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Spiking neuronal networks are usually simulated with one of three main schemes: the

classical time-driven and event-driven schemes, and the more recent hybrid scheme.

All three schemes evolve the state of a neuron through a series of checkpoints:

equally spaced in the first scheme and determined neuron-wise by spike events in the

latter two. The time-driven and the hybrid scheme determine whether the membrane

potential of a neuron crosses a threshold at the end of the time interval between

consecutive checkpoints. Threshold crossing can, however, occur within the interval

even if this test is negative. Spikes can therefore be missed. The present work offers

an alternative geometric point of view on neuronal dynamics, and derives, implements,

and benchmarks a method for perfect retrospective spike detection. This method can be

applied to neuronmodels with affine or linear subthreshold dynamics. The idea behind the

method is to propagate the threshold with a time-inverted dynamics, testing whether the

threshold crosses the neuron state to be evolved, rather than vice versa. Algebraically this

translates into a set of inequalities necessary and sufficient for threshold crossing. This

test is slower than the imperfect one, but can be optimized in several ways. Comparison

confirms earlier results that the imperfect tests rarely miss spikes (less than a fraction

1/108 of missed spikes) in biologically relevant settings.

Keywords: state-space analysis, NEST, time-driven, event-driven, simulation, LIF neuron, differential geometry

1. INTRODUCTION

In the last decade considerable work has been devoted to improving the accuracy of efficient
simulators of large networks of spiking neurons (Hansel et al., 1998; Mattia and Del Giudice,
2000; Shelley and Tao, 2001; Dehaene and Changeux, 2005; Brette, 2007; Morrison et al., 2007;
D’Haene et al., 2009; van Elburg and van Ooyen, 2009; Zheng et al., 2009; Hanuschkin et al.,
2010). This research field is driven by the ideal of combining two antagonistic goals: coping with
a realistically high frequency of synaptic events arriving at a neuron, as in nature, and at the same
time implementing in a mathematically accurate way the threshold process on which a wide class
of neuron models is based.

Two classical schemes to simulate neuronal networks are the time-driven and the event-driven
schemes (Ferscha, 1996; Fujimoto, 2000; Zeigler et al., 2000). Both schemes describe the state of
the neurons by a set of variables and the action potentials as events that mediate the interaction
between them.
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In a time-driven scheme, the state of a neuron is updated on
a time grid defined by the simulation step (for a review see
Morrison and Diesmann, 2008). After all neurons are updated,
their membrane potential is checked for threshold crossings. If
the membrane potential of a neuron is above the threshold at
this checkpoint, a spike is delivered to all neurons it is connected
to, and the potential is reset. Then a new iteration step begins.
The step size stipulates how frequently the threshold-crossing
inspections occur during the simulation. The choice of the step
size trades off the spike-detection accuracy against the simulation
speed (Morrison et al., 2007). Such grid-constrained simulations
force each spike event to a position on the equispaced temporal
grid spanned by the step size and therefore induce artificial
synchronization of the network dynamics (Hansel et al., 1998;
Shelley and Tao, 2001; Brette, 2007; Morrison et al., 2007; van
Elburg and van Ooyen, 2009; Hanuschkin et al., 2010).

Event-driven schemes correct such artificial synchronization.
In an event-driven scheme the state of a neuron is updated
only when it receives a spike. A central queue of events is
maintained and each spike is inserted into this queue with its
own time stamp. Upon update a neuron predicts when its next
spike will occur in the absence of further input. This preliminary
event is inserted into the queue and confirmed if it becomes
due or removed when invalidated by further input. Efficient
and elegant spike prediction methods have been developed for
classes of non-invertible neuron dynamics (Ferscha, 1996; Brette,
2007; D’Haene et al., 2009; van Elburg and van Ooyen, 2009;
D’Haene and Schrauwen, 2010). Maintaining a central queue
in a distributed simulation is challenging, however, and may
compromise the time performance of the simulator (for a detailed
review see Hanuschkin et al., 2010).

A hybrid scheme circumvents the shortcomings of time-
driven and event-driven schemes by embedding a locally event-
driven algorithm for each neuron into a globally time-driven
scheme (Morrison et al., 2007). The arrival of a spike at a
neuron introduces an additional update and checkpoint besides
the global checkpoints. The motion of a given neuron in state
space is then propagated from incoming spike to incoming
spike and eventually to the end point of the global timestep.
If the membrane potential of a neuron is above the threshold
at a local or global checkpoint, the precise point of threshold
crossing is determined in continuous time, and a spike is emitted.
In this scheme spike events carry a floating point offset next
to their location on the time grid. Thus, in contrast to an
event-driven scheme, the hybrid scheme does not predict future
spike times but identifies threshold crossings only retrospectively.
Hanuschkin et al. (2010) demonstrate that the retrospective
scheme is as accurate as the predictive one but at lower
computational costs.

The hybrid scheme still has a loophole, however: spikes can be
missed. The reason is that the crossing of the threshold voltage
is tested by inspecting whether the membrane potential V of the
neuron is above threshold θ at the end of a checkpoint, t0 + h, as
in the time-driven scheme:

V(t0 + h) > θ ⇒ spike. (1)

FIGURE 1 | Illustration of undetected threshold crossing between two

consecutive checkpoints t0 and t0 + h on the time grid. The short black

vertical bar represents an incoming spike which causes an increase in the

membrane voltage of the neuron, leading to a threshold crossing at tθ . The

subthreshold dynamics, however, brings the voltage under threshold again at

the next checkpoint. Since the test V (t0 + h) > θ yields false, the outgoing

spike at tθ is missed. The red dots indicate points where the values of state

variables are known.

See Figure 1 for an illustration of this scenario. However, the
evolved membrane potential can be below threshold at the end
of a checkpoint and yet have crossed the threshold two, four, 2n
times between the initial and end checkpoints t0 and t0 + h. The
first crossing constitutes a missed spike. Symbolically,

V(t0 + h) > θ ⇒ threshold crossing, but

threshold crossing ; V(t0 + h) > θ (2)

so the testV(t0+h) > θ is a sufficient but not necessary condition
for the occurrence of a threshold crossing during the time interval
]t0, t0 + h]. For future reference we call this test standard test.

