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Abstract
Background: Characterizing the structural properties of protein interaction networks will help
illuminate the organizational and functional relationships among elements in biological systems.

Results: In this paper, we present a systematic exploration of the core/periphery structures in
protein interaction networks (PINs). First, the concepts of cores and peripheries in PINs are
defined. Then, computational methods are proposed to identify two types of cores, k-plex cores
and star cores, from PINs. Application of these methods to a yeast protein interaction network has
identified 110 k-plex cores and 109 star cores. We find that the k-plex cores consist of either
"party" proteins, "date" proteins, or both. We also reveal that there are two classes of 1-peripheral
proteins: "party" peripheries, which are more likely to be part of protein complex, and "connector"
peripheries, which are more likely connected to different proteins or protein complexes. Our
results also show that, besides connectivity, other variations in structural properties are related to
the variation in biological properties. Furthermore, the negative correlation between evolutionary
rate and connectivity are shown toysis. Moreover, the core/periphery structures help to reveal the
existence of multiple levels of protein expression dynamics.

Conclusion: Our results show that both the structure and connectivity can be used to
characterize topological properties in protein interaction networks, illuminating the functional
organization of cellular systems.

Background
Network biology [1], which models biological systems as
networks of connected elements, enables biologists to
understand both macroscopic properties of biological sys-
tems [2-5] and microscopic properties of single molecules
within systems [6]. With the advances in high-throughput
techniques, more and more large-scale biological net-
works have been defined [7,8]. Studying the structure of

biological networks will help elucidate the organization
and functional relationships of elements in cellular
systems.

Recently, Guimera et al. [9] classified the roles of nodes in
complex networks according to their properties inside
sub-network "modules". Their classification depended on
dissecting the network into modules using a simulated
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annealing method [10]. However, precisely identifying
biologically-relevant modules from PINs is not a trivial
task. Fortunato and Barthelemy [11] recently pointed out
that the optimization of Newman-Girvan modularity
appears to favor large modules, and thus may miss impor-
tant biological relationships that exist at the molecular
level. Application of the method of Guimera and Amaral
[12] to separate the yeast PIN from MIPS [13] into mod-
ules showed that these structurally-defined modules did
not show a significant correlation with biological func-
tional units. Thus, defining roles of proteins based on
these modules may not be appropriate for PINs. However,
it is still possible to understand the roles of proteins in the
PINs within other types of sub-graph structures. In this
study, we explore the role of proteins in PIN based on
core/periphery structures.

Many studies have focused on the highly connected sub-
networks in PINs [14-17]. However, most of these
approaches exclude peripheral proteins that only connect
to the core proteins with a few links, even though these
peripheries may represent true interactions that have been
experimentally verified [18]. The concept of core/periph-
ery structures has a long history in social network analysis
[19]. It wasn't until recently that the model of core/
periphery structure in a network was first formalized by
Borgatti and Everett [20]. In their model, a network con-
tains a core/periphery structure if it can be divided into a
core set, in which members are cohesively connected to
each other, and a periphery set, in which members are
loosely connected to the core members. Figure 1 shows an
example network with three cores. The star (structure #1)
is a special core/periphery structure with only one core
member.

Core/periphery structures can be related to protein com-
plexes. Protein complexes often include a static part in
which components stably interact with each other all the
time and a dynamic part that is assembled in a just-in-
time fashion [21,22]. If the just-in-time assembled pro-
teins only interact with small portion of the static part, the
whole protein complex may appear as a core/periphery
structure in the PINs. On the other hand, proteins that
interact with different proteins in different contexts may
emerge as a star structure in the PIN. Thus, the investiga-
tion of the core/periphery structure in PINs may help elu-
cidate the dynamic of protein complex.

