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Ixodes ticks are the main vectors for a number of zoonotic diseases, including Lyme

disease. Ticks secrete saliva directly into a mammalian host while feeding on the host’s

blood. This action serves to modulate host immunity and coagulation, thus allowing ticks

to attach and feed upon their host. One of the most extensively studied components of

tick saliva is Salp15. Research has shown that this protein binds specifically to CD4

molecules on the surface of T lymphocytes, interferes with TCR-mediated signaling

transduction, inhibits CD4+ T cell activation and proliferation, and impedes the secretion

of interleukin 2 (IL-2). Salp15 also binds specifically to dendritic cell dendritic cell-specific

intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) to up-regulate the

expression of CD73 in regulatory T cells. Collectively, these findings render this salivary

protein a potential candidate for a range of therapeutic applications. Here, we discuss

our current understanding of Salp15 and the mechanisms that might be used to

treat disease.
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INTRODUCTION

Mosquitoes and ticks are considered the most predominant vectors for the transmission of various
pathogens to humans and animals (1, 2). Lyme disease is one of the most common tick-borne
diseases worldwide. It is caused by an infection with Borrelia burgdorferi sensu lato (B. burgdorferi
s.l.), and was first discovered in the United States in the mid-1970s. Burgdorfer et al. (1982) were
the first to characterize and isolate the causative agent of Lyme disease from Ixodes scapularis (I.
scapularis). Those authors demonstrated that B. burgdorferi, a bacterial species of the spirochete
class, was responsible for the majority of infections and was mostly detected in the midgut of
ticks (3).

In order to avoid host defenses during a blood meal, Ixodes ticks secrete a cocktail of bioactive
factors in their saliva, including immunomodulatory molecules, gasket and holdfast elements,
wound healing inhibitors, analgesic factors, vasoconstriction mediators, anti-hemostatic and
anti-inflammatory factors (4–17). These multi-function components have potential applications
in the treatment of disease. Das et al. (18) previously reported interesting findings relating to
antigens in the tick salivary gland. That research led to the first identification of a 15-kDa
salivary protein in I. scapularis, which was named Salp15 after its calculated molecular mass.
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Subsequent studies showed that Salp15 inhibits the proliferation
of CD4+ T cells and reduces the production of cytokines such
as IL-2, in a dose-dependent manner. These data indicate that
Salp15 exhibits properties that suppress the immune system of
hosts (4). In addition, Salp15 has been shown to interact with the
C-type lectin receptor, DC-SIGN, resulting in activation of the
RAF-1/MEK-dependent signaling pathway; this impairs cytokine
production and T cell proliferation (19, 20).

Collectively these earlier findings indicated that Salp15 has
potential as a promising therapeutic candidate for a variety
of clinical applications. Indeed, Paveglio et al. (21) reported
that Salp15 effectively suppresses the immune response in a
mouse model of allergic asthma by binding and inhibiting
CD4+ T cells. More recent research has also revealed the
role of Salp15 in the pathogenesis of a range of diseases;
these important findings are discussed below. Over the past
two decades, an increasing number of research studies have
attempted to identify and characterize Salp15 homologs in
various Ixodes species (22–25). The immunomodulatory effects
of Salp15 present important opportunities for the development
of novel and sophisticated therapies for human disease. However,
little is known about the specific role of Salp15 in autoimmune
diseases. This is probably because of a general lack of recognition
of the potential importance of this particular protein, which
the present review aims to address. In this review, we describe
our current understanding of Salp15 and discuss its role in
pathogen-vector-host interactions. In particular, we discuss the
mechanisms underlying the immunosuppressive effect induced
by the interaction of Salp15 with the host and the capacity of this
protein to regulate the immune system in a range of diseases,
including asthma and hematopoietic transplantation. We also
discuss the potential applications of Salp15 as an attractive
candidate for immunotherapy.

IDENTIFICATION OF Salp15 AND ITS
HOMOLOGS

In order to confirm the identity of the specific antigen from
the tick salivary gland that can initiate an antibody-mediated
immune response in a host, Das et al. (18) acquired serum from
I. scapularis-immune rabbits and carried out an immunoscreen
with 100,000 clones of a tick salivary gland expression cDNA
library. These authors successfully identified 47 clones, which
exhibited specific reactions; these clones encoded 14 genes. One
of the products of these 14 genes, a 14.7 kDa basic protein, is
expressed when ticks feed on the blood of a host. This salivary
protein is encoded by a 408-base pair gene with a 20-amino acid
signal peptide, has an isoelectric point of 9.7, and was named
Salp15 (18). Salp15 has become one of the most widely studied
salivary proteins from ticks and is a cysteine-rich glycosylation
protein (26). Previous studies synthesized a recombinant version
of Salp15 from transfected Drosophila melanogaster S2 cells to
facilitate further research (26). More recently, however, studies
have more commonly utilized Escherichia coli as an expression
system for Salp15, as this system is not only easy to handle,
but also achieves considerable yields and good solubility; these

attributes are of significance in the practical application of Salp15
in anti-tick vaccines (26, 27).

Homologs of Salp15 have been identified in other Ixodes
species (22–25, 28–32). We searched a protein database using
online software (National Center for Biotechnology Information,
NCBI) for proteins from I. scapularis that are similar to
Salp15. We successfully downloaded amino acid sequences of
homologs to Salp15 from I. sinensis (five sequences), I. scapularis
(17 sequences), I. ricinus (18 sequences), I. persulcatus (12
sequences), I. pacificus (two sequences), I. holocyclus (seven
sequences) and I. affinis (one sequence).