The question remains whether a globally time-driven scheme
can formulated such that it detects every threshold crossing.
Although Hanuschkin et al. (2010) argue that the loss of spikes of
the standard test is not of practical relevance in natural parameter
regimes, the availability of an absolutely lossless method would
free the researcher from inquietude and costly controls when
faced with previously unexplored neuron models or network
architectures.

In this work, we propose a new spike-detection method based
on a necessary and sufficient condition for threshold crossing
to occur in a given time interval; we therefore call it lossless
method or lossless test. The method is derived from state-space
analysis and works especially well with neuron models with
affine or linear subthreshold dynamics; i.e., of the form ṡ(t) =
As(t)+ q or ṡ(t) = As(t). It consists of a system of inequalities—
some linear, some non-linear in the state-space variables—that
together determine whether the initial state of a neuron will or
will not reach threshold within the time interval until the next
checkpoint. This lossless method is meant to replace the standard
test (Equation 1) in the time-driven and the hybrid scheme.
Alone it does not solve the problem of artificial synchronization
characteristic of time-driven schemes. Hence this method is most
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meaningful within a hybrid scheme. Thanks to its perfect spike
detection the lossless method can in fact be used to benchmark
hybrid schemes based on the standard test; Hanuschkin et al.
(2010) use the method of D’Haene et al. (2009) for this purpose.

In section 3 we present the idea behind the lossless method
for an affine or linear neuron dynamics, and develop its
mathematical construction. Parts of this construction must be
addressed on a case-by-case basis; therefore in section 4 we
provide a concrete implementation of the lossless method for
the leaky integrate-and-fire model with exponential synaptic
currents (Fourcaud and Brunel, 2002), within the hybrid scheme.
Readers interested only in the implementation are encouraged to
proceed directly to section 4.

The method can be algorithmically expressed in different
ways. We explore two alternative sequences of inequalities and
assess their costs in terms of time-to-completion relative to
each other and to the hybrid scheme based on the standard
test. For the latter scheme we also assess the number of missed
spikes in commonly considered network regimes. The hybrid
scheme based on our lossless method delivers the desired exact
implementation of the mathematical definition of the neuron
model without any further approximation up to floating point
precision.

Preliminary results have been published in abstract form
(Kunkel et al., 2011; Krishnan et al., 2016). The technology
described in the present article will be made available with one
of next major releases of the open-source simulation software
NEST. The conceptual and algorithmic work described here
is a module in the long-term collaborative project to provide
the technology for neural systems simulations (Gewaltig and
Diesmann, 2007).

2. IDEA: MOVING A SURFACE
BACKWARDS INSTEAD OF A POINT
FORWARD

Let us summarize the problem mentioned in the previous
section. We assume that a neuron’s state evolves according to
three different dynamical laws or motions in state-space: (a) an
integrable subthreshold dynamical law as long as the neuron’s
membrane potential is below threshold and there are no changes
in input currents; (b) discrete jumps in the subthreshold motion
at predetermined times, corresponding to incoming spikes or
to sudden changes in external currents; these can be formally
incorporated into the subthreshold dynamical law via delta
functions; (c) a “spike,” i.e., an instantaneous jump of the
membrane potential from threshold to a reset value, as soon
as the potential reaches the threshold value. The jump may be
followed by a refractory period in which the membrane potential
remains constant at the reset value. Then the integrable motion
(a) takes place again.

The advantage of an integrable subthreshold dynamical law is
that the state of the neuron at a time t0 + h can be analytically
determined by that at time t0; here h can be negative or positive,
and for simplicity we set t0 = 0 in what follows. The evolution
can thus be calculated in discrete time steps, in particular in
between times at which jumps (b) occur. The spiking component

of themotion, however, forces us to check whether themembrane
potential V reached a threshold value θ within the timestep
interval ]0, h]. We call this event threshold crossing; by “crossing”
we also mean tangency. A sufficient condition for threshold
crossing is that the membrane potential be above threshold at
the end h of the time step: by continuity, it must have assumed
the threshold value at some time in the interval ]0, h]. But, as
mentioned in the introduction, this condition is not necessary:
during the time step the potential may touch or surpass the
threshold value and then go below it again, as in Figure 1, an
even number of times. Its value is then below threshold at both
ends of the time step, t = 0 and t = h. A test that only relies
on the sufficient condition V(h) > θ , like the standard test, can
therefore miss some spikes, leading to an incorrect motion in
state-space. We need a test based on a necessary and sufficient
condition.

The threshold is a hyperplane in state space with equation
V = θ , and “threshold crossing” means that the trajectory
of the state during ]0, h], a curve in state space, intersects this
hyperplane. This is equivalent to looking for the roots of the
equation V(t) − θ = 0, checking whether this set of roots is
empty or complex (no threshold crossing) or non-empty and real
(threshold crossing). This idea is illustrated in Figure 2 for a two-
dimensional state space. Such equation is usually transcendental
and its roots have to be found numerically (Press et al., 2007,
ch. 9). As one of the first steps in this root search, “you should
always bracket a root, that is, know that the function changes sign
in an identified interval, before trying to converge to the root’s
value” (Press et al., 2007, § 9.0); and this is what the necessary but
insufficient condition V(h) > θ does. When this condition is not
met, a necessary and sufficient condition is that the maximum of
the voltage V(t) be above threshold for t ∈ ]0, h]. This would
leads us to maximization algorithms (Press et al., 2007, ch. 10).

We want to approach this problem from a point of view that
mathematically is equivalent to checking whether the maximum
of the voltage V(t) in the time interval t ∈ ]0, h] is above
threshold, but geometrically is very different. Up to now we have
imagined to move the initial state of the neuron at time t = 0,
which is a point in state space, and to check whether this moving
point touches the threshold hyperplane before time t = h. All the
while the threshold hyperplane has been at rest, so to speak. This
is like filming a runner rushing toward the finish line, bymeans of
a video camera stationed beside the latter. But the same problem
can be looked at from a different frame of reference: we can keep
the state of the neuron at rest, and move the whole threshold (i.e.,
the states that lie on the threshold) instead, for the same amount
of time, and check whether this moving hypersurface touches the
point. This is like having a video camera fastened on the runner,
filming the approaching finish line. As long as the relativemotion
of the two objects is the same, the question of whether they meet
has the same answer whether we see the one moving while the
other is at rest, or vice versa. The two frames of reference are
illustrated in Figure 2 for a two-dimensional state space.