Furthermore, previous studies have shown that the struc-
tural characteristics, like connectivity (number of links),
of proteins in PINs is related to the biological properties,
such as essentiality [6] and evolutionary rate [23,24]. On
the other hand, the roles and properties of proteins are
also found to be related to the structural characteristics of
proteins in the PIN [22]. However, the relationship

between structural and biological properties of core and
peripheral proteins in PIN has not been fully explored. It
is plausible to hypothesize that the core and peripheral
proteins may have different roles and properties due to
their different topological characteristics. For example,
core proteins are usually more highly connected to each
other and may have higher essentiality characteristics and
lower evolutionary rates than those of peripheral proteins.
Combining the structural characteristics of proteins with
their biological properties may help elucidate their differ-
ent roles in biology systems.

In this paper, we present a systematic exploration of core/
periphery structures in PINs. Our studies help elucidate
the relationship between topological properties in PINs
and the roles played by proteins in cellular system, and
thus help define the organizational mechanisms used in
cellular system.

Core/periphery structures in PINs
A PIN can be modeled as an undirected and unweighted
graph G = (V, E), where the vertices set V represents pro-
teins and the edges set E represents interactions between
proteins. In the context of this paper, the graph is synon-
ymous with the network. A core [25] in a network is a
cohesive sub-graph, in which nodes are highly connected

A sample network including three core/periphery structures, which are denoted by the gray circles (1–3)Figure 1
A sample network including three core/periphery 
structures, which are denoted by the gray circles 
(1–3). The empty cycle nodes are core members. The black 
and grey nodes represent 1-peripheries and 2-peripheries, 
respectively. Labelled nodes (A-F) are different types of 1-
peripheries: A) the closed single-core periphery; B) the mul-
tiple-core periphery; C) the complete-open single-core 
periphery; D) the limited-open single-core periphery; both E) 
and F) the core-member periphery.
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to each other. There are various definitions of cohesive
sub-graph based on different connectivity properties of
the vertices, including cliques [26], k-plexes [27], k-cores
[28] and n-cliques [29].

A clique is a complete sub-graph of three or more nodes
in which all nodes are connected to each other. A maxi-
mum clique is a complete sub-graph in the graph such
that there are no nodes remaining in the graph that are
connected to all the member of the clique. However, the
clique is a very restrictive sub-group definition for protein
interaction networks. Two concepts in network theory
have been proposed to loosen the clique definition. The
n-clique relaxes the requirement on the distance between
nodes inside the sub-graph. An n-clique is a sub-graph in
which all pairs of nodes are no greater than n distance
apart. Unfortunately, the n-clique are often not be very
cohesive, even for a 2-clique. The k-plex sub-graph defini-
tion relaxes the number of nodes required to be connected
for each node in the sub-graph. A k-plex is a sub-graph in
which each node is connected to at least n-k nodes, where
n is the number of nodes in the sub-graph and k is a tun-
able parameter. Another cohesive sub-graph is the k-core.
A k-core is a connected maximal sub-graph in which each
node has degree (number of connections) at least k.
Although the k-core includes all cohesive sub-graphs, it
may also contain non-cohesive parts. Another problem
with the k-core approach is that k-cores cannot overlap.
Based on these considerations, we expect that the k-plex
approach will likely provide a better representation of
functionally relevant sub-graph cores in protein interac-
tion networks.

In this study, we define a core in a PIN as a local maximal
k-plex with k ≤ n/2 , where n is the number of nodes in the
sub-graph. The local maximum means that no more
peripheral node can be added into the sub-graph such
that the sub-graph remains a k-plex at a given k.

We also define the k-periphery of a core as the set of nodes
that are not in the core and whose distances to any mem-
ber in the core are equal to k. For example, the 1-periphery
is the set of nodes that are directly connected to core mem-
bers (distance equals to 1). Our definition is different
from the original definition of k-periphery by Everett and
Borgatti [20], in which the k-periphery also includes
nodes whose distances to any member of the core are less
than k. Here, we will focus our study on the 1- and 2-
peripheries of a core.

One special core/periphery structure is the star. In an ideal
star, one single node is the core, and there are no connec-
tions between the peripheral nodes. For biological net-
works, we will allow limited connections between

peripheral nodes, which will be controlled by the periph-
eral degree defined below.

