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Abstract: The metabolic rewiring of tumor cells and immune cells has been viewed as a promising
source of novel drug targets. Many of the molecular pathways implicated in rheumatoid arthritis (RA)
directly modify synovium metabolism and transform the resident cells, such as the fibroblast-like
synoviocytes (FLS), and the synovial tissue macrophages (STM), toward an overproduction of enzymes,
which degrade cartilage and bone, and cytokines, which promote immune cell infiltration. Recent
studies have shown metabolic changes in stromal and immune cells from RA patients. Metabolic
disruption in the synovium provide the opportunity to use in vivo metabolism-based imaging
techniques for patient stratification and to monitor treatment response. In addition, these metabolic
changes may be therapeutically targetable. Thus, resetting metabolism of the synovial membrane
offers additional opportunities for disease modulation and restoration of homeostasis in RA. In fact,
rheumatologists already use the antimetabolite methotrexate, a chemotherapy agent, for the treatment
of patients with inflammatory arthritis. Metabolic targets that do not compromise systemic homeostasis
or corresponding metabolic functions in normal cells could increase the drug armamentarium in
rheumatic diseases for combination therapy independent of systemic immunosuppression. This article
summarizes what is known about metabolism in synovial tissue cells and highlights chemotherapies
that target metabolism as potential future therapeutic strategies for RA.
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1. Introduction

Several recent reviews have highlighted metabolic changes in immunometabolism, stromal
metabolism, and systemic metabolism in rheumatoid arthritis (RA) [1–5]. Qualitative changes to
cellular metabolism are indeed essential to support physiological and pathological responses seen in the
RA synovium. The phenotypic transformation of fibroblast-like synoviocytes (FLS) from quiescent cells
to aggressive, metabolically active cells, the activation of synovial tissue macrophages (STM), and the
recruitment of immune cells to the synovial tissue, all require an increased bioenergetic and biosynthetic
demand. This is associated with changes in metabolism and energy production networks to support
and enable rapid proliferation, migration, invasion, and proinflammatory mediator production in the
hypoxic and nutrient deprived microenvironment that develops in the RA joint. We will focus in this
review on clinical options for better stratification of patients through prognostic metabolomic analysis
and on whether or not some of the therapeutic options explored in cancer could potentially increase
the drug armamentarium in rheumatic diseases.

2. Joint Metabolism and Diagnostic Imaging

The use of metabolomic profiles to find novel biomarkers to help diagnose or stratify RA patients
has been described [6]. Analysis of metabolites using one-dimensional nuclear magnetic resonance
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(1D NMR) spectroscopy or mass spectrometry coupled to gas or liquid phase separation techniques,
have shown unique metabolic and lipid profiles in the plasma of RA patients and pre-symptomatic
subjects compared with healthy donors [6]. For instance, acyl-carnitines, lysophosphatidylcholines
(LPCs), and metabolites from tryptophan metabolism, were found to be enriched in plasma from
pre-symptomatic patients [7]. This approach has highlighted urinary [8], serum, and synovial fluid
metabolite signatures that distinguish RA from psoriatic arthritis and other diseases [6,9–13]. It has
also described urine and plasma metabolic profiles that predict patient responses to biological therapies
including etanercept, rituximab, and tocilizumab [14–17], highlighting the power of metabolomics in
stratifying patients and directing RA treatment.

However, metabolomic profiles in serum, plasma, or urine do not necessarily correlate with joint
metabolism. Other approaches are needed to identify synovial metabolic changes. Structural imaging
techniques including radiography, ultrasound, and MRI, though very useful, fail to provide information on
the underlying biochemical processes. Thus, non-invasive bioimaging techniques are of increasing interest
to improve clinical diagnostics or to monitor arthritic disease. The ideal synovial biomarker probe would
be a non-invasive probe able to identify cellular or molecular markers, which could help to discriminate at
baseline between responders and non-responders to treatment, possibly leading to a more efficient and
personalized treatment. Also, the analysis of serial synovial images would be particularly advantageous to
detect changes in the synovial membrane so it can be used to determine the early effects of treatment. Thus,
patient stratification based on pathological metabolic pathways prior to therapeutic intervention could be
exploited in order to identify biomarker predictors of clinical outcomes and responses to therapy [18,19].
Noninvasive metabolic imaging modalities that include positron emission tomography (PET) and magnetic
resonance spectroscopy (MRS) could help in patient stratification. Stable isotope resolved metabolomics
studies of the synovium using liquid chromatography and gas chromatography mass spectrometry (LC-MS
and GC-MS) can be utilized to complement noninvasive imaging techniques (Figure 1).

2.1. Positron Emission Tomography

PET imaging works by detection of gamma rays from positron emitting radionuclides that have
been injected into the patient. The most commonly used radionuclide is 18F but there is a wide range
of radionuclides available—the more commonly used isotopes include 18F, 11C, and 15O.

2.1.1. 18F-FDG PET/CT (Positron Emission Tomography with 2-deoxy-2-(fluorine-18)fluoro-D-glucose
Integrated with Computed Tomography)