In the second reference frame, the propagation of the points
of the threshold has a dynamical law where time appears
with a negative sign (see section 3.2), as if these points were
moving backwards in time. For this reason, as a visual aid, we
picturesquely call the first point of view “propagation of the state
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FIGURE 2 | Illustration of two exact methods to check whether an initial state (red dot) crosses the threshold (blue horizontal line) during the evolution from t = 0 to

t = h. Upper: The idea of a root-finding method is to evolve the state forwards in time by a step 1t = +h, and to check whether its trajectory (light-red curve)

intersects the threshold. Lower: The idea of the lossless method is to evolve the whole threshold “backwards in time” from t = h to t = 0 by a step 1t = −h and to

check whether its trajectory, which is a volume in state-space (light-blue region), contains the initial state, which is kept fixed. The threshold shifts and rotates as it

evolves, and the trajectories of its individual points are unknown: this method does not inform us of when and where on the crossing it occurs, and is therefore

computationally faster.

forwards in time,” and the second “propagation of the threshold
backwards in time,” or just “backpropagation.”

In the first frame of reference we are checking whether

a curve (the trajectory of the state) intersects a hypersurface

(the threshold). In the second frame of reference we are

checking whether a hypervolume (the trajectory of the threshold)

intersects a point (the state); in other words we are checking

whether a point belongs to a particular state-space region. The
test for the intersection of a 1-dimensional curve with an (N−1)-
dimensional surface is replaced by the test for the membership of
a point in an N-dimensional volume.

Geometrically the latter test translates into a system of

inequalities that the initial state at t = 0 must satisfy if it does not
cross threshold within the time interval ]0, h]. This means that
the maximum of the voltage V(t) in that same interval is below
threshold.

The equations corresponding to these inequalities

represent the boundary between the set of states that will

cross the threshold within the timestep h—which we call spike
region—and the set of those that won’t—which we call no-spike
region. Finding these inequalities in explicit form is the most
important point of this method, and can be achieved with this
heuristic procedure:

I. Find, in parametric form, the hypervolume swept by
the moving threshold. This is done by representing the
propagation of the threshold in state-space as a map between
two manifolds: the product manifold threshold × time, and
the state-space manifold.

II. Find the boundary of this hypervolume, in parametric form.
This is done by determining the placement of the images of
the boundaries of the product manifold and, most important,
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of the images of the critical points of the map. The latter
are the points at which the map becomes singular, thus
mappingN-dimensional regions to (N−1)-dimensional ones
(Choquet-Bruhat et al. 1996, § II.A.1; Spivak 1999, ch. 2).

III. Transform the equations of the boundary above from
parametric to implicit form. If this is not possible, the
boundary can still be approximated by a simplicial mesh, as
finely as we please.

At this point we have a set of inequalities that can separate
the states that will spike from those that won’t.

IV. Finally, optimize the resulting set of inequalities, by e.g.,
adding to them a preliminary set of linear inequalities that
delimit the larger parts of the spike or no-spike regions.

In the following analysis we mathematically develop the first two
steps in a general way for any affine neuron dynamics. They can
be generalized to other kinds of dynamics; we get back to this
point in section 5. The procedure for the last two steps depends
on the particular neuron model, so we can only give general
guidelines. section 4 provides a concrete example of all steps. An
advantage of our algorithm is that it its construction needs to be
carried out only once for any given neuron model.

Our algorithm tells whether a neuron state will cross the
threshold within a time increment h. By construction it does not
tell at what time tθ the crossing, if any, occurs. To determine such
time we must call a root-finding algorithm (Press et al., 2007,
ch. 9); but our algorithm has already bracketed the root to be
found.

We believe that our geometric, state-space point of view can
more readily suggest possible optimizations for the threshold-
crossing test than a point of view focused on state trajectories and
voltage maxima, as we will show in section 4.

3. A TIME-REVERSED STATE-SPACE
ANALYSIS

3.1. Mathematical Preliminaries
The final equations to be obtained, Equation (25), can be
derived by concepts from vector analysis, Cartesian geometry,
and functional analysis; but the derivation is lengthy. To shorten
it we use concepts and terminology from affine spaces (Artin,
1955; Coxeter, 1969; Rockafellar, 1972; Nomizu and Sasaki, 1994;
Porta Mana, 2011), and differential manifolds (de Rham, 1984;
Burke, 1987; Schouten, 1989; Bossavit, 1991, 2002; Dodson and
Poston, 1991; Simon et al., 1992; Nomizu and Sasaki, 1994; Burke,
1995; Choquet-Bruhat et al., 1996; Ramanan, 2005; Marsden and
Ratiu, 2007).

The state space S of a neuron has a natural vector-space
structure (an affine-space structure would also suffice), inherited
from the physical quantities that define it: the membrane
potential V and other N − 1 physical quantities I whose exact
number and definition depend on the specific neuronmodel (e.g.,
I could represent currents or additional voltages, for example of
different compartments).

Every hyperplane in the state-space is defined by an affine
equation k⊺s = κ , the covector k⊺ being the normal to the

hyperplane, where κ is the affine term. The inequality k⊺s > −κ

defines one of the two half-spaces delimited by the hyperplane.
The threshold hyperplane is especially important: it is the set of
states s whose membrane potential has the threshold value: N-
dimensional differential manifold: its points {s} are the neuron
states, and the quantities (I,V) are coordinates V : S → R and
I : S → RN−1 e.g., the membrane potential of a state s is V(s).
These coordinates respect the vector structure of the state-space,
i.e., V(s1 + s2) = V(s1)+ V(s2) and likewise for I.