Types of 1-peripheral nodes
Based on how they are connected to the core members, we
classify 1-peripheral nodes into the following types: (1)
the closed-single-core peripheral nodes (closed), which
are only connected to members of one core (node A in Fig.
1); (2) The multiple-core peripheral nodes (multiple-
core), which are connected to members of at least two dif-
ferent cores and may also be connected to other non-core
nodes (node B in Fig. 1); (3) The open-single-core periph-
eral nodes (open), which are connected not only to mem-
bers of one core but to other non-core nodes. This type of
peripheral nodes can be further divided into complete-
open-single-core peripheral nodes (complete-open),
which have fewer connections to core members than to
other non-core nodes (node C in Fig. 1), and limited-
open-single-core peripheral nodes (limited-open), which
have more connections to core members than to other
non-core nodes (node D in Fig. 1); (4) The core-member
peripheral nodes, which are members of one core and the
1-peripheries of some other cores (node E and F in Fig. 1).
The delineation of these 1-peripheral node types will
allow us to investigate if these structural distinctions have
biological correlates.

Structural measures for 1-peripheries
The characteristics of 1-peripheries can be described by
the following structural measures:

Coreness (Cp)
Cp of a 1-periphery node is defined as the ratio of the
number of its connections to the core members over the
total number of core members, 0 < Cp < 1. The coreness
measures the closeness between the 1-periphery node and
the core members.

Participation Rate (Pr)
The Pr of a 1-periphery node is defined as the number of
its connections to the core members over the total
number of its connections. 0 < Pr ≤ 1. The Pr measures the
level at which the 1-periphery members participate in the
core. The Pr of closed single-core 1-periphery nodes is 1.
The Pr of complete-open 1-periphery nodes are less than
0.5 and the Pr of limited-open 1-periphery nodes are
greater than or equal to 0.5.

Peripheral Degree (Pd)
The Pd of a 1-periphery node is defined as the number of
its connections to other 1-periphery nodes over the total
number of peripheral nodes of the core [25]. 0 ≤ Pd < 1.
The Pd measures the degree to which the 1-periphery
nodes are connected to each other. Pd = 0 means that the
1-periphery node is only connected to the core members.
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Results
Cores/peripheries are identified from the YPIN
Our KL-like algorithm has identified 110 k-plex cores with
size of no less than six from the YPIN. Additional file
1[30] lists all proteins in obtained k-plex cores and their
1- and 2-peripheries. In total, 712 k-plex core proteins are
identified. Some cores share a small overlap of their mem-
bers. For example, cores 4 and 5 each have 16 "ubiquitin-
dependent protein catabolic process" related proteins and
share two protein members, PRE1 and RPN10. Most of
the k-plex cores are part of protein complexes according to
the MIPS protein complex database [13] (see Additional
file 2[30]). Moreover, most k-plex cores contain all four
types of 1-periphery nodes. Additional file 3[30] shows
the details of the four types of 1-periphery nodes of each
k-plex core. The largest k-plex core has 25 members. Fig-
ure 2 showed the largest k-plex core and its 1-, 2- periph-
eries. Then, we examined how the most significant GO
terms among k-plex core members are ranked in the sig-
nificant GO terms among their 1- and 2-peripheries using
the gene ontology (GO) term finder from the Saccharo-
myces Genome Database (SGD) [31]. Additional file
4[30] shows that the significant GO terms in 92 k-plex
cores are also significant in their 1-peripheries, but only
61 of them are significant in their 2-peripheries.  These
results suggest that 1-periphery proteins are more related
to core members' biological functions.

Based on the criteria for the star structure, we identified
109 star cores with at least five 1-periphery nodes from the
YPIN. Additional file 5[30] lists all star core proteins and
their 1-peripheries and 2-peripheries.