In order to create a stable phylogenetic tree, we then
selected metalloprotease 2, a salivary protein from Rhipicephalus
sanguineus, as an outgroup. GenBank accession numbers for
these sequences are shown in Figure 1. Sequences were aligned
using ClustalW (33). A rooted neighbor-joining tree was then
constructed with the Mega 5.0 software (34). Bootstrap sampling
was reiterated 1,000 times (22, 32). The phylogenetic tree
clearly showed that the Salp15 family is conserved across a
range of Ixodes species (Figure 1). Furthermore, the amino
acid sequence of Salp15 remained homogeneous among various
species during evolution (Figure 1). The Salp15 family also
showed conservation across different protein families (Figure 1).
Other studies have shown that the Salp15 protein family has
undergone a phase of adaptive evolution (35). Indeed, the inter-
species and intra-species similarities of Salp15 are quite close
(32). A recent study used bioinformatics analysis to predict
post-translational modifications of Salp15 and its homologs;
the results suggested that all Salp15 family members contain
at least two N-linked glycosylation sites (25). Analysis of our
phylogenetic tree provided further support for these earlier
findings. Thus far, studies investigating the conservation of
Salp15 homologs in I. persulcatus, I. ricinus, and I. pacificus have
been mainly confined to the C-terminus; this is because this
site specifically interacts with CD4 molecules on T cells (22,
30, 31). Studies have confirmed that Salp15 from I. persulcatus
can bind with Borrelia outer surface proteins C (OspCs) to
protect the spirochetes from antibody-mediated killing, as well
as phagocytosis, and its homolog derived from I. ricinus exhibits
immunomodulatory effects on the host (23, 24, 29).

Salp15 MEDIATES RELATIONSHIPS IN THE
PATHOGEN-TICK-HOST TRIANGLE

Ixodes ticks belong to the Ixodidae family, which are obligate
ectoparasites and can transmit a variety of pathogens to a host
while feeding on mammalian blood. The developmental life
cycle of Ixodes consists of four stages: eggs, larvae, nymphs,
and adults (36). Ixodes eggs hatch into larvae under suitable
conditions; ticks must feed on blood to enable the larvae to
enter the next developmental phase. There may be one, two, or
three hosts throughout the life cycle; the precise number depends
on the species of tick (37, 38). Ticks become infected with
tick-borne pathogens while feeding on a competent reservoir,
and transmit these pathogens to new vertebrate hosts during
subsequent blood feeding (39). Among several zoonotic diseases,
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FIGURE 1 | Phylogenetic analysis of Salp15 protein family. A phylogenetic tree of Salp15 homologs was generated using amino acid sequences from I. scapularis, I.

pacificus, I. ricinus, I. persulcatus, I. holocyclus, and I. sinensis. Accession numbers for the sequences are shown. Sequences were aligned using ClustalW software

online, and the phylogenetic tree was constructed using MEGA 5 software.
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Lyme disease is a major issue in North America and parts of
Europe and Asia, as it poses significant threats to public health
and the economy (40–42). However, the vectors responsible for
Lyme disease vary widely according to the geographic location.
For example, in the eastern and upper midwestern regions
of the United States, I. scapularis is known to be the main
vector responsible for Lyme disease; while, the predominant
vectors in the western/northern and northwestern regions are
I. pacificus and I. affinis, respectively (43, 44). In contrast, in
Europe and Eurasia, B. burgdorferi s.l. is transmitted by I. ricinus
and I. persulcatus (45, 46). According to recent reports, the
B. burgdorferi s.l. complex consists of more than 20 members,
including B. burgdorferi sensu stricto, B. garinii, and B. afzelii;
collectively, these represent the main causative agents of human
Lyme disease (47–49). B. burgdorferi s.l. could survive in the
human body for a long period time, causing extensive damage
to several organs and systems, including the skin, joints, heart,
and nervous system. The clinical manifestations of Lyme disease
are diverse and non-specific, but are generally divided into the
early, middle, and late stages. The early stage is characterized by
erythema migrans (50). Approximately 5% of untreated patients
will develop neuroborreliosis and cardiac dysfunction. The late
stage is characterized by arthritis, which can lead to disability or
even death (50).

B. burgdorferi s.l. has developed the ability to utilize secreted
tick saliva to facilitate its colonization of a mammalian host
(20, 51). The genome of B. burgdorferi s.l. contains at least 1.4 ×
106 base pairs. The majority of these genes encode lipoproteins;
almost all of the Osps of B. burgdorferi s.l. are typical bacterial
lipoproteins (52). In a previous study, Pal et al. (53) identified
the tick receptor for OspA (TROSPA) in the gut of I. scapularis,
which binds specifically to OspA in B. burgdorferi; this binding
reaction is essential for the colonization of pathogens with
ticks. Those authors also reported a significant increase in the
expression of TROSPA when B. burgdorferi infects ticks. Once
a tick is engorged after feeding, the expression level of TROSPA
decreases and OspA is downregulated (53, 54). During the life
cycle of the tick-host interaction, the spirochetes living within the
ticks can alter the structure of their outer surface to successfully
propagate and transmit the pathogen to another host. When
B. burgdorferi infects ticks, the expression OspA is upregulated;
this facilitates spirochete replication within the tick gut (53).
However, while feeding, B. burgdorferi causes a downregulation
of OspA and an upregulation of OspC in the gut; during this
period, B. burgdorferi can be transferred from the gut to the tick
salivary glands, and then be transmitted to the host via the tick
saliva (55). In addition, Pal et al. (56) revealed that OspC can
bind with the I. scapularis salivary gland in a strong and specific
manner, and that OspC is critical for invasion of the salivary
glands during transmission. The capacity of OspC-deficient B.
burgdorferi to be transmitted into mice was∼800-fold lower than
that of normal spirochetes. The composition of tick salivary is
complex and changes during the blood meal (16, 57). Research
has revealed that Salp15, a salivary gland protein, could bind
specifically with OspC in B. burgdorferi, both in vitro and in
vivo. Moreover, the expression of Salp15 was selectively enhanced
in the salivary glands of B. burgdorferi-infected I. scapularis
during blood feeding (56). In another study (51), the inhibition

of Salp15 expression by RNA interference significantly reduced
the capacity for B. burgdorferi transmission to mice. The binding
of Salp15 with B. burgdorferi, and the increased expression of
Salp15 induced by B. burgdorferi in engorged ticks are specific;
consequently, Salp15 is not enhanced in the tick salivary gland
in response to other tick-borne pathogens, such as Anaplasma
phagocytophilum (51, 58).