V(s) = θ . (3)

Its equation k⊺s = κ in coordinates (I,V) has coefficients

k⊺ = (0⊺, 1), κ = θ ,

k⊺s = κ on threshold, k⊺s < κ below threshold.
(4)

An affine transformation of the state-space onto itself,

s 7→ Ms+m, (5)

where M is a linear transformation and m a state, maps each
hypersurface and half-space k⊺s > κ to a hypersurface and
half-space k′⊺s > κ ′ with

k′
⊺ = k⊺M−1, κ ′ = κ + k⊺M−1m (6)

(the transformation of the normal k⊺ shows why it is a covector
rather than a vector).

We now show that the integrable dynamical law within a
finite time step h generates affine transformations. Consider the
evolution equation

ṡ(t) = As(t)+ q. (7)

In a time interval h, an initial state s0 propagates under this
evolution into the final state at time t0

s(t0 + h) = ehAs(t0)+
(

ehA − 1
)

A−1q, s(t0) = s0. (8)

This, for each h, is an affine transformation of the form (5). In
coordinates (I,V) the linear operator A and vector q have the
block form

A =
(

B d

c⊺ α

)

, q =
(

r

β

)

, (9)

where B is an (N − 1,N − 1) matrix, α and β numbers, and
the dimensionalities of the rectangular matrices c⊺, d follow
accordingly.

3.2. Derivation of the Threshold-Crossing
Condition
Let us mathematically summarize the first threshold-crossing
test discussed in section 2. We said that the state evolution
(Equation 8) can be efficiently used in a time-step scheme in
numerical simulations, but we need to test whether a threshold
crossing occurred at some time t ∈ ]t0, t0 + h]. A necessary and

Frontiers in Neuroinformatics | www.frontiersin.org 5 January 2018 | Volume 11 | Article 75

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Krishnan et al. Perfect Spike Detection via Time-Reversal

sufficient condition would be the existence of solutions of the
transcendental equation in t

V
(

etAs(t0)+
(

etA − 1
)

A−1q
)

= θ , t ∈]0, h], (10)

which corresponds to the intersection of the trajectory (Equation
8) and the threshold hyperplane (Equation 3); but it is a costly
condition to test.

We now develop the second kind of threshold-crossing test
discussed in section 2, according to the steps I–IV. Steps I and II
are performed for any affine dynamics. Steps III and IV have to
be solved on a case-by-case basis, so their analysis below is only
a guideline; a concrete example on how to perform them is given
in section 4.2.3 and 4.2.4.

3.2.1. Hypervolume in Parametric Form
Consider the threshold hyperplane V(s) = θ as an (N − 1)-
dimensional manifold with coordinates x. It is embedded in
state-space via the map

x 7→ (I,V) = (x, θ). (11)

Each state (x, θ) on the threshold, when propagated backwards
in time for an interval h, traces a curve in state-space (the yellow
lines of Figure 3).

The union of these curves is an N-dimensional product
manifold, called the extrusion (cf. Chap. 5. Bossavit, 2003) of the
threshold hyperplane. We can use coordinates (x, t) ∈ (RN−1 ×
[0, h]) on this manifold. Its mapping into state-space is given,
with the help of Equation (8), by

E : (x, t) 7→ e−tA

(

x

θ

)

+
(

e−tA − 1
)

A−1

(

r

β

)

, (12)

where t > 0 is the direction of the past. This map is analytic, but
generally not an embedding because it can have self-intersections.
We will see the significance of this in section 3.3. It is not an
immersion either because it can have singular points; these will
be especially important for us because they constitute part of the
boundary between spike and no-spike regions. See Figure 3 for a
two-dimensional example, and Figure 4 for a three-dimensional
one.

For fixed t, the map x 7→ E(x, t) is affine, and its image
is a hyperplane representing the states on the set of states
at threshold propagated backwards in time for an interval t.
Combining it with Equations (4–6) we find that the set of states
of backpropagated threshold state has t-dependent normal and
affine terms

k
⊺
t =

(

0⊺, 1
)

etA

κt = θ +
(

0⊺, 1
) (

1− etA
)

A−1

(

r

β

)

.
(13)

The inequality k
⊺
t s < κt determines the backpropagated half-

space, which is below threshold.

3.2.2. Hypervolume Boundary in Parametric Form
We must now find the boundary of the image of the map E.
The latter is a closed set, being the image of a closed set under

a continuous map; its boundary must therefore be the image of
some points of the domain. Such points must either lie on the
boundaries of the domain, RN−1 × {0} and RN−1 × {h}, or be
critical points of E, or both, because E is differentiable. See the
example of Figure 3.

The images of the boundary are easily found from (Equation
12): one (image of t = 0) is the threshold hyperplane, the other
(t = h) is the hyperplane k

⊺

h
s = κh, with coefficients given by

Equation(33). Explicitly, in coordinates (I,V),

V = θ , (14)

(

0⊺, 1
)

ehA
(

I

V

)

= θ +
(

0⊺, 1
) (

1− ehA
)

A−1

(

r

β

)

. (15)

Let us find the image of the critical points of E. The derivative of
E at a point (x, t) is

E′(x, t) = −e−tA

(

I Bx+ dθ + r

0⊺ c⊺x+ αθ + β

)

. (16)

This is also called the tangent map of E, and denoted E∗, DE, or
TE in differential-geometry texts.

Its determinant, the Jacobian determinant of the map,
represents the inverse ratio between a volume element at that
point and its image in state-space (the sign determines their
relative orientation). Hence this ratio vanishes at points where
volume elements are mapped onto area elements (in other words,
N linearly independent vectors in the domain are mapped onto
N linearly dependent vectors), which is a feature of the boundary.
See the two-dimensional example of Figure 3.

Let us look for points where detE′(x, t) = 0. In Equation (16),
the determinant of the exponential never vanishes, so we only
have to consider the determinant of the matrix on the right.
This is easily calculated by Laplace expansion along the last row,
whose elements all vanish except the last. The cofactor of the last
element is det I (modulo a sign). Hence

detE′(x, t) = 0 ⇐⇒ c⊺x+ αθ + β = 0 (17)

and the coordinates (x, t) of critical points satisfy

c⊺x+ αθ + β = 0, 0 6 t 6 h. (18)

This equation says that one of the coordinates x has an affine
dependence on the remaining ones; let us call these y. For
example, if cN−1 6= 0, the equation above has the parametric
solution

x1 = y1, . . . , xN−2 = yN−2,

xN−1 = −
c1y1 + · · · + cN−2yN−2 + β + αθ

cN−1
.