Biological properties are different among cores and 1-
peripheries
Comparing biological properties of k-plex core proteins and their 1-
peripheries
First, we examined the average Pearson correlation coeffi-
cients (PCCs) based on five microarray data sets [32-36]
using the same approach as Han et al. [22] (see Methods
for details). Paired two-tail Student's T test showed that
average PCC of k-plex core proteins are significant higher
(p-value < 1.00E-3) than average PCC of all four types of
1-periperal proteins as shown in Table 1. Second, we
tested the evolutionary rate [37] of the core proteins and
1-peripheral proteins. As shown in Table 1, the average
evolutionary rate of core proteins is also significantly
lower than the average evolutionary rate of complete-
open (p-value = 3.19E-2), limited-open (p-value = 2.19E-
4), closed (p-value = 1.63E-8) and multiple-core 1-periph-
eries (p-value = 1.97E-4). Third, we inspect the essentiality
[38] of core proteins and 1-peripheral proteins. The Table
1 showed that the core proteins are much more essential
than the open and closed 1-peripheiries. And paired two-
tail T test also demonstrated the significant difference (p-

value < 1.00E-5). Finally, we analyze the number of pfam
protein domains in each protein, which is downloaded
from SGD database [31]. The results (Table 1) showed
that the average number of domains of core proteins is
significantly greater than those of limited-open (p-value =
8.12E-6), closed 1-peripheries (p-value = 7.56E-7) and
multiple-core 1-peripheries (p-value = 2.23E-2). How-
ever, there is no significant difference between the average
number of domains of core proteins and those of com-
plete-open (p-value = 1.23E-1) and between the average
number of domains of core proteins.

Comparing biological properties of star core proteins and their 1-
peripheries
We compared 109 star cores (without 14 k-plex core
members) with their 1-peripheries in four types of biolog-
ical properties, including evolutionary rate, protein essen-
tiality, number of domain, and average PCC. As shown in
Table 2, except for the average PCC, there is no significant
difference between star proteins and their 1-peripheries in
the evolutionary rate, protein essentiality and number of
domains. This indicates that, as biological process connec-
tors, star core proteins are similar to proteins that they
connect together.

Comparing biological properties of star core proteins and k-plex core 
proteins
We compared the biological properties of star cores and
those of k-plex cores. As shown in Table 2, except for
number of domains, the average PCCs, evolutionary rate,
and essentiality of k-plex core proteins are significantly
different from those of star cores.

The k-plex cores can consist of party proteins, date 
proteins, or both
In order to examine the differences among k-plex core
proteins, we analyzed how the k-plex core members
related to the date/party concepts of Han et al. [22]. Five
microarray data sets [32-36] were used to determine the
date and party classification of core proteins (see Methods
for details). As a result (see Additional file 6), among the
706 proteins with PCCs in k-plex cores, 177 are party pro-
teins and 529 are date proteins. Meanwhile, all star cores
are date proteins except three. Moreover, lowering the
threshold with significance level to 75% will not affect the
conclusion that most k-plex core proteins are date pro-
teins. This is a surprise, as the date core proteins are inside
the functional modules (complex), rather than the exter-
nal connectors [22]. The party and date core proteins have
similar degree (average 13.435 vs. 13.762). The Student's
t-test has shown no significant difference on degree distri-
bution. However, the clustering coefficients [5] of party
core proteins (0.5824) are significantly higher than those
of date core proteins (0.4259). We then classified the k-
plex cores according to the party and date proteins inside
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them. A party core consists entirely of party proteins. A
date core, on the other hand, consists entirely ofdate pro-
teins. A mix core will include both party and date pro-
teins. There are only 7 party cores, 37 mix cores and 66

date cores (see Additional file 7). This classification
implied that the formation and evolution of protein com-
plexes may involve different mechanisms.

The peripheries of the largest k-plex core in YPINFigure 2
The peripheries of the largest k-plex core in YPIN. Among the 1-peripheries of largest k-plex core, CMD1, PSE1 and 
KAP123 are three core-member peripheries of this largest k-plex core. SXM1, DBP2, RPL43A are the multiple core peripher-
ies of the largest kplex core. Graph is produced using Biolayout [47].