B. burgdorferi can stimulate specific and non-specific immune
responses in the host, particularly humoral immunity against
spirochetes. Furthermore, OspC plays a vital role in establishing
initial infection in the host by the invasion of pathogens (56, 59).
Ramamoorthi et al. (51) reported that Salp15 can bind to OspC
on the surface of B. burgdorferi and protect spirochetes from
antibody-mediated killing. Interestingly, the protective effect of
Salp15 on spirochetes begins to weaken after the first 24 h. During
this time, Salp15 could facilitate spirochete to reproduction
within the host. Further research has shown that Salp15 also
helps spirochetes colonization in mice that had been previously
exposed to B. burgdorferi. The complement system is not only
an important component of the innate immune defense system
but is also involved in adaptive immunity. B. burgdorferi sensu
stricto, B. garinii, and B. afzelii can activate complement in
normal human plasma (NHS) by the alternative pathway or
classical pathway, and spirochetes can be killed by the membrane
attack complex (MAC) formed by the activated complement
(60). One study demonstrated that B. burgdorferi sensu stricto,
B. garinii, and B. afzelii, with specific adherence of Salp15
to OspC on their surfaces, are protected from complement-
mediated killing. Salp15 also hampers the deposition of the C5b-
9 complement complex on the spirochete membrane, thereby
preventing the formation of the MAC and suspending the
terminal effect of complement activation (29).

The interaction between Salp15, which is one of the potent
immunosuppressive agents, and other bioactive tick saliva
components could facilitate the prolonged feeding of ticks on
the vertebrate host. Owing to the consequent increase in the
length of attachment, the host initiates an immune response
against the vector. However, ticks also secrete saliva to regulate
host immunity and ensure that they can feed successfully. The
longer the attachment time, the better the transmission of
pathogens. Salp15 can be readily detected at the site of natural
inoculation in tick-infested mice (4). The precise impact of
Salp15 on the host will be described later in this review. The
triangulated form of interaction between the pathogen-vector,
vector-host, and pathogen-host, provides favorable conditions
for Borrelia survival and transmission. When considering the
interactions between OspC and spirochetes, the already complex
web of interactions has evidently undergone a period of adaptive
evolution (35).

Salp15 INHIBITS IMMUNE FUNCTION IN
MAMMALIAN HOSTS

Salp15 Inhibits the Activation of CD4+ T
Cells
In humans and animals, stimulation by antigens results in the
transformation of T lymphocytes into effector T cells. This causes

Frontiers in Immunology | www.frontiersin.org 4 January 2020 | Volume 10 | Article 3067

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wen et al. Functional and Therapeutic Effects of Salp15

the release of a variety of cytokines which induce specific immune
responses. The effect of inflammatory responses mediated by
CD4+ T cells plays an important role in anti-intracellular
parasitic pathogen infection. Das et al. (4, 18) were the first
to identify Salp15 in tick saliva, and showed that this protein
exhibits partial homology with the two active motif regions
of inhibin A, a member of the transforming growth factor
beta (TGF-β) superfamily. The TGF-β impedes the proliferation
of T cells and the production of cytokines, suggesting that
Salp15 may also exhibit immunomodulatory properties. In 2002,
Anguita et al. (4) reported that Salp15 inhibited the activation
of CD4+ T cells and the production of IL-2. Normally, the
T cell receptor (TCR) and CD3 form a complex by forming
non-covalent bonds on the surface of T cells; in this reaction,
TCR is responsible for recognizing the antigen peptide, while
CD3 is responsible for transmitting TCR-mediated extracellular
signals to the interior of the cell (Figure 2). The cell membrane
stimulation signal is converted into a state of cell activation
via a signal transduction pathway. The specific interaction and
binding of peptide-MHC complexes on the surface of the
antigen-presenting cell (APC) to CD4 and TCR on the surface
of T cells are essential for the activation of naive T cells
(Figure 2). Data from several studies suggest that Salp15 binds
to CD4 molecules on the surface of CD4+ T cells, and Salp15
exerts an inhibitory effect on the activation of CD4+ T cells
by interfering with TCR-mediated signaling (4, 61). In vitro
experiments further reveal that Salp15 only inhibits the activation
of naive CD4+ T cells and have no effect on the activation of
effector CD4+ T cells (4). These results led to the hypothesis that
drugs targeting CD4+ T cells might be safer than non-specific
immunosuppressive agents.

Salp15 Exhibits Specific Interaction With CD4
Further study revealed that Salp15 can specifically bind to CD4
molecules on the surfaces of T cells (Figure 2). Garg et al. (62)
reported the specific immunoprecipitation of His-tagged Salp15
with CD4 and showed that Salp15 also binds to non-lymphocytes
expressing CD4 molecules. This indicates that CD4 and Salp15
can interact in both a direct and specific manner. Monomeric
Salp15 can interact with the soluble ectodomains (D1-2 and D1-
4) of the CD4 receptor, forming 1:1 Salp15·soluble CD4 (sCD4)
D1–D2 and Salp15·sCD4D1–D4 complexes (63). The 20-amino
acid C-terminal residues of Salp15 (P11) interact specifically
with the most extracellular domain (D1) of CD4 (Figure 2).
Salp15 is also a specific ligand for the CD4 co-receptor; this
binding induces structural rearrangement of the CD4 receptor
on the long axis. As a result of the interaction with Salp15,
sCD4D1–D2 and sCD4D1–D4 alter the structure of the initial
bilobal and tetralobal structures, respectively (63). Architectural
changes in the four extracellular domains of the CD4 molecule
result in a myriad of signaling changes within T cells (62, 63).
Furthermore, the specific interaction of Salp15 with CD4 causes
defects in actin polymerization and a reduction in lipid raft
clustering; this has significant consequences for the amplification
and transduction of TCR-mediated signals during the activation
of T cells (4, 64).

Other research has shown that Salp15 can bind to CD4 for
extended periods of time and exert immunosuppressive effects.
Purified splenic CD4+T cells, after being stimulated in the
presence of Salp15 for 2 days, were then extensively washed and
re-stimulated for another 2 days; the inhibitory effects of Salp15
on T cells were still observed, even after removing contact with
salivary proteins after 4 days of activation (65). Furthermore, flow
cytometry was used to detect the binding of Salp15 to CD4 for up
to 72 h; the results suggested that the binding reaction between
CD4 and salivary protein is persistent (65). However, deletion
of the salivary protein C-terminal peptide P11 (Salp151P11)
results in a significant reduction in the capacity of Salp15 to bind
to CD4+ T cells and a consequential lack of biological activity
(65, 66). Understanding the function and conformation of Salp15
can facilitate the development of highly specific pharmacological
agents, such as monoclonal antibodies (mAbs) or Salp 15-like
peptides, for special uses.