(19)

Denote this affine dependence by x(y). By taking the derivative of
Equation (18) with respect to y we have

c⊺∂yx = 0⊺, (20)

a property we will use later.
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FIGURE 3 | Example of map E : (x, t) 7→ (I,V ), Equation (12), in two dimensions. Upper: The abstract manifold with coordinates (x, t) corresponding to the values of

current and time to threshold crossing. Lower: The image of the map in state space. Thick green curve corresponds to the set of singular points where det(TE) = 0,

Equation (10). Yellow lines, constant x, are trajectories of states ending on the threshold. Violet lines, constant t, are snapshots of the threshold moving “backwards in

time.” The thicker violet and blue lines correspond to the boundaries t = 0 and t = h. For t = 0 we have I = x, V = θ .

The locus of critical points in state-space is then given
parametrically by a map Γ , found by substitution of
Equations (19) in Equation (12):

Γ : (y, t) 7→ e−tA

(

x(y)
θ

)

+
(

e−tA − 1
)

A−1

(

r

β

)

, 0 < t < h.

(21)
This locus has four important features:

1. The points on the locus corresponding to fixed t belong to a
hyperplane with coefficients (Equation 33), as is easily checked
by substitution. In other words, the locus of critical points
is the envelope of the backpropagated threshold hyperplanes
k
⊺
t s = κt , Equation (33), at different times t, and its tangent
hyperplanes have normals k

⊺
t given by Equation (33). In

particular, this locus is tangent to the threshold hyperplane.

2. Comparing the dynamical law (Equation 7), the map for the
threshold hyperplane (Equation 11), and the critical-point
condition (Equation 18), we notice that the latter is also the

condition for the trajectory (Equation 8) of a state s0 = (x, θ)
on the threshold hyperplane to have an extremum in the
membrane potential V . Hence, the locus of critical points is
the trajectory of the intersection between the threshold and the
V-nullcline.

3. From the form of Equations (18, 21), the locus of critical
points is flat along N − 2 dimensions—corresponding to a
fixed value of the coordinate t—and is curved normally to the
direction t: it is an (N − 2)-ruled surface.

4. The dynamical law (Equation 7) preserves affine combinations
of solutions—and therefore convex combinations as well. If
s1, s2 are two arbitrary initial states in the no-spike region,
then their propagated states also satisfy V[s1(t)] < θ and
V[s2(t)] < θ when 0 6 t 6 h; and also the propagation of
their convex combination λs1 + (1− λ)s2, 0 < λ < 1 satisfies

V(λs1(t)+ (1− λ)s2(t)) < θ , 0 < λ < 1, (22)
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i.e., it lies in the no-spike region. This proves that the no-
spike region is convex. This also means that the locus of
critical points is a concave, i.e., ∩-shaped, surface: the segment
between any two of its points lies completely within the
no-spike region.

In view of the first property above, let us call the locus of
critical points envelope, for brevity.

3.2.3. Hypervolume Boundary in Implicit Form or Its

Approximation
The next step is the elimination of the parameters (y, t) to express
the envelope Γ as one or more implicit equations χ(s) = 0
defined on domains Dχ for the state-space coordinates s. This
step can involve a transcendental equation, and a closed-form
solution for it may not exist. We must therefore proceed in two
possible ways depending on its existence:

• If an implicit, closed form for the envelope Γ exists, we can
find a function χ of the state-space variables such that χ(s) =
0 is the envelope:

{s|χ(s) = 0, s ∈ Dχ } = {Γ (y, t)| y ∈ RN−2, 0 6 t 6 h}.
(23)

Since χ is determined apart from a multiplicative constant,
we can choose this constant in such a way that the inequality
χ(s) < 0, s ∈ Dχ , determines the region below the
hypersurface contained in the no-spike region.

It is sometimes possible to find an implicit closed-form for
the envelope Γ even when a closed-form solution for the
intersection of a propagated state and the threshold does not
exist. The concrete model discussed in section 4 is such an
example.

• If an implicit, closed form for the envelope Γ cannot be found,
it is still possible to approximate the latter by amesh of (N−1)-
dimensional simplices (i.e., triangles, tetrahedra, and so on), to
arbitrary precision. The simplicial mesh should extend from
the (N − 2)-dimensional curve where the envelope is tangent
to the threshold, Equation (14), to the one where it is tangent
to the backpropagated threshold at t = h, Equation (15). In
this case instead of an inequality χ(s) < 0 we have a system of
linear inequalities.

Exact spike detection can still be achieved in this case. Owing
to the concavity of the envelope discussed in the previous
section, all the simplices of the mesh lie in the no-spike region.
Therefore, if the system of linear inequalities is satisfied the
state surely lies in the no-spike region. If the system is not
satisfied, a spike can be assumed to occur, and the threshold-
crossing time can be sought by a root-finding algorithm. In
this case there still is a small chance that the state lies in one
of the small no-spike pockets between the envelope and the
mesh, but the absence of a spike would still be detected by
noting that the root-finding algorithm has no solution in this
case.

The coordinates of the vertices of the mesh are obtained via
Equation (21) by selecting a set of points {(yi, ti)}, 0 < ti < h.
Since the envelope is a ruled surface, as shown in section 3.2.2,

the mesh can be conveniently chosen in such a way that one
face of each simplex fully lies on the envelope. The coefficients
of the linear inequalities related to the mesh therefore do
not depend on the state of the neuron, but depend on the
parameters of the model and, in exponential form, on the
timestep h. Their functional form needs to be determined only
once for a given model.

Although less efficient than the case in which an implicit
closed-form for the envelope exists, the approximation with a
simplicial mesh can still be quite effective, because not all the
linear inequalities of the linear system will have to be checked
in general: as soon as one of them is not satisfied the test
will stop. The most efficient coarseness of the mesh has to be
evaluated case-by-case for each model.

Whether an implicit closed form for the envelope or only an
approximating mesh is available, the spike test can in any case
be optimized by first testing a set of linear inequalities that
delimit the larger parts of the spike and no-spike regions. Such
set would be a very coarse mesh approximating the envelope. A
two-dimensional example is given in Figure 6, and we discuss
this with a concrete example in section 4.4.