18F-FDG works by entering the cell through glucose transporters where it is rapidly phosphorylated
by hexokinase into 18F-FDG-6-phosphate where it can no longer be metabolized. The high consumption
of glucose by advanced tumors made PET imaging with 18F-FDG an ideal probe to detect glycolytic
tumors. However, the use of FDG to visualize tumor metabolic activity can also identify non-tumor
cells that also have an increased metabolic activity at the inflammatory sites. In arthritis, synovial FLS
and STM were shown to contribute to a high level of FDG-PET accumulation in the RA pannus [20].
Recent work has shown that the number of PET-positive joints in 28 and 68 joints was significantly
correlated with the swollen and tender joint counts in RA patients [21]. 18F-FDG PET activity
within days or weeks of initiating therapy correlates significantly with clinical endpoints. Thus,
quantitative FDG-PET/CT-based assessment of inflammatory activity present in the joints of RA
patients might be a promising approach for the whole-body assessment of RA disease activity and
treatment response [22–26]. Additionally, it can also be used to detect high-risk disease complications
at an early stage [27,28], such as atlanto-axial joint involvement, or co-morbidities including aortic
inflammation [28]. A major drawback of PET imaging with 18F-FDG is that some normal cells in
the brain, heart, and brown adipose tissue also have high metabolic rates and utilize above-average
amounts of glucose, which often leads to the generation of false positive results.
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Figure 1. Positron emission tomography (PET) methods that provide information on the underlying 
biochemical processes. PET imaging not only can improve clinical diagnostics but also potentially 
predict treatment effects. 18F-FDG, 2-deoxy-2-(fluorine-18)fluoro-D-glucose, provides information on 
glycolysis and glucose uptake; 11C-DASA23, a class of N, N-diarylsulfonamides, is able to measure 
PKM2 uptake; 18F-Gln, 18F-(2S,4R)4-fluoroglutamine, allows for the monitoring of glutamine 
metabolism. 11C-Met, 11C-methionine; 18F-FET, O-(2-[18F]fluoroethyl)-L-tyrosine; 18F-FAMT, L-3-(18F)-
Fluoro-α-methyl tyrosine; radiolabeled methionine and tyrosine can provide data on amino acid 
uptake and protein synthesis. Finally, 11C-acetate is converted to acetyl-CoA and used in 
mitochondria in TCA cycle or incorporated into cell membranes. MCT4, monocarboxylate transporter 
4; GLUT1, glucose transporter 1; MCT1, monocarboxylate transporter 1; R-5-P, ribose-5-phosphate; 
PGD, phosphogluconate dehydrogenase; 6-PG, 6-phosphogluconate; G6PD, glucose-6-phosphate-
dehydrogenase; HK, hexokinase; PFK1, phosphofructokinase 1; F2,6BP, fructose-2,6-bisphosphate; 
PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3; dTMP, deoxythymidine 
monophosphate; dUMP, deoxyuridine monophosphate; TS, thymidylate synthase; THF, 
tetrahydrofolate; DHF, dihydrofolate; DHFR, dihydrofolate reductase; CK, choline kinase; PKM2, 
pyruvate kinase muscle isozyme M2; LDHα, lactate dehydrogenase A; CA, carbonic anhydrase; ACC, 
acetyl-CoA carboxylase; FAS, fatty acid synthase; PDK1, pyruvate dehydrogenase kinase 1; IDH, 
isocitrate dehydrogenase; α-KGDH, alpha-ketoglutarate dehydrogenase; GLS, glutaminase. 

  

Figure 1. Positron emission tomography (PET) methods that provide information on the underlying
biochemical processes. PET imaging not only can improve clinical diagnostics but also potentially
predict treatment effects. 18F-FDG, 2-deoxy-2-(fluorine-18)fluoro-D-glucose, provides information
on glycolysis and glucose uptake; 11C-DASA23, a class of N, N-diarylsulfonamides, is able
to measure PKM2 uptake; 18F-Gln, 18F-(2S,4R)4-fluoroglutamine, allows for the monitoring of
glutamine metabolism. 11C-Met, 11C-methionine; 18F-FET, O-(2-[18F]fluoroethyl)-L-tyrosine; 18F-FAMT,
L-3-(18F)-Fluoro-α-methyl tyrosine; radiolabeled methionine and tyrosine can provide data on
amino acid uptake and protein synthesis. Finally, 11C-acetate is converted to acetyl-CoA and
used in mitochondria in TCA cycle or incorporated into cell membranes. MCT4, monocarboxylate
transporter 4; GLUT1, glucose transporter 1; MCT1, monocarboxylate transporter 1; R-5-P,
ribose-5-phosphate; PGD, phosphogluconate dehydrogenase; 6-PG, 6-phosphogluconate; G6PD,
glucose-6-phosphate-dehydrogenase; HK, hexokinase; PFK1, phosphofructokinase 1; F2,6BP,
fructose-2,6-bisphosphate; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3; dTMP,
deoxythymidine monophosphate; dUMP, deoxyuridine monophosphate; TS, thymidylate synthase;
THF, tetrahydrofolate; DHF, dihydrofolate; DHFR, dihydrofolate reductase; CK, choline kinase; PKM2,
pyruvate kinase muscle isozyme M2; LDHα, lactate dehydrogenase A; CA, carbonic anhydrase; ACC,
acetyl-CoA carboxylase; FAS, fatty acid synthase; PDK1, pyruvate dehydrogenase kinase 1; IDH,
isocitrate dehydrogenase; α-KGDH, alpha-ketoglutarate dehydrogenase; GLS, glutaminase.
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2.1.2. 11C-Choline PET/CT

Choline is a vitamin-like essential nutrient that is phosphorylated by choline kinase (ChoK), the
enzyme that catalyzes the first step in the de novo synthesis of the phosphatidylcholine pathway [29].
Choline transporters CTL1 and CTL2 are expressed in the majority of the cells within the joint,
in particular FLS and STM [30,31]. 11C-choline PET scanning, which is already in clinical use for
identifying prostate cancer metastasis, showed increased choline uptake in inflammatory arthritis [32]
and elevated levels of choline is present in RA FLS and synovium [33–35]. Although the use of choline
radiotracers for diagnosis or stratification needs further examination, some studies have shown that
there is a substantial difference in the synovial choline levels in RA patients compared to that of
osteoarthritis (OA) patients, in particular in female RA patients [34].

2.1.3. 18F-(2S,4R)4-fluoroglutamine Glutamine-, 11C-acetate-, 11C-methonine-PET/CT,
O-(2-18Fluoroethyl)-L-tyrosine (FET), L-3-(18F)-Fluoro-α-methyl tyrosine (FAMT), and 11C-DASA23

Tumors or inflamed tissues do not solely rely on glucose. In recent years, the use of amino acid
PET tracers is gaining attention for the diagnosis and evaluation of disease progression in several types
of tumors, such as low-grade gliomas, and lung and breast cancer [36,37]. Some studies suggest that
amino acid tracers are more sensitive in differentiating cancer cells from inflammatory cells, in part
due to the upregulation of amino acid transport systems in cancer cells [38]. Transfer of amino acids
across the plasma membrane is observed during metabolic stress. Several amino acid transporters
have also been involved in the pathogenesis of other diseases including metabolic diseases such as
obesity and diabetes [39]. Therefore, radiolabeling additional metabolites such as acetate, methionine,
and glutamine with either 18F or 11C provide opportunities to perform broad profiling of tissue
metabolism. For instance, it is believed that some tumors cannot be imaged with 18F-FDG as they do
not derive their energy through glycolysis and instead probably use the glutaminolysis pathway as an
alternate source of energy. Preliminary results suggest that 18F-(2S,4R)4-fluoroglutamine PET may be a
new tool for probing in vivo metabolism of glutamine in cancer patients and for guiding glutamine
targeted therapeutics [40,41]. 11C-acetate is converted to acetyl-CoA and used in mitochondria in the
TCA cycle or incorporated into cell membranes. 11C-methionine and tyrosine tracers are used as a
marker of amino acid uptake and protein synthesis primarily in cancer where uptake of the radiotracer
correlates with tumor grade. Finally, Gambhir and colleagues reported the generation of a PET imaging
probe specific for PKM2 using a class of N, N-diarylsulfonamides (DASA) known to promote PKM2
tetramer formation [42]. Although it was suggested that glutamine metabolism and glutaminase might
be involved in the pathogenesis of RA fibroblasts [43], further studies are needed to determine whether
or not these PET modalities could be useful for RA patient stratification.