Salp15 Inhibits the TCR-Mediated Signaling Pathway
The CD4 molecule is a glycoprotein expressed on the surfaces
of mature T cells that recognizes MHC class II molecules, plays
a role in enhancing the interaction between T cells and APC,
assists TCR in recognizing the antigen, and is considered a co-
receptor of TCR. The CD4 molecule possesses a cytoplasmic tail
that can be associated with tyrosine kinase p56lck; activation
of p56lck can phosphorylate immunoreceptor tyrosine-based
activation motifs in the intracellular region of CD3 and facilitate
the activation of T cells (67) (Figure 2). Usually, recognition and
binding of the peptide-MHC complex to TCR and CD4 occurs
on the surfaces of the APCs and CD4+ T cells, and represents
one of the essential signals for the activation of naive T cells.
This signal is delivered to the cell by CD3 and results in a
biochemical cascade reaction (Figure 2). The specific binding of
Salp15 to CD4 impairs the capacity for CD4- p56lck interactions;
however, this effect only occurs in stimulated CD4+ T cells
and is abrogated in unstimulated cells (4, 63). Under normal
circumstances, activated zeta-chain-associated protein kinase 70
(ZAP 70) synergizes withmultiple kinases to cause enzyme-active
phospholipase C-γ1 (PLC-γ1) to cleave phosphatidylinositol
4,5-bisphosphate (PIP2) into two vital signaling molecules,
inositol 1,4,5 phosphate (IP3) and diacylglycerol (DAG), both
of which activate different downstream signaling pathways
(68–70) (Figure 2).

Garg et al. (62) were the first to report the interaction between
Salp15 and T cell co-receptors, revealing that Salp15 suppresses
the activation of LCK by preventing the dephosphorylation of
tyrosine and reducing the levels of tyrosine phosphorylation at
different positions on LCK. The incubation of CD4+ T cells
with Salp15 also impairs the phosphorylation of ZAP-70. This
indicates that the inhibitory effect of Salp15 on the activation of
CD4+ T cells does not occur by interference in the interaction
between MHC II and CD4, but by inhibition of TCR-mediated
signaling, which is essential for T cell activation (62) (Figure 2).
Furthermore, the effect of Salp15 on TCR signaling impedes the
phosphorylation of PLC-γ1 downstream and ultimately leads
to a significant reduction in calcium flux during the activation
of CD4+ T cells (62). These results are also supported by
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FIGURE 2 | Salp15 specifically binds to CD4 molecules on the surface of T lymphocytes, thus inhibiting TCR-mediated signal transduction. Under normal

circumstances, CD4 binds to the MHC-II molecule and TCR binds to the peptide created when the TCR complex interacts with the peptide-MHC complex; this

activates LCK and initiates a biochemical cascade reaction. Binding between Salp15 and CD4 can impede the activation of LCK during the activation of CD4+ T cells.

During the activation of CD4+ T cells, Salp15, and CD4 binding inhibits LCK activation and prevents the activation of a series of downstream substrates, including

ZAP70, LAT, and PLC-γ1. Eventually, there is a significant reduction in the intracellular calcium flux when CD4+ T cells are activated, which reduces the binding ability

of NF-AT and NF-κB to DNA and impairs the production of IL-2. However, AP-1 transcriptional activity and other non-TCR-mediated signaling events are not affected

by Salp15. ER, endoplasmic reticulum; LAT, linker of activation in T cells.

another investigation, which demonstrated that Salp15 reduces
the tyrosine phosphorylation of several proteins in the upstream
signaling pathway during PLC-γ1 activation (64). In addition
to LCK and ZAP-70, Vav1, Lat, and CD3ξ are all known to
be affected by Salp15, which can cause a specific reduction in

the levels of tyrosine phosphorylation among these signaling
proteins. Moreover, Salp15 is not species-specific with regards to
its interference with TCR signaling (64).

Salp 15 is a promising candidate with potential applications
as a pharmaceutical agent for pathologies mediated by CD4+
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T cells. Rheumatoid arthritis (RA) is a chronic autoimmune
disease characterized by synovial joint inflammation and
progressive destruction of cartilage and bone (71). The
cytokine signaling system is closely related to the pathogenesis
of rheumatoid arthritis, when T cells are activated and
CD4+ T cells infiltrate the synovium of patients with RA
(72, 73). This means that targeted regulation of CD4+ T
cells may play an important role in the treatment of RA
(74, 75). Although no experimental evidence currently
exists, the interference of Salp15 in CD4+T cell signaling
may facilitate the discovery of a new generation of RA
treatments. Furthermore, Salp15 modulates host immune
cells by interacting with CD4 molecules and could
potentially have therapeutic applications in T cell-mediated
autoimmune diseases.

Salp 15 Inhibits the Production of IL-2
As one of the first cytokines to be discovered, IL-2 is mainly
produced by activated CD4+ T cells. It plays a key role
in the growth and differentiation of T cells (74). Regulatory
elements are known to exist within the proximal IL-2 promoter,
including nuclear factor (NF)-κB, NF-AT, and activator protein
(AP)-1. We previously mentioned that Salp15 inhibits T
cell signaling pathways, thus affecting Ca2+ mobilization
and TCR-mediated transcriptional activation (4, 64). Salp15
also significantly reduces NF-AT and NF-κB DNA binding
capacity in CD4+ T cells, resulting in the inhibition of IL-2
production (Figure 2). However, AP-1 transcriptional activity
and other non-TCR-mediated signaling events are not affected
by Salp15 (62, 64).