Table 1: Comparison of properties of k-plex core members with those of different types of 1-peripheries.

Average PCC Evolutionary rate Protein essentiality Number of domains

k-plex core 0.2366 0.0770 0.4761 1.9968
Multiple-core peripheries 0.1293 0.0970 0.3082 1.7612
Complete open peripheries 0.1145 0.0885 0.3077 1.8018
Limited open peripheries 0.1646 0.1047 0.2377 1.5254
Closed peripheries 0.1222 0.1094 0.1930 1.4875
P value (core vs. complete open) 2.03E-14 0.0319 1.88E-6 1.26E-1
P value (core vs. limited open) 2.16E-5 2.19E-4 1.12E-11 8.12E-6
P value (core vs. closed) 3.52E-9 1.63E-8 3.62E-22 7.56E-7
P value (core vs. multiple) 1.09E-23 1.97E-4 3.79E-9 2.28E-2

Listed values are the average value of different properties of all members in each core and 1-periphery category. The p values are obtained by 
Student's T-test that is based on properties of all members of each core and 1-periphery category.
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The negative correlation between evolutionary rate and 
connectivity are much stronger among k-plex core 
members than among star core members
The relationship between evolutionary rate and connec-
tivity of proteins has been investigated recently
[24,39,40]. However, controversial results on the presence
or absence of correlation between evolutionary rate and
connectivity have been obtained. Here, we examined the
relationship between evolutionary rate and connectivity
in both the k-plex core and star core members. As the star
cores have at least five connections, we also only examine
the k-plex core proteins with at leas five connections. We
observed a negative correlation -0.1934 within k-plex core
members (Figure 3A).  However, very weak correlation
has been observed within star core members (correlation
is -0.0688, Figure 3B). The combination of k-plex core and
star core members also showed a negative correlation of -
0.1828. These results suggest that the negative correlation
between evolutionary rate and connectivity comes from
the k-plex core members only, but not from the star cores.
This detailed analysis showed that there are different
evolutionary rates patterns between k-plex cores and star
cores.

Expression dynamics are different among different kinds of 
links connecting core proteins and 1-periphery proteins
To get further insight to the expression difference between
k-plex core proteins and their 1-periphery proteins, we
compared the average PCCs of microarray expressions
between two core proteins and between one core protein
and one 1-periphery protein (see Methods for detailed
calculation). For each k-plex core, the Additional file
8[30] listed the average PCCs for links between k-plex
core members and for links between k-plex core members
and their 1-peripheries. The overall average PCC for links
between k-plex core members is 0.2532. And the overall
average PCC for links between k-plex core members and
their 1-peripheries is 0.1799. Two-tail T test on the aver-
age PCCs between two kinds of links shows significant
difference (p-value = 1.74E-3).

Table 2: Comparison of properties of star cores with those of their 1- peripheries and k-plex cores.

Average PCC Evolutionary rate Protein essentiality Number of domains

Star cores 0.0838 0.0772 0.3303 1.7188
1-peripheries 0.1217 0.0906 0.2908 1.9379
P value (star vs. 1-p.) 1.03E-3 0.08 0.41 0.13
P value (star vs. k-plex) 8.54E-28 2.03E-4 0.0034 0.061

Listed values are the average properties in all members in 1-periphery. The p values are obtained by Student's T-test that is based on properties of 
all members of each core and 1-periphery category.

The correlation between interactions and evolutionary rates of star core proteins and k-plex core proteinsFigure 3
The correlation between interactions and evolution-
ary rates of star core proteins and k-plex core pro-
teins. A) The correlation between interactions and 
evolutionary rates of k-plex core proteins. The correlation 
observed is -0.1934. B) The correlation between interactions 
and evolutionary rates of the star core proteins. The correla-
tion observed is -0.0688.
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Structural characteristics of 1-periphery proteins of k-plex 
cores imply two classes of 1-periphery proteins
The Additional file 9[30] lists values of three structural
measures: Cp, Pr and Pd, of 1-peripheral proteins of each
k-plex core. Table 3 compares the average values of these
three different measures among different types of 1-
periphery proteins. The average Cp over all five types of 1-
periphery proteins is less than 0.2. This indicates that the
1-peripheries of cohesively connected cores in the PIN are
far away from becoming members of cores, which implies
that peripheral members of protein complex are only con-
nected to a small part of the complex core.