In the following we denote by χ(s) < 0 either the closed form
of the inequality, if it exists, or the system of linear inequalities
that approximate it, if the former does not exist in closed form.

3.2.4. Boundary Intersections and Final System
If a state does not cross the threshold hyperplane at any time
t ∈ [0, h], then it must, by definition, belong for every t to the
image of the half-space that lies below threshold, when this half-
space is backpropagated by the time t. Mathematically, this is
simply the statement of the equivalence

k⊺(Ms+m) < κ ⇔ (k⊺M)s < (κ − k⊺m) (24)

established in section 3.1, where M and m are the coefficients of
the affine evolution by time t.

By construction in the previous subsection, the inequality
χ(I,V) < 0 defines the region of intersection of all such
backpropagated half-spaces, bounded by the envelope χ(I,V) =
0. We just need to join to it the condition for the boundaries
corresponding to the times t = 0 and t = h, V < θ , k

⊺

h
s < κh,

discussed in section 3.2.1.
The states that do not cross the threshold during the time

interval [0, h] belong therefore to the no-spike region defined, in
coordinates, by

s0 = (I,V) ∈ no-spike region ⇔

V < θ (25a)

and

(

0⊺, 1
)

ehA
(

I

V

)

< θ +
(

0⊺, 1
) (

1− ehA
)

A−1

(

r

β

)

(25b)
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and

χ(I,V) < 0, (I,V) ∈ Dχ . (25c)

Some inequalities in this system may turn out to be redundant,
i.e., automatically satisfied if the remaining ones are, and can thus
be dropped. Section 4.2.3 illustrates such a redundancy.

3.3. The Region of Missed Spikes
In the previous section we mentioned that the N-dimensional
product manifold formed by the (N − 1)-dimensional threshold
hyperplane and the time interval [0, h] presents self-intersections
when mapped to the state-space. Two-dimensional examples of
such a region are shown in Figure 3, lower panel, and in Figure 6,
the region called S2.

A state s in the self-intersection region corresponds to two or
more different coordinates (x, t):

s = E(x, t) = E(x′, t′), t 6= t′. (26)

Note that x 6= x′, t = t′ is impossible for an affine transformation,
since the first column of Equation (16) can never vanish. The
condition above simply means that s crosses the threshold at x
after an interval t and at x′ after an interval t′. By continuity of
the trajectory of Equation (7), one of the two must be a crossing
from above, and one from below: this is exactly the scenario of
double threshold crossing illustrated in Figure 1.

Suppose we have a probability distribution for the initial
states, for example one that is invariant under the dynamical
law (Equation 7). The probability of the self-intersection region
P(X) is the probability that the initial state will lead to a double-
crossing of the threshold, and therefore be missed. This fact will
be used in section 4.4.2 to estimate the number of spikes missed.

4. IMPLEMENTATION EXAMPLE: LEAKY
INTEGRATE-AND-FIRE NEURON WITH
EXPONENTIALLY DECAYING
POST-SYNAPTIC CURRENTS

4.1. The Example Model: Terms in Block
Form
In the previous section we mathematically developed the
idea of propagating the threshold backward in time in order
to check whether a threshold-crossing occurs in a time-
stepped dynamical process. The derivation, valid for an affine
subthreshold dynamical law, is general and therefore also quite
abstract; moreover, it involves a couple of mathematical steps (III
and IV in section 2) for which no general formula can be given.

To explain the idea in more concreteness and to give an
example of how to face all its steps, we now apply the scheme
to a simple but relevant model with a 2-dimensional state-space:
the leaky integrate-and-fire neuron with exponentially decaying
post-synaptic currents. This model satisfies a homogeneous
linear dynamical law on a 3-dimensional state-space (Rotter and

Diesmann, 1999), where the third coordinate is the input current.
If this current is constant, the dynamical law can be rewritten as
a 2-dimensional affine one.

Leaky integrate-and-fire models, despite their simplicity,
approximate the behavior of real neurons with high accuracy
(Rauch et al., 2003). The model with exponential synaptic
currents captures important properties of real neurons: The
post-synaptic potential has a finite rise and decay time and the
membrane potential is a continuous function of time. Continuity
avoids artificial synchronization, present in simpler models.
Moreover, the model is to some extent analytically tractable. For
short synaptic time constants, the mean firing rate (Fourcaud
and Brunel, 2002) as well as the linear response to small inputs
(Schucker et al., 2015) can be obtained analytically.

The example model has a 2-dimensional state-space for a
single neuron, defined by the post-synaptic current I and the
membrane potential V , which are also our coordinates. Its
subthreshold interspike dynamical law (a) in section 3 is affine:

İ(t) = −
1

τs
I(t),

V̇(t) =
1

C
I(t)−

1

τ
V(t)+

1

C
Ie,

(27a)

or in matrix form

d

dt

(

I
V

)

=
(

− 1
τs

0
1
C − 1

τ

) (

I
V

)

+
(

0
1
C Ie

)

, (27b)

where C is the membrane capacitance, τ is the membrane time
constant, I is the synaptic input current, and Ie is the external
input current. Themembrane potentialV is subject to dissipation
with time constant τ and integrates the post-synaptic current I.
The latter decays exponentially with time constant τs. Typical
values of the parameters are τ = 10 ms, C = 250 pF, τs = 2 ms,
and the threshold θ = 20 mV.

Incoming spikes are incorporated in the equation for the
current as Dirac deltas, and the external current Ie has jump
discontinuities in time. In the timestepped evolution, such
discontinuous events are implemented as instantaneous changes
in the initial state s0 at each timestep. Hence we do not need
to consider them explicitly in the equations above (Rotter and
Diesmann, 1999).

In terms of the block form of section 3.1 we have

B =
(

− 1
τs

)

, d = ( 0 ), r = ( 0 ),

c⊺ =
(

1
C

)

, α = −1/τ , β =
1

C
Ie.