The levels of IL-2 produced by stimulated CD4+ T cells are
markedly reduced in the presence of Salp15; furthermore, IL-2
production can be inhibited at both the cytokine and gene levels
(4, 65). In the presence of Salp15, a significant reduction in IL-
2 mRNA levels can be detected in activated CD4+ T cells (4).
Transcriptomic analysis reveals that in the early stages of CD4+
T cell activation, Salp15 reduces the expression of certain genes,
including Il2 and cd44 (65). The inhibition of IL-2 production by
tick saliva completely disappears following the addition of Salp15
antisera; furthermore, Salp15 inhibits the production of IL-2 by
CD4+ T cells in a dose-dependent manner (4). When activated,
CD4+T cells express the alpha chain of the IL-2 receptor
(CD25), which is pivotal for CD4+T cell activation. Although the
inhibition of Il2ra expression by Salp15 is not significant at the
gene level, further analysis shows a marked reduction in CD25
expression on the surfaces of CD4+T cells, and this inhibitory
effect persists throughout the activation phase of CD4+ T cells
(4, 65). It is interesting to note that this suppressive effect of
Salp15 is more pronounced when lower concentrations of anti-
CD3 are used for stimulation or when costimulatory molecules
are lacking. These data imply that Salp15 interferes with early
TCR-mediated CD4+T cell activation (4). The inhibitory effect
of Salp15 on CD4+ T cells is long-lasting, as noted earlier in
this review. In previous research, after purified splenic CD4+T
cells were stimulated in the presence of Salp15 for 2 days and
then extensively washed and re-stimulated for another 2 days,
IL-2 levels were significantly reduced at both time points (65).

Consequently, the evidence seems to indicate that Salp15 inhibits
the activation of CD4+ T cells by impairing the production of
IL-2. These findings show that Salp15 inhibits the production of
IL-2. Thus, Salp15 may be a therapeutic candidate to suppress
pathologies induced by IL-2 overexpression. For example, in
psoriasis, a long-lasting autoimmune disease characterized by
patches of abnormal skin, increased IL-2 levels may mediate
pruritus; furthermore, serum IL-2 levels are significantly higher
in patients with psoriasis than in healthy subjects (76, 77).
These findings also shed light on the need to consider IL-2
inhibitors in the design of therapeutic agent for psoriasis, even
if abating IL-2 production is not necessarily the primary goal of
the psoriasis treatment.

Salp15 Inhibits the Expression of Cytokines
by Dendritic Cells by Interacting With
DC-Sign
Dendritic cells (DCs) are known to be the most potent of the
antigen-presenting cells. The DCs can activate the initial immune
response and have immunomodulatory effects that are related to
the multiple pattern recognition receptors (PRRs) they express.
The PRRs are composed of five families, including the C-type
lectin receptors (CLRs), toll-like receptors (TLRs), RIG-I-like
receptors (RLRs), nucleotide-binding oligomerization domain
(NOD)-like receptors (NLRs) and DNA sensors (78). Among
these receptors, DC-SIGN is a major member of the CLRs that
can interact with various pathogens. The activation of DC-SIGN
prompts receptor-specific intracellular signals that modulate
gene expression of cytokines, chemokines, and costimulatory
molecules (79). Usually, DC-SIGN does not modulate the
activity of transcription factors alone; rather, it can only activate
transcription factors when those factors have already been
induced by another receptor, such as TLR (80). The ligands that
bind to DC-SIGN are mostly carbohydrate structures (79, 80). A
recent study confirmed that Salp15 can specifically bind to DC-
SIGN as a direct result of structures created by mannose and
galactose. This interaction inhibits the TLR-induced production
of the pro-inflammatory cytokines IL-12, IL-6, and TNF-α by
DCs and reduces the ability of DCs to activate T lymphocytes
(19). Salp15 does not prevent the maturation of DCs, but
inhibits the production of IL-12p70, IL-6, and TNF-α in a dose-
dependent manner (19).

Cytoplasmic DC-SIGN motifs are known to induce
intracellular signaling pathways, although the mechanism
underlying these effects have not yet been elucidated. It is
currently recognized that activation of the serine/threonine
kinase Raf-1 is crucial to intracellular signaling transduction
induced by the ligand-binding DC-SIGN (81). Hovius et al.
(19) found that silencing Raf-1 in DCs by RNA-interference
completely abolishes, Salp15-induced cytokine inhibition. In
terms of DC-SIGN signaling upstream of Raf-1, interactions
with the active form of Ras can change the conformation of
Raf-1, which is a prerequisite for its activation (80). However,
the conformational change of Raf-1 is not sufficient for full
activation; the phosphorylation of serine 338 (Ser 338) and
tyrosine 340/341 (Tyr 340/341) are also required (80, 81).

Frontiers in Immunology | www.frontiersin.org 7 January 2020 | Volume 10 | Article 3067

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wen et al. Functional and Therapeutic Effects of Salp15

Binding of Salp15 to DC-SIGN induces the activation of Raf-1,
which is similar to the signaling transduction effects caused by
the binding of mycobacterial ManLAM (19). Nevertheless, the
signaling system downstream of Raf-1 can differ and depends
on the DC-SIGN-ligand (81). Unlike the signaling observed
with other pathogens such as ManLAM, Salp15/DC-SIGN-
induced signaling leads to the activation of MEK (MAPKK)
after the phosphorylation of Raf-1. The phosphorylation of
MEK ultimately activates ERK, and phosphorylated ERK
(MAPK) enters the nucleus to initiate the transcription of
multiple transcription factors. Interestingly, the signal induced
by Salp15/DC-SIGN does not act through ERK, but directly
participates in the decay of IL-6 and TNF-α mRNAs, thus
impairing nucleosome remodeling in the IL-12p35 promoter
after the activation of MEK (19). In the previous section,
we mentioned that Salp15 specifically binds to CD4, directly
inhibits TCR-mediated signaling transduction, and regulates the
polymerization of cytoskeletal actin to reduce the redistribution
of lipid rafts (62, 64). Salp15 binds to DC-SIGN on DCs and may
also interact with the CD4 receptor. This is possibly the reason
why Salp15/DC-SIGN induces Raf-1 downstream signaling in
a manner that differs from that of other pathogens. However,
further research is required to test this hypothesis.