Furthermore, the Pd of all types of 1-periphery proteins
are very small, 0.0724 for core-member 1-peripheries and
less than 0.022 for other types of 1- peripheries. The low
Pd of 1-peripheries indicates that 1-peripheries are gener-
ally not connected to each other. Thus, the peripheral
members of the protein complexes usually may be assem-
bled at different times and may involve distinct biological
functions.

The Pr measures how the 1-periphery proteins connect to
core members. All participation rates of closed single-core
1-periphery proteins are 1. The average participation rate
of limited-open-single-core 1-periphery proteins is
0.5458. The average participation rates of complete-open,
multiple-core, and core-member 1-periphery proteins are
small, which indicates that the level that these three types
of 1-peripheries associate with the cores is low. The high
participation rates of closed and limited-open 1-periphery
proteins indicate that they are more likely to join the pro-
tein complex (not the core). The low participation rates of
multiple and complete-open 1-periphery proteins indi-
cate that they are more likely to participate in different
functionality or processes as they are connected to differ-
ent complexes or individual proteins.

Therefore, we propose that closed and limited-open are
"party periphery" proteins and multiple and complete-
open are "connector periphery" proteins. As shown in
Figure 2, most closed and limited-open 1-periphery pro-
teins of the largest k-plex core are also part of the ribos-
ome complex. Furthermore, we compared four properties,
evolutionary rate, protein essentiality, number of domain,

and average PCC, between the party periphery proteins
and connector periphery proteins. The student's t-test
showed that the party periphery proteins are significantly
different from connector periphery proteins in all four
properties, number of domains (p-value = 3.59E-4),
essentiality (p-value = 6.40E-5), average PCCs (p-value =
1.74E-2) and evolutionary rate (p-value = 9.27E-3).

Both connectivity and topology are related to the property 
differences between k-plex core proteins and their 1-
peripheral proteins
As the average connection (13.64 of k-plex core proteins
are significantly greater than those of different types of 1-
periphery proteins: closed-single-core (1.43), limited-
open-single-core (3.13), complete-open-single-core
(4.81) and multiple-core (6.38), it is worth examining
whether the differences between the biological properties
of the core proteins and those of 1-periphery proteins are
associated with connectivity or topology differences. As
shown in Table 4, only the average PCC of "party periph-
ery" proteins are positively correlated with their connec-
tivity (correlation > 0.28); the evolutionary rates of k-plex
core proteins and "connector periphery" proteins are both
negatively correlated with their connectivity (correlation <
-0.15); only the essentiality of complete-open 1-periphery
proteins are positively correlated with connectivity (corre-
lation > 0.15). Thus, the connectivity difference of the
nodes may be related to the difference in their biological
properties.

On the other hand, as shown in Table 4, there is no statis-
tically significant correlation found in the following pair-
wise comparisons: (1) between average PCC and connec-
tivity for k-plex core proteins and "connector periphery"
proteins; (2) between evolutionary rates and connectivity
for "parity periphery" proteins; (3) between essentiality
and the connectivity for all kinds of proteins rather than
complete-open 1-periphery proteins; and (4) between
number of domains and the connectivity for all kinds of
proteins. Thus, in these cases, the topological types
instead of connectivity may contribute to the difference in
biological properties between nodes. In summary, both
connectivity and topology are shown to be associated to
the biological properties of proteins.