2.2. Magnetic Resonance Spectroscopy Imaging (MRSI)

Magnetic Resonance (MR) imaging is most frequently used to determine anatomical registration
of the tissues. Single-voxel MR spectroscopy (MRS) and multi-voxel MR spectroscopic imaging (MRSI)
constitute another technique that enables detailed detection of cellular metabolic activity. The chemical
composition forms a well-defined region of interest (ROI) or volume of interest in any organ of the
human body that can be characterized using radiofrequency signals generated by nuclear spins of
magnetic resonance active nuclei including 1H, 31P and 13C [44–46]. Most commonly, MRS has been
used to evaluate endogenous 1H signals from choline-containing molecules, especially in the brain.
31P gathers information on the energy status of the tissue through the observation of various phosphate
metabolites. Finally, 13C-labeled substrates provide dynamic metabolic flux information. However,
one of the limitations of 1H MRS imaging is low sensitivity. Although several methods have allowed
for an increase in the signal to noise ratio, this technology can mostly detect a few abundant metabolites
in the imaged tissue, namely choline, glutamate, glutamine, lactate, aspartate, and phospholipid
metabolites. Of interest, a few reports detected cerebral magnetic resonance spectroscopy changes
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in rheumatic diseases. Compared with healthy controls, patients with fibromyalgia had significantly
higher levels of glutamate + glutamine and higher glutamate + glutamine/creatine (Glx/Cr) ratios in
the posterior gyrus among other metabolic changes [47,48]. In another study, patients with active RA
had a significantly higher ratio of choline to creatine and a significantly lower ratio of N-acetylaspartate
to choline than did patients with inactive RA [49]. However, no studies have determined MRS changes
in the arthritis synovium. As with other modalities of non-invasive imaging, monitoring response to
therapy is one of the most promising aspects of MRS imaging.

2.3. Stable Isotope Resolved Metabolomics Studies

The noninvasive metabolism imaging methods discussed above can be complemented with mass
spectrometry analysis of the inflamed synovial tissue. Little is known about metabolic or lipidomic
profiling of the synovial tissue [34,35] although the increasing interest in synovial biopsies to obtain
inflamed synovial tissue from joints [50] could improve understanding of the metabolic events in
these diseases. It should be noted that although identification and quantification of endogenous
and exogenous metabolic biomarkers can provide a metabolic snapshot of the status of a living
organism, it cannot provide an unambiguous picture of the metabolic flux between different cellular
compartments. For instance, an increase in the concentration of a metabolite can be associated with
either the upregulation of the enzyme responsible for the metabolite synthesis, or the downregulation
of the one consuming it. Several heavy isotopes including deuterium (2H), carbon (13C), nitrogen
(15N), and oxygen (18O) have been used to aid in capturing the direction of a metabolic perturbation
via the interpretation of stable isotope patterns and these datasets are nowadays increasingly being
used in different mathematical modeling approaches, such as metabolic flux analysis. Stable isotope
resolved metabolomics studies utilizes liquid chromatography mass spectrometry (LC-MS) or gas
chromatography mass spectrometry (GC-MS) as a direct means to measure the distribution of labeled
metabolites in the tissue and could potentially inform understanding of metabolic events in the RA
synovium [51,52].

3. Metabolic Pathways as Therapeutic Targets in Rheumatoid Arthritis

Recent findings demonstrate the additional and consequent alterations in cellular signaling
pathways and in the tumor microenvironment, including changes in the metabolism of glucose, lipids,
and amino acids [53,54]. Therefore, in addition to ATP synthesis, metabolic changes appear to be a
means of supplying cancer cells with the precursors of proteins, lipids, amino acids, and nucleic acids
for building their cellular structure and maintaining their upregulated proliferation.

Due to the importance of metabolic alterations in the development and progression of cancer,
several agents targeting cancer metabolism have been developed and evaluated under preclinical
and clinical studies [55–61]. Some metabolism-targeting agents, such as mTOR inhibitors (rapamycin
-sirolimus-, everolimus, and temsirolius) and metformin (an AMPK activator and mitochondrial
Complex I inhibitor) are now approved for clinical use. Strategies targeting different metabolic
alterations for anticancer therapy that could potentially be used in RA are detailed in the following
sections and summarized in Figure 2, Tables 1 and 2. In fact, rheumatologists already use the
antimetabolites methotrexate (MTX) and leflunomide for the treatment of patients with inflammatory
arthritis. Teriflunomide, the active metabolite of leflunomide, achieves its effects by inhibiting the
mitochondrial enzyme dihydroorotate dehydrogenase (an enzyme involved in de novo pyrimidine
synthesis). Methotrexate, developed as a folic acid analogue, inhibits purine and pyrimidine synthesis,
although recent studies have indicated that other mechanisms such as adenosine accumulation can
contribute to its effect in RA.
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Figure 2. Anticancer agents targeting various metabolic pathways that are upregulated in activated 
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glucose transporter 1; MCT1, monocarboxylate transporter 1; R-5-P, ribose-5-phosphate; PGD, 
phosphogluconate dehydrogenase; 6-PG, 6-phosphogluconate; G6PD, glucose-6-phosphate-
dehydrogenase; HK, hexokinase; PFK1, phosphofructokinase 1; F2,6BP, fructose-2,6-bisphosphate; 
PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3; dTMP, deoxythymidine 
monophosphate; dUMP, deoxyuridine monophosphate; TS, thymidylate synthase; THF, 
tetrahydrofolate; DHF, dihydrofolate; DHFR, dihydrofolate reductase; CK, choline kinase; PKM2, 
pyruvate kinase muscle isozyme M2; LDHα, lactate dehydrogenase A; CA, carbonic anhydrase; ACC, 
acetyl-CoA carboxylase; FAS, fatty acid synthase; PDK1, pyruvate dehydrogenase kinase 1; IDH, 
isocitrate dehydrogenase; α-KGDH, alpha-ketoglutarate dehydrogenase; GLS, glutaminase. 
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Figure 2. Anticancer agents targeting various metabolic pathways that are upregulated in
activated cells. Since synovial tissue cells share many similar metabolic changes, these
very same antimetabolites may also have potential uses in RA. MCT4, monocarboxylate
transporter 4; GLUT1, glucose transporter 1; MCT1, monocarboxylate transporter 1; R-5-P,
ribose-5-phosphate; PGD, phosphogluconate dehydrogenase; 6-PG, 6-phosphogluconate; G6PD,
glucose-6-phosphate-dehydrogenase; HK, hexokinase; PFK1, phosphofructokinase 1; F2,6BP,
fructose-2,6-bisphosphate; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3; dTMP,
deoxythymidine monophosphate; dUMP, deoxyuridine monophosphate; TS, thymidylate synthase;
THF, tetrahydrofolate; DHF, dihydrofolate; DHFR, dihydrofolate reductase; CK, choline kinase; PKM2,
pyruvate kinase muscle isozyme M2; LDHα, lactate dehydrogenase A; CA, carbonic anhydrase; ACC,
acetyl-CoA carboxylase; FAS, fatty acid synthase; PDK1, pyruvate dehydrogenase kinase 1; IDH,
isocitrate dehydrogenase; α-KGDH, alpha-ketoglutarate dehydrogenase; GLS, glutaminase.
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Table 1. Clinical trials of drugs that target various steps of the glycolytic and mitochondrial
metabolic pathways.