Salp15 regulates the production of cytokines by DCs via
the Raf-1/MEK signaling pathway at both transcriptional and
post-transcriptional levels. The half-life of IL-6 and TNF-α
mRNAs are significantly reduced in the presence of Salp15,
thus inhibiting production of the pro-inflammatory factors IL-
6 and TNF-α by stimulated DCs (19). Further investigations
showed that the levels of IL-12p70 are decreased in LPS-activated
DCs in the presence of Salp15, although the stability of IL-
12p35 mRNA remains unchanged. The rapid remodeling of the
nucleosome of the IL-12p35 promoter in DCs is significantly
impaired by Salp15, which is critical for the efficient initiation
of transcription (19). Moreover, Hovius et al. (19) observed that
LPS-matured DCs, pretreated with Salp15, block the activation
and proliferation of T lymphocytes. Collectively, the interaction
of Salp15 with DC-SIGN directly modulates the production of
cytokines and T cell activation, which is induced by DCs. The
properties of Salp15 in modulating human immune responses,
especially those of DCs, may provide novel treatment possibilities
(82). The DCs are usually present in tissues that make contact
with the external environment, such as the skin, nasal mucosa,
and intestines. Thus, Salp15 could be a potential drug for
topical agents with therapeutic effects on tissues where DCs
are concentrated. For instance, blastic plasmacytoid dendritic
cell neoplasm (BPDCN) is an extremely rare tumor that has a
predilection for the skin. Furthermore, BPDCN is resistant to
standard chemotherapies, shows a very poor response to therapy,
and has a poor prognosis (83). The regulatory function of Salp15
on DCs and its specific interaction with CD4 molecules make it
a potential candidate for the treatment of such rare diseases. In
addition, the inhibitory effects of Salp15 on the cytokines, IL-
6 and TNF-α, secreted by DCs may have potential applications
in RA therapy (84). Salp15 could also be a therapeutic tool
against other autoimmune diseases, such as inflammatory bowel
disease (85, 86).

Salp15 Up-regulates the Expression of
CD73 in Regulatory T cells
The CD4+ regulatory T cells (Tregs) are a subpopulation
of T cells that play an immunosuppressive role. The Tregs
play an important role in maintaining autoimmune tolerance
and controlling adaptive immune responses. These cells
express CD4, CD25, and Foxp3 on their cell surfaces (87).
The immunosuppressive effects of Tregs involve various
mechanisms that are still not fully understood. Recent studies
have revealed that Tregs express two unique ectoenzymes,
ectonucleoside triphosphate diphosphohydrolase (CD39), and

5
′

-ectonucleotidase (CD73), which synergistically generate
pericellular adenosine (88, 89). Furthermore, CD39 can catalyze
extracellular adenosine triphosphate (ATP) to produce adenosine
monophosphate (AMP), while CD73 can hydrolyze 5’-AMP to
adenosine (89). Adenosine is known to enhance the levels of
cyclic adenosine monophosphate (cAMP) in target cells that
express adenosine receptors; this action interferes with the
immune response of target cells.

A recent study found that the presence of Salp15 has long-
term effects on activated CD4+ T cells in vivo, and that
Salp15 does not affect the differentiation of CD4+T cells in
the absence of polarized cytokines (65). Those authors further
observed that the expression levels of Nt5e, which encodes
CD73, were significantly increased in activated CD4+ T cells
treated with Salp15 (65). Subsequently, the expression of CD73
on the surface of activated CD4+ T cells treated with Salp15
were significantly elevated and the levels of adenosine were
also increased in those cells (65). Furthermore, the increased
expression of CD73 on CD4+ T cells was still detected in
the blood of mice 50 days after the induction of graft-versus-
host disease (GvHD) (65). Interactions between adenosine
and the adenosine receptor lead to the inhibition of effector
CD4+ T cell proliferation and reduced cytokine production,
thereby exerting anti-inflammatory effects (89, 90). The increase
in CD73 expression is responsible, at least in part, for the
persistence of Salp15 on CD4+ T cells (65). Therefore, the role
of the exonucleolytic peptides CD39 and CD73, and adenosine
signaling in pathogenic mechanisms is emerging, and indicates
that these peptides represent potential therapeutic targets for
a number of clinical situations, including tumors, solid organ
transplantation and psoriasis (91–94).

Salp15 IS A POTENTIAL CANDIDATE FOR
VARIOUS THERAPIES

Thus far, we have shown that Salp15 can specifically bind to CD4
molecules on the surfaces of T lymphocytes, ultimately affecting
TCR-mediated signaling transduction and leading to reduced
levels of LCK and ZAP70 phosphorylation. Furthermore, Salp15
can reduce intracellular calcium levels, and therefore prevent
the activation and proliferation of CD4 +T cells and impede
the production of IL-2. Salp15 also inhibits the expression of
CD25 by CD4+T cells and blocks the secretion of various
inflammatory cytokines. Other data show that Salp15 can inhibit
the activation of CD4+ T cells, both in vivo and in vitro (4).
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The inhibitory effects of Salp15 on CD4+ T cells occur in
the early stages of activation. In vivo, Salp15 has no effect on
the responses of T-independent B lymphocytes, such as IgM
antibodies. The IgG antibodies produced by B lymphocytes
rely on the cooperation of CD4+ T cells; thus, Salp15 can
reduce the production of IgG antibodies (4). Owing to these
immunomodulatory properties, Salp15 represents a potential
candidate for a variety of autoimmune disease treatments.

Salp15 as a Potential Therapeutic
Candidate for Allergic Asthma
Bronchial asthma is a respiratory disease characterized by
chronic airway inflammation, airway hyperresponsiveness
(AHR), and variable airflow obstruction, which results in
persistent eosinophil infiltration, excessive mucus secretion, and
subepithelial fibrosis (95, 96). The annual prevalence of asthma
is increasing. The World Health Organization data estimate
that the number of patients with asthma will increase by 100
million by 2025 (97). Asthma negatively affects the quality
of life and creates a significant global economic burden (97).
Therefore, research into the treatment of asthma has far-reaching
significance. It is now well-established from various studies, that
a Th1/Th2 imbalance is the basic pathological feature of asthma,
and Th2 cells and the Th1/Th2 imbalance comprise the basic
pathophysiological manifestation of asthma (98, 99). The Th2
cells produce a range of pro-inflammatory factors, including IL-
4, IL-5, IL-9, and IL-13. These cytokines play an important role
in the pathogenesis of asthma, as they can help IgE-producing B
cells, eosinophils, mast cells, and basophils to undergo growth,
differentiation, and recruitment (98). Previous studies have also
verified that the T lymphocyte subset, Th17, is also involved in
the pathogenesis of asthma (100). Drugs targeting CD4+ T cells
may therefore represent key new discoveries in the treatment
of asthma.

