisopliae for 8 h, 82 pathways (including lysine degradation, ubiquitin mediated proteoly-
sis, mTOR signaling pathway, etc.) were found to be enriched with the targeted genes of
376 differentially expressed mRNAs (Figure 4B). A total of 2166 targets of 579 differentially
expressed mRNAs identified after 16 h infection was mapped to 93 pathways in the KEGG
database (including the ubiquitin-mediated pathway, phototransduction, mRNA surveil-
lance pathway, etc.) (Figure 4C). We found that there were 2085 genes targeted including
435 differentially expressed mRNAs identified after 24 h infection mapped to 89 pathways,
including the MAPK signaling pathway, starch and sucrose metabolism, endocytosis, etc.
(Figure 4D). The top KEGG targets of the DEmiRNAs are shown in Figure 4 and mainly
included the lysine degradation (KO: 00310), ubiquitin-mediated proteolysis (KO: 04120),
starch and sucrose metabolism (KO: 00500), RNA transport (KO: 03013) and FoxO signaling
(KO: 04068) pathways.

From the highly expressed DEmiRNAs, the Nr annotation of the target DEGs included
the serine/threonine-protein kinase mTOR (NL-miR-2333), serine/threonine-protein kinase
PAK 3, insulin receptor, and E3 ubiquitin-protein ligase UBR2 (NL-miR-1047); thioredoxin
domain-containing protein (NL-miR-156); and E3 ubiquitin-protein ligase MYCBP2 (NL-
miR-488) at 4 h infection. Eight hours after M. anisopliae infection, the target DEGs mainly
included the apoptosis-resistant E3 ubiquitin protein ligase 1, nucleoprotein TPR, diacyl-
glycerol kinase theta isoform X3, and protein phosphatase PHLPP (NL-miR-260); cytosolic
carboxypeptidase (NL-miR-1675); transient receptor potential channel pyrexia (NL-miR-
2180); phospholipid phosphatase and zinc finger protein (NL-miR-707); glucose transporter
(NL-miR-1385); and DNA topoisomerase (NL-miR-1547). The DEGs at 16 h included a
serine/threonine-protein kinase, histone acetyltransferase, E3 ubiquitin-protein ligase,
and extracellular sulfatase corresponding to NL-miR-1982; putative mediator of RNA
polymerase II, GTPase-activating protein, phenoloxidase, and odorant receptor correspond-
ing to NL-miR-1147; phospholipid-transporting ATPase corresponding to NL-miR-453;
and serine/threonine-protein kinase and GTPase-activating protein corresponding to NL-
miR-1462. We noted that the DEGs at 24 h included the heparin sulfate glucosamine,
tRNA modification GTPase, histone-lysine N-methyltransferase, and glucose-6-phosphate
1-dehydrogenase (NL-miR-54); transcriptional regulator and histone acetyltransferase
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(NL-miR-1546); and activating signal co-integrator, tripeptidyl-peptidase, and pyruvate
carboxylase (NL-miR-756) (Table S7).
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3.4. Validation of DEmiRNAs by RT-qPCR

To further validate the DEmiRNAs identified through sequencing, we used RT-qPCR
to analyze gene expression and confirm the results of RNA sequencing. We selected 10 of
the highly expressed miRNAs based on the Illumina sequencing results. The results showed
that the expression trends of the selected miRNAs showed a slight discrepancy from the
findings of the sequencing analysis (Figure 5), which might be due to the differences in the
sensitivity, specificity, and applied algorithms between the two techniques.
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Figure 4. The enrichment and dispersion of differentially expressed miRNAs in KEGG pathways after M. anisopliae infection.
(A) The identified pathways of DEmiRNAs after 4 h of M. anisopliae infection; (B) the identified pathways of DEmiRNAs
after 8 h of M. anisopliae infection; (C) the identified pathways of DEmiRNAs after 16 h of M. anisopliae infection; and
(D) the identified pathways of DEmiRNAs after 24 h of M. anisopliae infection. The asterisks indicate significant differences
according to a p value < 0.05.
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4. Discussion

The field population of the pest N. lugens has evolved high resistance (more than
1000-fold) to many common chemical insecticides, such as imidacloprid and buprofezin [48].
The use of chemicals imposes significant negative effects on species diversity and the well-
being of ecosystems [5,49]. Alternative control tools, such as entomopathogenic fungi,
present good potential for the insect pest control under both greenhouse and large-scale
field conditions [23,50]. The entomopathogenic fungus M. anisopliae has been used for
the control of several insect pests, including the major rice pests. In our previous study,
we isolated the fungal M. anisopliae strain CQMa421 to challenge N. lugens nymphs and
adults, which resulted in high mortality. Additionally, this fungus has been suggested
for use in long-term control under field conditions and has relatively limited effects on
nontargets species (i.e., microbial diversity and structure) [22]. Although a few studies
focused on the transcriptomic level of N. lugens under stressful conditions, less attention
has been paid to the analysis of this fungus at the posttranscriptional level, especially under
entomopathogenic fungal challenge. In this study, we compared the miRNAs of N. lugens
after challenge with the entomopathogenic fungus M. anisopliae in different infection stages.
This investigation at the posttranscriptional level will provide important insights for further
study of the interactions between the entomopathogenic fungus and the insect host. These
results may also contribute to the development of new strategies (i.e., new targets for RNAi)
for the control of this pest.