(28)

The exponential of A is

exp(−tA) =





e
t
τs 0

(

e
t
τ −e

t
τs

)

ττs

C(τ−τs)
e

t
τ



 , (29)

which determines the evolution of the neuron state s0 by an affine
map as in Equation (8).
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FIGURE 4 | Example of the image of the map E : (x, t) 7→ (I,V ), Equation (12), in a three-dimensional state space. Blue planes are snapshots of the threshold plane

(horizontal, darker blue plane) moving “backwards in time.” The green, curved surface corresponds to the set of singular points where detE′ = 0, Equation (10). The

neuron model in this example is leaky integrate-and-fire with α-shaped post-synaptic currents i1, i2 and membrane potential V.

Since the state space is 2-dimensional, the “hyperplanes” and
“hypersurfaces” of section 3 are straight lines and curves. In
particular, the threshold hyperplane is a line; when propagated by
a time t it maps onto a line with covector and affine term given
by Equation (33), explicitly

k
⊺
t =

(

(

e−
t
τ −e

− t
τs

)

ττs

C(τ−τs)
e−

t
τ

)

,

κt = θ −
Ieτ

(

1− e−
t
τ

)

C
.

(30)

For this model, testing for threshold-crossing by checking the
intersection of a propagated state and the threshold line means
finding the roots of this equation in t, given the initial state
s0 = (I,V):

e−
t
τ V +

Ieτ

C
(1− e−

t
τ )+ I

ττs

C

e−
t
τ − e−

t
τs

τ − τs
= θ , 0 6 t 6 h,

(31)
for which we cannot find a solution in analytic form.

4.2. The Threshold-Crossing Condition
4.2.1. Hypervolume in Parametric Form
The product manifold “threshold line × time interval” is in this
case 2-dimensional, with coordinates (x, t). Here x is the value of
the current at threshold crossing and t the corresponding time
point. Its mapping E, Equation (12), to the state-space is

E : (x, t) 7→ (I,V) =
(

e−
t
τs x, e−

t
τ θ +

Ieτ

C
(1− e−

t
τ )

+ x
ττs

C

e−
t
τ − e−

t
τs

τ − τs

)

. (32)

This map is shown in Figure 3: the x isocurves are yellow
and in the lower panel they represent the trajectories of states
terminating on the threshold; the t isolines are blue and represent
the threshold line propagated at different times. Each area
element dx ∧ dt in the domain—the small rectangles in the
upper plane—is mapped into an area element dI ∧ dV in the
image. Note how these area elements are rotated and sheared. The
thicker green curve is the set of singular points where the Jacobian
determinant, i.e., the determinant of the derivative, vanishes:
det(E′) = 0. Such points are singular because around them the
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images of the area elements get flattened by one dimension. In
section 4.3 we discuss the region of self-intersection bounded by
the thick light cyan line, the thick dark blue line, and the thick
green curved line.

For fixed t, the map x 7→ E(x, t) is affine, and its image
is a hyperplane representing the states on the set of states
at threshold propagated backwards in time for an interval t.
Combining it with Equations (4–6) we find that the set of states
of backpropagated threshold state has t-dependent normal and
affine terms

k
⊺
t =

(

0⊺, 1
)

etA

κt = θ +
(

0⊺, 1
) (

1− etA
)

A−1

(

r

β

)

.
(33)

The inequality k
⊺
t s < κt determines the backpropagated half-

space, which is below threshold. An example of the map E for a
model with a three-dimensional state space is shown in Figure 4.

4.2.2. Hypervolume Boundary in Parametric Form
The boundaries of the image of the map E must be, as explained
in section 3.2.3, a subset of the images of the boundaries of the
domain, R× {0} and R× {h}, and the envelope.

The images of the boundaries, with general Equations (14, 15),
in terms of (I,V) follow

V = θ , (34)

V = e
h
τ θ +

Ieτ

C

(

1− e
h
τ
)

+
Iτ

C
τse

− h
τs
e
h
τ − e

h
τs

τ − τs
. (35)

The set of critical points of the map E is in this case a 1-
dimensional curve, given in parametric form by

Γ : t 7→
(

e
t
τs

(θC

τ
− Ie

)

,
τe

t
τ − τse

t
τs

τ − τs

τ

C

(θC

τ
− Ie

)

+
τ

C
Ie

)

;

(36)
the coordinate y of the general form (Equation 21) do not exist
in this case, because the threshold is 1-dimensional. Figure 3
visualizes the set by the green curve.

4.2.3. Hypervolume Boundary in Implicit Form
The next step in our procedure is to convert the parametric
Equation (36) of the envelope into an explicit or implicit equation
for the coordinates (I,V). As section 3.2.3 does not provide
a general algorithm, below we illustrate the process using our
example model.

By equating the first component of Equation (36) to the
coordinate I and solving for t, we find

t = −τs ln
[(θC

τ
− Ie

)

/I
]

, (37a)

subject to the condition for I

e−
h
τs 6

1

I

(θC

τ
− Ie

)

6 1, (37b)

required for 0 6 t 6 h and a real logarithm.

Substituting Equation (37a) into the V coordinate of
Equation (36) we find

V =
τ Ie

C
+

τ I

C

τ
[(

θC
τ

− Ie
)

/I
]1− τs

τ − τs

τ − τs
(38)

subject to the condition (Equation 37b). Let us analyse this
equation, in view of its extension to an inequality of the form
χ(I,V) < 0 as required in section 3.2.3. First, we observe that

τe
t
τ − τse

t
τs

τ − τs
6 1 for 0 6 t 6 h. (39)

The inequality can be proven by studying the derivative of the
fraction with respect to t. The derivative is always negative in the
range above and the only maximum of the fraction is the value
unity assumed at t = 0.

Inspection of Equation (38) and of its parametric form
(Equation 36) shows that we must consider three cases: Ie ⋚
θC/τ , i.e., whether the external current is smaller or larger than
the rheobase current

Iθ = θC/τ ; (40)

this is the current necessary to reach threshold in an infinite time
starting from any state with I 6 0.

• If Ie < Iθ , then I is restricted to

0 < Iθ − Ie 6 I 6 e
h
τs (Iθ − Ie). (41)

In this case, using the inequality (Equation 39), the V component
of the envelope (Equation 36) is always smaller than the
threshold:

V ≡
τ Ie

C
+

τ I

C

τ
[

(Iθ − Ie)/I
]1− τs

τ − τs

τ − τs
6 θ when Ie < Iθ .