Table 4: Correlation between connectivity and biological properties for different types of proteins

Average PCC Evolutionary rate Protein essentiality Number of domains

k-plex core 0.02625 -0.2059 0.1175 0.1349
Multiple-core peripheries -0.05562 -0.1690 0.1155 0.0833
Complete open peripheries -0.03379 -0.1585 0.1616 0.0375
Limited open peripheries 0.2852 -0.0965 0.0617 0.0018
Closed peripheries 0.2841 -0.0455 -0.0175 -0.1235
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Discussion
In this paper, we systematically explored the core/periph-
ery structures in YPIN. We have identified 110 k-plex
cores. Gene ontology based analysis showed that the 1-
periphery proteins are closely related to the k-plex core
proteins. However, low average coreness values of 1-
periphery proteins indicated that peripheral proteins are
structurally different from the k-plex core proteins. Fur-
thermore, the properties of 1-peripheral proteins are sig-
nificantly different from those of k-plex core proteins.
Thus, it is meaningful to separate peripheral proteins from
k-plex core proteins.

Based on their structural relationship with core members,
we classified the non-core 1-periphery proteins into four
types: closed-, limited-open, complete-open and multi-
ple-core 1-periphery proteins. The closed and limited-
open 1-periphery proteins, which have high participation
rates, are structurally "party periphery" proteins. The com-
plete-open and multiple-core 1-periphery proteins, which
have low participation rates, are structurally "connector
periphery" proteins. This classification may help under-
stand different roles of 1-peripheiral proteins relate to the
complex core. The "party periphery" 1-peripheral proteins
are usually closely related to functionality of protein com-
plex. On the other hand, the "connector periphery" 1-
peripheral proteins are connectors that link the complex
to other complexes or individual proteins.

Our results showed that the topological structures charac-
teristics of proteins in PINs are reflected in their biological
properties. For example, the closed and limited-open 1-
periphery proteins have very similar topological structures
and also have very similar biological properties. Further-
more, our results showed that, besides the connectivity,
other structural characteristics are also related to biologi-
cal properties. Thus, it is not enough to differentiate pro-
teins based on connectivity only. Moreover, our studies
showed that structure-properties relationship may be
needed to take further analysis. For example, by further
examining the relationship between the evolutionary rate
and connectivity, we showed that there are differences
between k-plex core proteins and star proteins.

The studies on the core/periphery structures in protein
networks have also helped reveal expression dynamic dif-
ference in protein complexes [21,22,41]. The average PCC
values of k-plex core members are significantly higher
than those of their 1-peripheires. Furthermore, the aver-
age PCC values of links between k-plex core members are
significantly higher than those of links between k-plex
core members and their 1-periphery proteins. This
dynamic difference implies the temporal "plug-and-play"
components of protein complexes join the complexes
after their formation.

Methods
Datasets
We have compiled a yeast PIN (YPIN) by combining three
curated yeast PINs: "Filtered Yeast Interactome" (FYI)
[22], the Structure Interaction Network (SIN) [42], and
the yeast core PIN downloaded from the DIP database
(version ScereCR20070707) [43]. After removal of all self-
connecting links, the combined YPIN included 2,945
yeast proteins and 8,421 interactions. We applied our
analysis to the single large component with 2,664 inter-
connected proteins (8,161 links) of this YPIN.

Algorithm for identifying k-plex cores
Borgatti and Everett [20] developed a genetic algorithm to
separate small social networks into one core and its
periphery. However, Boyd et al. [44] found that the Bett
algorithm does not give the optimal results in most test
cases. Rather, Boyd et al. found that the Kernighan-Lin
(KL) [45] algorithm performs better in partitioning social
networks into a core set and a periphery set. Here, we
adapt the KL algorithm to identify all k-plex cores in the
PINs.

The KL algorithm takes a heuristic approach to find a
locally optimal partition of a graph both effectively and
efficiently. The essential idea behind the KL algorithm is
the designation of the gains associated with moving a
node between two different sets. Thus, the problem of
finding k-plex cores can be reduced to a local graph parti-
tioning problem. We define the gain of moving a node
into or out of a core set as following:

where

The rationale behind this is that we would like to favor
edges between core members and penalize disconnec-
tions between core members. This gain-based approach
will result in a k-plex (k ≤ <Fences>Qn/2<Fences>N) with
all core members having positive scores.