Drug Pathway Disease Trial Status Identifier #

Silibinin glycolysis (glut1)
liver cancer phase I NCT01129570

prostate cancer phase II NCT02146118

hypertension phase IV NCT03538327

RO7070179 HIF1α Hepatocellular
carcinoma Phase I NCT02564614

lonidamine glycolysis (HK) enlarged prostate phase III NCT00435448

2-DG glycolysis (HK) advanced solid tumor phase I NCT00096707

prostate cancer phase I/II NCT00633087

PFK-158 glycolysis (PFKFB3) advanced solid tumors phase I NCT02044861

TLN-232 glycolysis (PKM2)
melanoma

phase II
NCT00735332

renal cell carcinoma NCT00422786

AZD3965 lactate uptake (MCT 1) advanced solid tumor phase I NCT01791595

Indisulam H+ secretion
gastric cancer phase I/II NCT00165594

kidney cancer phase II NCT00059735

Dichloroacetate PDK1
head and neck cancer phase I NCT01163487

breast, lung cancer phase II NCT01029925

CPI-613 aKGDH
small cell lung cancer phase I NCT01931787

lymphoma, leukemia phase II NCT03793140

AG-120 isocitrate DH

advanced solid tumor phase I NCT02073994

leukemia phase II NCT03503409

cholangiocarcinoma phase III NCT02989857

AG-221 isocitrate DH
leukemia phase I NCT03728335

leukemia phase II NCT03744390

advanced solid tumor phase I/II NCT02273739

AG-881 isocitrate DH glioma phase I NCT02481154

metformin
Mitochondrial

complex I

RA phase I/II NCT03686657

prostate cancer phase II NCT03137186

SLE phase IV NCT02741960

arsenic trioxide Mitochondrial
complex III leukemia phase II NCT03624270

glut1, glucose transporter 1; HK, hexokinase; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3;
MCT1, monocarboxylate transporter 1; MCT4, monocarboxylate transporter 4; PDK1, pyruvate dehydrogenase
kinase 1; α-KGDH, alpha-ketoglutarate dehydrogenase; isocitrate DH, isocitrate dehydrogenase.

Table 2. Clinical trials of drugs that target other metabolic pathways than glycolysis, involved in the
upregulated synthesis, proliferation, and survival of cells that have undergone metabolic rewiring.

Drug Pathway Disease Trial Status Identifier

CB-839 glutaminase advanced solid tumor phase I NCT02071862

renal cell carcinoma phase II NCT03428217

ADI-PEG20 arginine availability

breast cancer phase I NCT01948843

hepatocellular cancer phase II NCT00056992

hepatocellular cancer phase III NCT01287585
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Table 2. Cont.

Drug Pathway Disease Trial Status Identifier

TVB-2640 fatty acid synthase
advanced solid tumor phase I NCT02223247

NSCLC phase II NCT03808558

NDI-010976 acetyl-CoA carboxylase healthy obese adults phase I NCT02876796

TCD-717 choline kinase advanced solid tumor phase I NCT01215864

epacadostat indoleamine-2,3-dioxygenase
solid tumor phase I NCT03471286

MDS phase II NCT01822691

indoximod indoleamine-2,3-dioxygenase prostate cancer phase II NCT01560923

rapamycin mTOR thyroid cancer phase II NCT00936858

everolimus mTOR
prostate cancer phase II NCT00976755

kidney cancer phase III NCT01120249

temsirolimus mTOR RA phase II NCT00076206

leflunomide Pyrimidine synthetase approved

methotrexate dihydrofolate reductase approved

pemetrexed dihydrofolate reductase approved

pralatrexate dihydrofolate reductase approved

5-fluorouracil thymidylate synthase approved

S-1 thymidylate synthase approved

pentostatin adenosine deaminase approved

6-mercaptopurine adenine deaminase approved

azathioprine purine synthesis approved

cladribine adenosine deaminase approved

gemcitabine ribonucleotide reductase approved

cytarabine
DNA

polymerase/ribonucleotide
reductase

approved

fludarabine
DNA

polymerase/ribonucleotide
reductase

approved

hydroxyurea ribonucleotide reductase approved

mTOR, mammalian target of rapamycin; NSCLC, non-small cell lung cancer; MDS, myelodysplasic syndrome.