N. lugens miRNAs were identified after the fungal M. anisopliae infection for 4 h to 24 h,
and the results showed variation in terms of both the numbers and targets of the identified
miRNAs. The targets of the miRNAs identified after M. anisopliae infection are involved
in the many metabolic processes and pathways, including carbon metabolism, starch and
sucrose metabolism, ubiquitin-mediated proteolysis, the FoxO signaling pathway, and
the pentose phosphate pathway. To defend against pathogens, insect hosts have evolved
complex mechanisms for responding to and eliminating pathogen infection [51]. The cuticle
is a protective barrier that helps to recognize and defend against pathogenic infection [52].
When pathogens adhere to the insect cuticle, the pattern recognition molecules (i.e., pep-
tidoglycan recognition proteins, β-1,3-glucan recognition proteins, scavenger receptors,
and galectins) of the insect host are activated [53,54]. Moreover, the innate immune system,
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including cellular and humoral immune responses, of insect hosts plays important roles in
defending against pathogens, although insects lack an adaptive immune response [55,56].

We found that a few miRNAs were specifically expressed under M. anisopliae infection
at different times during initial post-infection, indicating that these miRNAs play vital
roles in defending N. lugens against the entomopathogenic fungus M. anisopliae. Conidial
adhesion, detoxification, and penetration of entomopathogenic fungi on the cuticle of
insect hosts are important processes in initial infection [52]. During this period, certain
proteins (MAD1, G-protein-coupled receptors (GPCRs), dehydrogenases, and lipases)
and pathways (mitogen-activated protein kinase (MAPK) and protein kinase A (PKA)
pathways) are involved in in these processes [57]. Other studies have shown that fungal
infection may result in the expression of specific genes with different time courses [51].
Additionally, the number and type of hemocytes, which play key roles in cellular immunity,
have been shown to vary with post-infection time [58], while our study did not check
these changes.

In our study, there was no apparent immune response at 4 h post-M. anisopliae infection
(Figure 3A), but we noted an immune response at 8 h post-infection. Furthermore, the
targets of the detoxification process were first identified at 8 h post-infection and showed
a high expression. After 8 h of fungal infection, miRNA targets with catalytic activity
showed high expression, while chemical synaptic transmission was significantly inhibited
at this time. We also noted that DEmiRNAs were slightly more abundant at 16 h than
at 24 h, and the target genes and pathways identified at these time points were different
(Tables S4 and S7). While miR-197 showed high expression at 16 h, miR-277 and miR-237
exhibited low expression. In contrast, miR-1834 showed high expression at 24 h, when miR-
165 showed low expression. According to these target mRNAs, an RNAi-based technology
can be developed and further combined with fungal agents for the control of insect pests.
In fact, a previous study has been conducted to evaluate their combined use for rice pest
control, suggesting a good potential for this pest control [20].

The most common metabolic processes and pathways identified within the initial
24 h after M. anisopliae infection were recognition, energy metabolism, the FoxO signaling
pathway, and the MAPK signaling pathway, indicating these physiological responses in
N. lugens are intense during fungal infection. These pathways are important for regulating
organismal development, immune responses, and behavior [59,60]. In this study, 58 of
the DEmiRNAs at 4 h targeted DNA replication, lysine degradation, ubiquitin-mediated
proteolysis, and RNA transport. After 8 h, the top pathways of the targets were related to
lysine degradation, ubiquitin-mediated proteolysis, starch and sucrose metabolism, and
the mRNA surveillance pathway. We noted that there were specific pathways identified
at 16 h (i.e., the Hippo signaling pathway) and 24 h (i.e., the MAPK signaling pathway)
after M. anisopliae infection. The identified DEmiRNAs and targeting pathways exhibited
differences in abundance during M. anisopliae infection from 4 to 24 h. In fact, several
studies have shown that different developmental stages and sexes also exhibit miRNA
differences [30,32]. The temporal patterns between host and fungus have also been studied
in the insect Plutella xylostella, and the results showed time-dependent expression [61]. Fur-
thermore, we noted that the qPCR result showed a slight discrepancy from the sequencing
results, and we believe that a time-point selection of miRNAs for qPCR would better reflect
the sequencing results.

In conclusion, we identified and analyzed the posttranscriptional regulation of miR-
NAs after M. anisopliae infection. A total of 2324 miRNAs, including 355 DEmiRNAs, were
identified and found to target 11,076 genes (Table S5). Our results revealed the interac-
tions between the N. lugens host and the infecting entomopathogenic fungus M. anisopliae
and provide important insights for further research into the role of N. lugens miRNAs in
responding to fungal infection. They may also contribute to the development of control
strategies for this pest.
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