Paveglio et al. (21) were the first to confirm that Salp15
has a therapeutic effect on experimental asthma. Those authors
sensitized BALB/cJ mice via the intraperitoneal injection of
ovalbumin (OVA) in aluminum hydroxide, with and without
Salp15, to establish a model of allergic asthma. Aerosolized
OVA was then administered to all mice (21). Those authors
were surprised to find that the symptoms of allergic asthma in
mice treated with Salp15 were significantly reduced compared
with the control group. Such symptoms included reductions
in the eosinophil count, airway inflammation, mucus secretion,
Th2 cytokine production, OVA-specific IgG1 and IgE levels,
as well as AHR (21). The specific binding of Salp15 to CD4
inhibits the proliferation and differentiation of CD4+ T cells, and
can particularly suppress Th2 and inflammatory cytokines, thus
playing a predominant role in the development and prevention
of allergic asthma. In fact, both Th2 and Th17 are known to
be involved in the pathogenesis of asthma, and are dominant
participants in the eosinophilic and neutrophilic phenotypes of
asthma, respectively (101). The Th17 can promote neutrophilic
inflammation in the development of AHR; such inflammation is
related to the severity of asthma (100, 101). However, Juncadella
et al. (66) showed that the differentiation of Th17 cells is
increased in the presence of Salp15, both in vivo and in vitro.

This may be due to the fact that Salp15 inhibits the production
of IL-2, thus interfering with the balance between cytokines
and increasing the differentiation of Th17 cells (66). This is
probably the mechanism by which Salp15 exerts a therapeutic
effect on allergic asthma. Whether Salp15 exerts similar effects in
other forms of asthma has not yet been elucidated and requires
further research.

Salp15 as a Potential Therapeutic
Candidate for GvHD After Allo-HSCT
Allogeneic hematopoietic stem cell transplantation (allo-
HSCT) is considered a curative treatment for many patients
with hematological malignancies, immunodeficiencies, and
autoimmune diseases. Furthermore, GvHD is a major
complication after transplantation (102). Despite significant
advances in HSCT over the past 20 years, GvHD remains the
leading cause ofmorbidity andmortality inHSCT recipients after
transplantation (103, 104). The GvHD is mainly caused by the
immune response of donor T lymphocytes to the recipient cells
(which are regarded as foreign antigens). Activated donor T cells
recognize recipient antigens, including human leukocyte (HLA);
this recognition combined with histocompatibility can cause
serious deleterious effects on the recipients (104). Donor CD4+
T cells are known to play a crucial role in the pathophysiology
of GvHD, and Tregs are regarded as an inhibitory CD4+ T
cell subpopulation (105). Experimental studies of GvHD have
demonstrated that Salp15 shows a persistent interaction with
CD4 and exerts long-lasting immunosuppressive effects on
activating CD4+ T cells (65). In an earlier study (65), splenocytes
were extracted from C57BL/6 (H-2b) mice and injected into the
peritoneal cavity of CB6F1 (H-2b, d) mice; this was then followed
by the intraperitoneal injection of Salp15. Salp15 also protected
the kidney from the deposition of immune complexes, a hallmark
of chronic GvHD (65). That study indicated the therapeutic
potential of Salp15 in GvHD after HSCT, and may be also
applicable to GvHD that occurs after other forms of allogeneic
transplantation. However, further preclinical experiments are
required to test these hypotheses.

Salp15 Blocks the Binding of HIV-1 gp120
to CD4
Acquired immune deficiency syndrome (AIDS) is one of the
most life-threatening diseases worldwide. The etiological agent of
AIDS is the human immunodeficiency virus (HIV), an enveloped
virus classified in the Retroviridae family. There are three major
sub-types of HIV: HIV-1, HIV-2, and HIV-3. Of these, HIV-1 is
currently the most prevalent clinical subtype worldwide (106).
The gp120 molecule is a glycoprotein found in the envelope of
HIV-1, which promotes HIV-1 entry into the host cell and is
essential for HIV infection (107). Based on the results of current
studies, the infection of mammalian cells by HIV-1 involves
three main steps: the binding of gp120 to CD4, which changes
the conformation of gp120, which allows the glycoprotein to
interact with the chemokine co-receptors, CCR5 or CXCR4, on
the surface of the mammalian cell. Eventually, fusion of the viral
membrane and the mammalian cell membrane is facilitated by
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another glycoprotein (gp41), which leads to the release of viral
particles into the mammalian cell (106–108).

Interestingly, Salp15 and gp120 are both ligands for CD4
that bind to the D1 domain of sCD4; however, these ligands
induce completely different structural changes in the four sCD4
domains (63). Compared with Salp15, HIV-1 gp120 binds to
CD4 and changes the internal architecture of sCD4, while Salp15
mainly alters the global structural features of sCD4 (63). Ligand-
induced changes to the structural shape of sCD4 are specific
and closely related to their biological actions in mammals (63).
Because the regions of CD4 that interact with Salp15 and HIV-
1 gp120 overlap, the question arises as to whether Salp15 could
act as a competitive gp120 blocking agent. Another study (109)
gave a positive answer to this hypothesis. In vitro microtiter
and quantitative fusion assays showed that Salp15 blocks the
interaction of gp120 and CD4 in a concentration-dependent
manner, and the formation of syncytia by cells expressing
gp120 and CD4 is significantly reduced in the presence of
Salp15. As mentioned above, the C-terminal portion (P11) of
Salp15 is responsible for the binding of CD4. A previous study
suggested that Salp15 competes with gp120 for an association
with CD4, owing to spatial effects related to the interaction
of the entire Salp15 protein with T cells, and not P11 (109).
Nevertheless, P11 is able to bind to gp120, which is at least partly
responsible for the competitive effect elicited by Salp15 (109).
The neutralizing activity of the interaction between Salp15 and
HIV-gp120 predicts that this salivary protein may become a new
template for the recognition of epitopes in HIV envelope proteins
that produce neutralizing antibodies (109). Consequently, Salp15
from ticks has the potential to contribute to the prevention and
treatment of AIDS in the future.