3.1. Glycolysis

The shift from oxidative phosphorylation to glycolytic ATP production is a common feature of
activated and reactive cells such as cancer cells, fibroblasts, and macrophages [1,62,63]. As mentioned
above, glucose uptake has been used to monitor tumor growth and to identify metabolically active
sites such as RA joints or other inflammatory sites. Glycolysis is a multistep process that mobilizes
glucose to produce pyruvate with a net yield of two adenosine triphosphate molecules. Although
glycolysis is significantly less efficient producing ATP than the highly efficient mitochondria that
generates 30-36 ATP molecules from a single glucose molecule, it is the preferential source of ATP under
hypoxic conditions [64]. Inflammatory sites, such as inflamed joints, are overcrowded environments
with scarce oxygen supply [65,66]. Synovial fluid is enriched in hypoxia-inducible factor 1 alpha
(HIF1α), which contributes to RA pathogenesis, increases angiogenesis, inflammation, apoptosis,
oxidative damage, and cartilage erosion [66]. Importantly, HIF1α is also a crucial regulator of glycolysis.
In patients, synovial glycolytic marker expression positively correlated with reduced oxygen and
macroscopic and microscopic changes in the joint, linking the glycolytic switch with hypoxia and
inflammation [67]. The effect of HIF1α on glycolysis contributes to the pathogenic capacity of the
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majority of cells in the RA joint, including the production of proinflammatory cytokines such as IL-1β
by macrophages [68], FLS survival [69], and FLS migration and invasion [66]. In addition, by inducing
glycolysis, HIF1α serves as a metabolic checkpoint that supports Th17 development in detriment of
Treg cells differentiation [70]. Yet, a recent report demonstrated a key function of HIF1α in driving the
IL-10 expression in B cells [71].

Among the HIF1α−transcriptionally regulated genes, glucose transporter 1 (GLUT1) and lactate
dehydrogenase (LDH) are upregulated in RA [1,60,72,73]. In the synovial lining, uptake of glucose is
provided through Glut1 overexpression, which is accompanied by an increase in the glycolytic signature
in the stromal compartment [60]. Glucose availability and uptake is crucial for the proliferative and
invasive capacities of FLS [60]. The therapeutic use of GLUT1 blockers has been proposed to attenuate
cancer cell proliferation [55], although none of the small molecules designed to block or reduce GLUT1
activity have met the standards to move forward to human studies. In contrast, a pilot study and
Phase 1 study using an antisense oligonucleotide inhibitor of HIF1α has been tested in adults with
advanced solid tumors, although the safety and efficacy reducing glycolysis is still unknown [74].

Another key glycolysis regulator downstream of HIF1α is the rate-limiting enzyme Hexokinase II
(HK2), which is predominantly expressed in FLS within the RA joint [75]. Overexpression of HK2
in FLS provides a migratory and invasive advantage that is abolished when HK2 is ablated, and has
attenuated the severity of bone and cartilage damage in a mouse model of inflammatory arthritis [75].
Importantly, ablation of glycolytic genes or treatment with 3-bromopyruvate, which antagonizes
hexokinase II, significantly reduced the severity of mouse arthritis [60,76–78]. Methotrexate is a
first-line therapeutic option for many RA patients. Interestingly, methotrexate treatment significantly
reduced HK2 expression and glucose/fructose carriers (SLC2A5, a member of the solute carrier family
2) in human FLS, suggesting that FLS glycolytic activity can be modulated by methotrexate [79].
Although HK2 specific inhibitors are not available, steps downstream of HK2 can be inhibited by the
use of 2-deoxyglucose (2-DG), which is a derivative of glucose that can be phosphorylated by HK2
but cannot be mobilized through the succeeding steps of glycolysis. This results in the accumulation
of phosphorylated 2-DG causing product inhibition of HK2. Mouse studies have shown that 2-DG
reduces cancer cell proliferation and the severity of the spontaneous murine models of arthritis [76].
These preclinical data have precipitated the examination of 2-DG in phase I/II trials for treatment of
advanced cancer. Although the efficacy of 2-DG treatment in cancer progression is still unknown,
only mild adverse effects have been observed, which include nausea and glucopenia, encouraging
evaluation of this agent for treatment of inflammatory diseases such as RA, in which glycolysis
is hyperactive.

Another important rate-limiting enzyme in glycolysis is pyruvate kinase, PKM2, which catalyzes
phosphoenolpyruvic acid and ADP to pyruvate and ATP. PKM2 is overexpressed in many cancers
and has a crucial role in glycolytic shift in immune cells [80]. PKM2 not only generates pyruvate,
but also has multiple binding partners, such as HIF1α and Oct-4, which control inflammation and
stem cell maintenance [81]. Monocytes/macrophages from patients with cardiovascular diseases,
a common comorbidity of RA, have an increased glucose uptake and glycolytic flux, which causes
mitochondrial stress and ROS production [82]. As a result, PKM2 dimerizes and translocates to
the nucleus to activate the STAT3 transcriptional program that controls cytokine production [82].
Interestingly, inhibition of JAK/STAT3 signaling with Tofacinib, a drug approved for severe RA and
active psoriasis, induces oxidative phosphorylation and maximal respiratory capacity of FLS while
shutting down key glycolytic enzymes including HK2 and LDHA [83]. Currently, PKM2 inhibitor
TLN-232/CAP-232 is evaluated in Phase II trials for refractory and metastatic renal cell carcinoma
(NCT00422786) and recurrent metastatic melanoma (NCT00735332). It is reasonable to think
that PKM2 inhibition may also attenuate the progression of the pathogenesis not only of RA
but also of OA, as PKM2 overexpression controls glycolysis and extracellular matrix dynamic in
chondrocytes [84]. Another critical enzyme in the glycolytic breakdown of glucose is the bifunctional
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) enzymes. In particular, PFKFB3 activity
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is defective in CD4+ T cells in RA patients which results in energy deprivation that prone cells to
undergo apoptosis [85]. PFKFB3 inhibition reduced glucose uptake and utilization which resulted in
decreased lactate production [86]. These inhibition of the glycolytic flux by small molecule inhibitors
of PFKFB3 significantly reduces FLS migration and invasion, and the production of inflammatory
mediators [67,86]. Conversely, fructose 1,6-bisphosphate (FBP), a high-energy intermediate of glycolysis,
attenuated experimental arthritis by activating the anti-inflammatory adenosinergic pathway [87].