The choice of value of the k parameter in the k-plex defi-
nition will affect the cohesion of the sub-network. If k is
too small, the sub-network will be too cohesive and
exclude some loosely connected core members. On the
other hand, if k is too large, the sub-network will be too
loose and include some peripheral nodes into the core.
The choice of k ≤ <Fences>Qn/2<Fences>N in our k-plex
core definition was selected to balance these
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interrelationships such that each core member must con-
nect to at least half of the members in the core.

Our KL-like algorithm will start from each node triangle in
the PIN. Each cycle, the algorithm will move nodes from
periphery to core or from core to periphery to create a new
core. Then, the next moving cycle will continue with the
new core and its periphery. This procedure will continue
until no new cores can be generated. The KL-like algo-
rithm employs a greedy moving mechanism. Every time,
the algorithm will move one node with the maximal gain
among nodes in the core and its periphery. If a new core
with a higher gain is obtained after a move, it will be
recorded.

The obtained k-plex cores will be refined by merging the
cores sharing more than half of their members. It is noted
that the refinement will yield some of members in the
final cores that do not satisfied the k-plex requirement.
The extended KL algorithm for identifying k-plex cores is
summarized as follows:

1) For every triangle of nodes in the network

2) Set triangle as the current best core set

3) Do

4) Set the current best core as current core set

5) Set the current best core as previous best core

6) For every node in current core set and its 1-periph-
ery but not in initial triangle

7) For every node in current core set and its 1-periph-
ery but not in initial triangle

8) If it has not been moved

9) Calculate the gain of moving

10) End-if

11) End-for

12) Move the node with best gain

13) If the score of the current core is higher than the
current best core

14) Store current core as the current best core

15) End-if

16) End-for

17) While the current best core has a greater score than
the previous best core

18) End-for

19) Prune the results and remove the replicate cores.

Algorithm for identifying star structures
The procedure for locating star cores begins with finding
all nodes that are not members of any k-plex core and
have degree of at least five. Once these potential star
nodes have been found, the periphery degrees of their 1-
periphery nodes are examined. If the periphery degrees of
all 1-peripheral nodes are greater than 0.16, the star node
is kept. All star nodes that pass the examination are
accepted as valid star cores. The reason that we choose
0.16 as the threshold for periphery degree is because it is
possible to have stars with clustering coefficients greater
than 0.1 if the maximum periphery degree threshold is
beyond 0.16.

Determination of party and date proteins
Five microarray data sets [32-36] were downloaded from
the Yeast Functional Genomics Database (YFGdb). All five
data sets have at least 50 experiment data points, which
should ensure the accuracy of the calculation of PCC. For
each data set, the average PCC of each protein is obtained
by averaging the PCC between the proteins and their
neighbour proteins. Unfortunately, plotting the probabil-
ity distribution of average PCC showed no clear bimodal
distribution for all five data sets. Similar observations
have been obtained by Ekman et al. [46]. Instead of arbi-
trarily assigning a threshold, we modelled the distribution
of average PCC as a normal distribution and calculated
the mean and standard deviation of the distribution. We
determined the threshold that separate "party" and "date"
protein as the value that 90% of average PCC is below.
Namely, the threshold for each microarray data set is the
mean of average PCCs plus 1.282 times standard devia-
tion. Addition file 6 lists the thresholds for all five micro-
array data sets. "Party" proteins are defined as proteins
that have an average PCC from any of five microarray data
sets higher than the threshold of that microarray data set;
otherwise it is a "date" protein. Noted that we did not just
classify hubs (with more than 5 links), but all core
proteins.

Calculation of average PCCs of proteins
For each data set, the average PCC of each protein is
obtained by average the PCC between the proteins and its
neighbour proteins. Then, the average PCC of a protein is
calculated by averaging the five average values from the
five data sets.
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Calculation of average PCC of links
For each data set, the PCC between each pair of connected
proteins is calculated. The PCC of a link is the average
PCC from the five data sets.
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