One further point to consider is that DC-SIGN on the
DC surface can bind to HIV-gp120 with high affinity, thereby
facilitating the transport of HIV from the infected site to lymph
nodes, and causing the infection of T lymphocytes (110, 111). As
reviewed above, Salp15 can also interact with DC-SIGN. Further
research is now needed to investigate the specific relationship
between Salp15 and gp120.

Salp15 as a Potential Candidate for
Dermatological Treatment
Many autoimmune diseases, such as systemic lupus
erythematosus (SLE), are accompanied by skin lesions.
Furthermore, SLE is characterized by the deposition of
autoantibodies and formation of immune complexes, and can
be associated with organ damage mediated by inflammation
(112–115). Cutaneous lupus erythematosus (CLE) is one
component of SLE manifestation, when the disease is associated
only with skin injury. Apoptosis of skin keratinocytes (KCs)
plays a significant role in the pathogenesis of SLE skin lesions,
and is most likely due to the production of pro-inflammatory
cytokines and inflammatory cells (113, 114, 116). The KCs are
the staple constituent cells of the epidermis, the main producer
of skin chemokines and inflammatory factors, and the physical
and immune barrier of the skin. In vitro experiments revealed
that Salp15 inhibits inflammation produced by human primary

keratinocytes in response to B. burgdorferi sensu stricto N40
cells or OspC (117). Furthermore, Salp15 not only impedes the
expression of monocyte chemoattractant protein 1 (MCP-1),
IL-8, and AMPs (hBD-2, hBD-3, RNase 7, and psoriasin) at the
mRNA level, but also reduces the concentrations of IL-8 and
hBD-2 at the protein level (117). The ability of Salp15 to inhibit
the inflammatory response of KCs may therefore be applied to
the treatment of lesions caused by autoimmune skin diseases
or excessive inflammatory reactions. However, further in vivo
experiments and preclinical research are necessary to prove
these hypotheses.

A critical pathological factor for SLE skin lesions is the
deposition of IgG in the skin (115). Other skin diseases, such as
bullous pemphigoid (BP), are also associated with the deposition
of autoantibodies. In recent years, IgG and IgE antibodies have
been found to play a key role in the pathogenesis of BP (118, 119).
Because Salp15 can inhibit the proliferation of CD4+ T cells
and the production of IL-2, it can also hinder T cell-dependent
IgG and IgE production and may serve as a potential target for
suitable dermatological treatments.

POTENTIAL PROBLEMS

A previous description considered Salp15 as a precursor
of treatments for autoimmune diseases, whereas another
investigation has shown the opposite effect in murine
experimental autoimmune encephalomyelitis (EAE), which
mimics multiple sclerosis (66). The occurrence and progression
of EAE is associated with myelin-specific CD4+ T cell activation.
However, mice treated with Salp15 show increased pathologies
upon induction of EAE. The reason may be that Salp15 can
promote the activation of Th17 and increase the levels of IL-17 in
vivo, and also enhance the differentiation of Th17 in the presence
of IL-6 and absence of TGF-β in vitro to worsen EAE (66). All
drugs can have adverse reactions, so we need to maximize their
advantages. We can reduce the occurrence of side effects through
optimization of drug use. As a biopharmaceutical, Salp15 has
special characteristics, including its highly targeted effects, such
as species-specificity, immunogenicity, short half-life, and poor
stability (120). Almost all protein-based biotherapeutics are
unable to avoid immunogenicity, which may eventually lead to
lower drug concentrations, reduced efficacy, and an increased
risk of adverse reactions. The patient’s immune system recognizes
biotherapeutics as foreign molecules and produces anti-drug
antibodies (ADA), which may affect the safety and effectiveness
of the treatment. Although one study has demonstrated
that Salp15 is one of the antigens that confers protective
effects to mice against Lyme disease (121), no preclinical
immunogenicity studies of Salp15 currently exist. However,
some biopharmaceutical products have induced the production
of ADA, which affected neither the efficacy not the safety of the
therapy (122, 123). Some studies show that tick salivary proteins
are more suitable as potential pharmacological agents due to
their lower levels of cytotoxicity and immunogenicity (124). We
could attempt to reduce drug immunogenicity through protein
engineering (125). Nevertheless, evaluation of immunogenicity
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in preclinical and clinical trials is an important consideration in
the study of biopharmaceuticals. We need further research for
the discovery and approval of suitable therapeutic candidates.

FUTURE DIRECTIONS

Disorders of the immune system can lead to a spectrum of
diseases, including autoimmune diseases, inflammatory, and
even malignant tumors. Current treatments of such diseases
are limited, and the effects are not promising, particularly
for chemotherapies accompanied by serious adverse reactions.
Therefore, scientists now aim to find natural compounds with
enhanced physiological activity and novel chemical structures.
Natural products have spatial structures that differ from those
of chemically synthesized drugs, and also tend to have higher
target specificity, affinity, and fewer adverse reactions (126). As
the largest and most diverse biological population on earth,
arthropods provide a rich source of chemical and biological
information for the study of biopharmaceutical compounds.
Arthropod-based therapeutics are still in their infancy compared
with plant-based or microorganism-based therapeutic agents
(127). A variety of biologically active substances derived from
tick saliva may be valuable resources for the treatment of various
diseases (82). Although Salp15 has not yet advanced to pre-
clinical research, its pluripotent effects suggest it may be an
attractive candidate for use in immunotherapy. The specificity
with which Salp15 binds to CD4+ T cells, and the inhibition

of CD4+ T cell activation and proliferation are very promising
properties for the treatment of immune diseases. Salp15 not only
directly inhibits CD4+ T cell activation, but also plays a key
role in immunomodulation by regulating the increased levels
of CD73 expression by Tregs. Collectively, Salp15 may play a
therapeutic role in a variety of diseases, especially autoimmune
diseases. Further research should aim to fully validate these roles
and determine the clinical utility of Salp15. Salp15 is a promising
candidate for the discovery of new therapeutic agents; however,
there is still much to be done for it to go from the bench to the
bedside (128).
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