Active and sustained glycolytic activity also leads to lactate overproduction and release to
the extracellular milieu. In tumors, lactate contributes to cell-to-cell communication and has an
immunosuppressive effect on T cells [88]. Blockage of subtype-specific lactate transporters on T
cells results in their release from the inflammatory site during peritonitis, supporting the role of
lactate in T cell entrapment and function [89]. In RA patients, acidosis of synovial fluid occurs but
it varies significantly between individuals. In obese mice, lactate dependent activation of HIF1α
induces proinflammatory cytokine production [90]. Four members of the SLC16A family (SLC16A1,
SLC16A3, SLC16A7 and SLC16A8), and two sodium-coupled lactate cotransporters (SLC5A12 and
SLC5A8) are monocarboxylate transporters (MCTs) involved in lactate homeostasis [91,92]. Inhibition
of MCTs or LDH activity by several non-specific inhibitors have been evaluated in preclinical cancer
models; a specific inhibitor for human evaluation in patients remains to be discovered [93,94]. Lactate
levels, or more precisely, the conversion of pyruvate into lactate, can be monitored by hyperpolarized
MRS using 13C-pyruvate to assess tumor response [95]. As mentioned above, T cells in RA patients
show deficient glycolytic flux, which results in low intracellular pyruvate levels and ATP scarcity.
Metabolically challenged T cells initiate fatty acid synthesis and the formation of lipid droplets,
which induces podosome scaffolding protein TKS5 overexpression, and results in hypermotility and T
cell infiltration of synovial tissue [96].

Pyruvate molecules generated during glycolysis is converted to acetyl CoA to fuel the Krebs cycle.
Emerging evidences show that Krebs cycle intermediates classically associated with metabolic functions
also possess signaling functions as inflammatory mediators. Metabolic profiling has revealed itaconic
acid as a potential marker of RA. Importantly, this increased levels of itaconic acid can be attenuated by
treatment with infliximab, a biologic drug targeting tumor necrosis factor (TNF) [97]. In macrophages,
itaconate acts as an anti-inflammatory factor that connect metabolism with oxidative and electrophilic
stress responses and immune responses limiting HIF1α and cytokines production [98]. Succinate is
another Krebs cycle intermediate that is abundant in RA synovial fluids. Synovial succinate correlates
with enhanced release of IL-1β by macrophages in a mechanism that involves the overexpression
of succinate receptor SUCNR1/GPR91 [99]. In addition, SUCNR1/GPR91 functions as a chemotactic
signal for dendritic cells recruitment into lymph nodes which leads to Th17 cells expansion and the
development of experimental antigen-induced arthritis [100]. Consistently, Sucnr1 ablation prevented
articular hyperplasia, neutrophils infiltration, Th17 expansion, and the number of cytokines in the
joint [100].

3.2. Glutaminolysis

Glutamine is another important carbon source that provides energy for respiration and serves
as a precursor for the synthesis of nucleotides and proteins. Elevated glycolytic activity results in
conversion of pyruvate to lactate rather than being incorporated into the tricarboxylic acid (TCA) cycle.
To compensate, cancer cells rely on increased glutaminolysis [101]. Consistent with their metabolic
similarities with cancer cells, reliance on glutamine is also a feature of FLS [43]. Inhibition or genetic
ablation of glutaminase 1 (GLS1), the enzyme that converts glutamine to glutamate, inhibits RA-FLS
proliferation and ameliorate the severity of experimental autoimmune arthritis [43]. Glutamate,
which is converted to alpha ketoglutarate (a-KG) and channeled to the TCA cycle, is increased in
the synovial fluid of RA patients and correlates with increased inflammation and IL-6 production by
FLS [102]. In addition to RA, global and targeted metabolomic studies have shown that there is an
enrichment of glutamine in the synovial fluid of OA patients compared to the synovial fluid from
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control individuals [103]. The use of radiotracers to visualize glutamine flux and metabolism in human
tumors is under evaluation. 18F-(2S,4R)-4-fluoroglutamine has effectively depicted predominantly
aggressive tumors of those which carried mutations related to glutamine metabolism [104]. Whether
this technique can be used as an alternative to 18F-FDG or be used for RA diagnosis is still unknown.
However, modulation of glutamine utilization under pathological conditions has been evaluated in
cancer preclinical models. In particular, the blockage of glutamine transporter SLC1A5 has shown
potent antitumor activity; however, its use in humans has been ruled out due to its effect on healthy
cells [105]. Several small molecules that target GLS also have shown therapeutic potential for cancer
patients [106,107]. The GLS1 inhibitor, CB839, which has proved to reduce cancer cells viability and
proliferation, is currently being evaluated in clinical trials (NCT02071862, NCT02071888, NCT03428217).

3.3. Choline Metabolism

Increased phospholipid synthesis was classically associated with enhanced proliferation of
cells. However, in recent years, several studies have revealed that phospholipid synthesis has
more biological functions. In particular, the uptake, mobilization, and phosphorylation of choline
by ChoK is critical for the de novo synthesis of the phosphatidylcholine pathway, also known as
the Kennedy pathway. This pathway is elevated in activated cells and play important roles in
inflammation [32,108–110]. RA FLS exhibit the so-called ‘GPC-to-PCho switch’ that is observed
in cancer cells. Its activation is characterized by increased levels of phosphocholine (PCho) and
total choline-containing metabolites along with a decrease in glycerophosphocholine (GPC)/PCho
ratio, which indicates activation of this pathway [109]. FLS activators, including the proinflammatory
cytokines TNF and IL-1β, and growth factors such as PDGF, induced ChoK accumulation [109]. Blocking
ChoK activity by using a small molecule inhibitor limits the proliferative and migratory capacity of FLS
by interfering with metalloproteases activity and Akt activation. In vivo, ChoK inhibition attenuated
joint inflammation and destruction [109]. Of interest, a recent paper identified the choline transporters
in RA FLS [31]. Their results suggested that CTL1 (high-affinity) and CTL2 (low-affinity), which were
highly expressed in RA FLS, were critical for choline transport. They also showed that the choline
uptake was significantly increased compared with that in OA FLS, suggesting an increase of this
metabolism in RA FLS [31].

Activated macrophages also have a special avidity for choline, and choline transporters were
also described in RA STM [30]. Inflammatory macrophages exhibit an enhanced uptake of choline
that is rapidly phosphorylated by ChoK and mobilized through the Kennedy pathway to supply
the phospholipids required for maintaining proper membrane fluidity and composition, facilitating
cytokine production and release [111,112]. We have recently showed that when choline is limited,
or after ChoK inhibition, the mitochondrial lipid profile is disrupted resulting in a reduction of
ATP synthase activity and intracellular ATP, which subsequently activates the energy sensor and
anti-inflammatory molecule AMPK [111]. AMPK activation then facilitates mitophagy and decreased
NLRP3 inflammasome and IL-1β and IL-18 production [111].

Although the role of choline metabolism and choline kinase activity is well known in cancer
cells, and many choline kinase inhibitors have shown antitumor properties, only TCD-717 has been
evaluated in phase I clinical studies for the treatment of solid advanced tumors (NCT01215864).
Importantly, the use of choline as a tracer, in addition to glucose, for cancer diagnosis and its potential
use as a predictive factor of therapy response is currently on going in several trials. Although the
safety of altering choline metabolism in humans still needs to be determined, further evaluation of
choline metabolism and ChoK inhibition might open new approaches for controlling the progression
of inflammatory diseases such as RA, OA, and gout.

3.4. Metabolic Regulators of Mitochondrial Function and Biogenesis (AMPK, mTOR, PGC1a)

Shift towards a glycolytic phenotype implies a reduction in mitochondrial function, which is also
accompanied by impaired mitochondrial biogenesis. Reduced cellular ATP triggers the activation
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of the energy sensor AMPK, which then phosphorylates multiple downstream targets and turns off

biosynthetic pathways that consume ATP, including the synthesis of protein, fatty acids, and lipids,
while facilitating glucose uptake and fatty acid oxidation to promote ATP production [113]. AMPK also
is known for triggering autophagy/mitophagy through phosphorylation of ULK1 and MFF, a process
that saves energy by reutilizing waste or unused materials [114,115]. AMPK is essential for RA T
cells. AMPK activation is dependent on myristoylation, and in RA it has been shown that T cells
aberrant N-myristoyltranferase prevented AMPK activation. This induced a mTORC1 overactivation
that facilitated the differentiation of Th1 into Th17 cells [116]. Furthermore, pharmacological activation
of AMPK using a specific AMPK agonist reduced the expression and release of IL-6 [117]. Importantly,
methotrexate is able to induce the activation of AMPK, which correlates with reduced inflammatory
response in macrophages stimulated with LPS and TNF [118]. Metformin and its analog phenformin
are glucose-lowering drugs used for diabetes mellitus patients. Although their exact mechanism
of action is not clearly understood, their well-known effect on AMPK activity may also contribute
to the beneficial secondary effects of these drugs, as reducing inflammatory markers, improving
lipid metabolism, and attenuating experimental autoimmune arthritis [119–124]. Its potential role as
immune modulator indicate that treatment with metformin may be of special interest in inflammatory
and autoimmune diseases [125]. In particular, several clinical trials are evaluating the role of metformin
in RA and co-morbidities (NCT02246257, NCT03686657), and in psoriatic arthritis (NCT02188654).

AMPK activation is known to reduce mTOR signaling and activate autophagy. The mTOR
signaling pathway, which is a key regulator of protein synthesis, is unusually active in many cancers
and autoinflammatory and autoimmune diseases. mTOR signaling is also crucial for monocyte
differentiation from myeloid progenitors [126]. Inhibition of mTOR can be achieved by rapamycin,
also known as sirolimus, or its analogs, so-called rapalogs, that are FDA approved to treat advanced
cancer [127]. Currently, the use of rapalogs is under evaluation in several clinical trials to determine
their possible use in autoimmune diseases. The small molecule temsirolimus was evaluated in active
RA patients, concomitant with methotrexate (NCT00076206), and rapamycin was also assessed by
pharmacodynamic studies on hyperuricemia in gout patients (NCT02959918). In addition, a recently
completed trial evaluating the effect of sirolimus in pediatric autoimmune diseases, including systemic
lupus erythematosus (SLE), inflammatory bowel disease, and RA showed that sirolimus led to a
complete and long-lasting response in the majority of pediatric patients, suggesting that sirolimus
should be considered in the treatment of children with SLE [128].

Another important regulator of multiple cellular processes that is downregulated in RA is SIRT1.
SIRT1 has an important role in suppressing the activation of NF-κB-dependent inflammatory responses
including COX-2 and iNOS production, and promotes the activation of antioxidant transcriptional
program [129]. Both SIRT1 and SIRT6 are essential for maintaining cartilage homeostasis and the
use of SIRT1 activating compounds has been proposed as therapeutic approach in OA [130]. In this
sense, resveratrol, a polyphenol found in wines, is extensively studied as an SIRT activator, and exhibit
potent antioxidant, anti-inflammatory, and anticancer activities [131]. Recently, resveratrol was
reported to suppress the severity of inflammatory arthritis in mice [132,133]. A randomized controlled
clinical trial of 100 RA patients (68 female, 32 male) showed that the clinical markers and the disease
activity score assessment was lowered by resveratrol [134]. More importantly, serum biochemical
markers, such as C-reactive protein, erythrocyte sedimentation rate, undercarboxylated osteocalcin,
matrix metalloproteinase-3, TNF, and IL-6 were also significantly decreased in resveratrol-treated
patients [134]. In another study, treatment with resveratrol as an adjuvant with meloxicam improved
pain and joint function [135]. The evaluation of resveratrol in knee OA is also currently under evaluation
(NCT02905799).

3.5. Amino Acid Uptake

Increased amino acid uptake is often found in certain types of tumors to fuel metabolism and
protein synthesis [37]. Besides glutamine, other amino acids, including serine, have been shown to
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be important for initiating proper inflammatory responses. In macrophages, serine metabolism to
produce glutathione is required for transcriptional regulation of IL-1β [136]. In proinflammatory
macrophages, influx of the branch-chain amino acid leucine also contributes to cytokine production
via mTORC1-induced glycolytic reprogramming [137]. Consistently, branched-chain aminotransferase
1 (BCAT1) controls oxygen consumption and glycolysis in macrophages. Its inhibition by ERG240
limits infiltration of inflammatory macrophages and therefore reduces the severity of experimental
inflammatory arthritis [138]. In addition, RA synovium is enriched in L-type amino acid transporter
gene LAT1 [139]. Expression of SLC7A5/LAT1 was found to be significantly elevated in monocytes
derived from patients with RA [137]. RA FLS also overexpress LAT1 and has an increased uptake of
leucine after IL-17 stimulation, which potentiates the FLS migratory capacity that was eliminated by
blocking LAT1 [139]. Thus, tracing and targeting the uptake of serine and leucine may be useful to
determine and decrease the inflammatory status in RA joints.

Another important amino acid for macrophage function is arginine. Arginine is the substrate of two
enzymes, arginase to produce ornithine and urea, and nitric oxide synthase (NOS) to generate citrulline
and nitric oxide (NO). Macrophages couple the arginine metabolism with polarization and functional
phenotype [140,141]. Inflammatory macrophages, classically called M1, preferentially overexpress NOS
and use arginine for NO production, which is a key effector of microbicidal activity [141]. In contrast,
M2 macrophages preferentially express arginase to generate ornithine, which is the precursor of
polyamines that contributes to proliferation and restoration of tissue homeostasis [141]. Of interest,
arginase protein and activity are elevated in serum from RA patients [142]. Inhibition of arginase by
different approaches has been clinically assessed in human cancers.

In the past few years, the enzyme indoleamine 2,3-dioxygenase (IDO), involved in the metabolism
of the essential amino acid tryptophan, has gained attention. IDO is overexpressed in cancer and
mediates immune tolerance. T cells exhibit sensitivity to tryptophan deprivation and to kynurenines,
the products of tryptophan degradation [143,144]. IDO inhibitors were well tolerated in phase I
studies [145,146]. As IDO inhibitors boosted “immunogenic” chemotherapy or immune checkpoint
drugs [147], current clinical trials focus on evaluating the effects of combining IDO inhibitors
with taxotere, sipuleucel-T (dendritic cell vaccine), and anti-PD1 (NCT03047928, NCT01219348,
NCT01982487). Although increased tryptophan degradation measured as kynurenines/tryptophan
ratio is elevated in the blood of RA patients [148], the performance of IDO inhibitors in arthritis is
under debate as some works showed that IDO inhibition exacerbated disease severity in mouse models
of arthritis [149,150].

3.6. Fatty Acid Synthesis

Fatty acid metabolism is a dynamic process of anabolic and catabolic reactions to maintain energy
homeostasis. Synthesis of fatty acids is essential for building up metabolic intermediates to store energy,
maintain cell membrane structures, and participate in intracellular and intercellular communication.
When energy is needed, the cell can break down the fatty acids through β-oxidation. Balance between
synthesis and degradation is impaired in many diseases, which leads to lipid accumulation. Fatty acid
synthase, FASN, a key enzyme in the de novo synthesis of lipids, is found to be overexpressed in
many cancers [151–153]. In macrophages, FASN is essential for maintaining optimal membrane
composition [154]. Deletion of FASN in macrophages impairs the retention of cholesterol in the
plasma membrane and alters Rho GTPase-dependent cell adhesion and migration [154]. Inhibition of
FASN is under evaluation in several clinical trials in cancer patients (NCT03179904, NCT02980029,
NCT02595372), after promising preclinical studies in animal models [155].

Fatty acids elongation determines chain length of saturated, monosaturated, and polyunsaturated
fatty acids in cellular lipids. In some cancers, the enzymes that ultimately control the elongation of
the fatty acids, the fatty acid elongases (ELOVL1-7), are dysregulated and can be used as predictive
factors [156–158]. The role of fatty acid synthesis and elongation in the behavioral changes of RA FLS
is yet to be clarified. FLS have a potent migratory and invasive capability, which presumably will
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require an active lipid remodeling. In addition, many of the inflammatory molecules that are present
in the synovium stimulate fatty acid synthesis. Evaluation of this biosynthetic pathway, not only in
FLS but also in other cells that play a role in the arthritic joint, such as macrophages, may offer novel
targets to attenuate joint damage.

4. Conclusions

In the last decade, the use of new technologies to conduct metabolomic and lipidomic studies in
body fluids have provided new insights into immune-mediated inflammatory diseases such as RA.
It now become clearer that alterations in the lipid profile and the hyperactivation of metabolic pathways
are hallmarks of RA, and that they can be potential biomarkers and therapeutic targets. Findings in
human synovium or peripheral blood and preclinical studies in mouse models of inflammatory arthritis
strongly suggest that agents that interfere with lipid metabolism and certain steps of glycolysis or other
energy-related pathways can be therapeutic in RA (Table 3). Yet, we must emphasize that we are far from
understanding the pathways that discern normal from pathogenic metabolic phenotypes of synovial
cells. The widespread use of imaging techniques or mass spectrometry analysis in larger and more
heterogeneous cohorts can provide signatures of metabolic disruption under pathogenic conditions.
Additionally, further efforts are needed to fine tune metabolism by designing or improving current
medications, or by using prodrugs that can only be activated when the target is hyperactive, to ensure
the successful use of metabolic drugs with minimal off-targets. Whether or not chemotherapies that
modulate the metabolism truly present an option to increase the drug armamentarium in rheumatic
diseases remains to be determined.

Table 3. Preclinical data of drugs that target metabolic pathway.

Pathway Animal Model Effect on Cells Reference

glycolysis (HK II) K/BxN Genetic ablation of HK2 inhibits invasive capacities
of FLS and secretion of inflammatory ctytokines. [75,78],

glycolytic inhibitors
(2DG, bromopyruvate

and ionidamine)
K/BxN, CIA, SKG

Glycolytic inhibitors reduced FLS aggressive
phenotype, decrease effector CD4+ cells, and
modulated Th17/Treg differentiation.

[60,76–78]

glycolysis (PFKFB) CIA
PFKFB3 inhibition reduced FLS migration and
invasion, and the production of inflammatory
mediators

[86]

glycolysis (FPB) AIA, zymosan Systemic generation of extracellular adenosine and
subsequent activation of adenosine receptor A2a [87]

succinate receptor
(SUCNR1) AIA Sucnr1 guides dendritic cells into the lymph nodes,

leading the expansion of the Th17-cell population [100]

glutaminase 1 (GLS1) K/BxN Inhibition or genetic ablation of glutaminase 1
(GLS1) inhibits RA-FLS proliferation [43]

choline kinase K/BxN Blocking choline kinase activity limits the
proliferative and migratory capacity of FLS [109]

amino acid uptake
(BCAT1)

metformin

CIA
CIA, CAIA, K/BxN

BCAT Inhibition reduces IRG1 and itaconate levels
in macrophages. [138]

Metformin modulated Th17/Treg differentiation
and osteoclastogenesis. [122–124]

CIA: collagen-induced arthritis, AIA: antigen-induced arthritis, CAIA: collagen antibody-induced arthritis.
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