(42)

• If Ie > Iθ , then I must be negative and restricted to

e
h
τs (Iθ − Ie) 6 I 6 Iθ − Ie < 0. (43)

In this case, using the inequality (Equation 39), the V component
of the envelope (Equation 36) is always larger than the threshold:

V ≡
τ Ie

C
+

τ I

C

τ
[

(Iθ − Ie)/I
]1− τs

τ − τs

τ − τs
> θ when Ie > Iθ .

(44)

• If Ie = Iθ , the envelope degenerates to a point: Γ (t) = (0, θ),
which is the limit point reached in infinite time from any initial
point in the no-spike region; this is the geometric interpretation
of the equality of external and rheobase currents.

The function representing the envelope, Equation (23) of
section 3.2.3, has in this case the explicit form

χ(I,V) := V −
τ Ie

C
−

τ I

C

τ
[

(Iθ − Ie)/I
]1− τs

τ − τs

τ − τs
,

with (I,V) ∈ Dχ :=
[

Iθ − Ie, e
h
τs (Iθ − Ie)

]

× R. (45)
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If we calculate its differential, as discussed in section 3.2.3, we
find that the latter is a positive multiple of the differential of
the backpropagated threshold for each t. This is true in each of
the three cases above. Consequently, the inequality χ(I,V) < 0,
(I,V) ∈ Dχ always includes the no-spike region.

In summary, we arrive at an analytic, implicit equation
for the curved boundary (Equation 45). The expression is a
transcendental function in I, owing to the generally irrational
exponent 1 − τs/τ , but it is used in an inequality, hence we do
not need to find its roots.

4.2.4. Boundary Intersections and Final System
We can now assemble the system of inequalities defining the no-
spike region consisting of the boundaries (Equations 34, 35), and
the envelope (Equation 45).

With some rearrangements, simplifications, and the
introduction of two new functions f , b, the condition reads:

s0 = (I,V) ∈ no-spike region ⇔

V < θ (46a)

and

V < fh,Ie (I) := e
h
τ θ +

τ Ie

C

(

1− e
h
τ
)

+ τse
− h

τs
τ I

C

e
h
τ − e

h
τs

τ − τs
(46b)

and

V < bIe (I) :=
τ Ie

C

+
τ I

C

τ
[

(Iθ − Ie)/I
]1− τs

τ − τs

τ − τs
if I ∈

[

Iθ − Ie, e
h
τs (Iθ − Ie)

]

(46c)

Figure 5 illustrates the system for the two cases Ie < Iθ and
Ie > Iθ . In the former case all three inequalities are necessary; in
the latter, as well as for Ie = Iθ , the last inequality is automatically
enforced by the first because its right-hand side is larger than the
threshold θ [see Equation (44)].

4.3. The Region of Missed Spikes
In Figure 3, lower panel, the trajectories of several states during
a timestep h and ending on the threshold line are represented by
yellow curves. In that figure we can identify a region were such
trajectories self-intersect: it is bounded by a segment of the thick
light blue line, a segment of the thick dark blue line, and a portion
of the thick green curved line. Trajectories with initial states in
this region must therefore cross the threshold twice during the
interval ]t0, t0 + h]. As explained in section 3.3, their threshold-
crossing is not detected by the sole condition V[s(t+h)] > θ . All

FIGURE 5 | System of inequalities, Equation (46), determining the no-spike

region. The colored areas represent the complementary inequalities of the

system (46), so the solution of that system is the white area. The red region

delimited by the horizontal line corresponds to the first equation of the system,

the blue region delimited by the inclined line to the second, and the yellow

region delimited by the curved line to the third. Upper: Case Ie < Iθ , all

inequalities necessary. Lower: Case Ie > Iθ , the third inequality is redundant.

states in this region thus generate spikes that are missed by the
standard test (Equation 1).

This region is crucial for the comparison of the performances
of schemes implementing the present lossless method and
schemes relying on the standard test (Equation 1). This
comparison is quantitatively made in section 4.4.3.

4.4. Optimization, Time Performance, and
Accuracy
4.4.1. Numerical Implementation and Optimization
In the last section we arrived at the system of three inequalities
(Equation 46) that determines whether or not the current state
(V , I) will cross the threshold within the timestep h. The state
will cross the threshold if the system is not satisfied, and it will
not cross the threshold if the system is satisfied. This system of
inequalities constitutes the lossless method in the present model.
The system requires the current timestep h, state (V , I), and
external electric current Ie as inputs (cf. section 3). The timestep h
is theminimumbetween the global timestep and the time interval
up to the next input coming from other neurons, hence it can
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differ every time the test is called. The external electric current Ie
may also vary, stepwise, during the simulation, hence it may also
be distinct at each call of the test.

If the system of inequalities is satisfied, thus predicting the
absence of a spike within a timestep h, then the state of the
neuron is evolved by applying the propagator (Equation 8) with
Equations (28, 29), leading to a new state, and the procedure
starts again. If the system is not satisfied, thus predicting the
occurrence of a spike within h, it is then necessary to compute
the time tθ at which the threshold is crossed. This calculation,
explained in Appendix section A.1, is made by interpolation
between the current state and time, and the state and time tmax

at which the membrane potential would reach its maximum if
allowed to increase above threshold. Once tθ is calculated, a spike
is emitted, communicated to the post-synaptic neurons, and the
membrane potential is reset to Vreset for a refractory period.
When this refractory period is over the procedure starts again.

In the evolution loop just described, the membrane potential
is reset to a value below threshold as soon as it crosses the latter.
Thus no initial state can have V > θ . This means that the first
inequality (Equation 46a) in the system is always satisfied and
can be dropped. Only inequalities (Equations 46b,c) have to be
assessed, leading to the reduced system

{

V < fh,Ie (I),

V < bIe (I).
(47)

We first discuss the case Ie < Iθ ≡ θC/τ .
The geometric meaning of the inequalities above is illustrated

in Figure 6. The figure shows four regions: NS1, NS2, S1, S2. The
no-spike region is the union of NS1 and NS2, the spike region the
union of S1 and S2. In the figure they are separated by a thick line,
partly curved and black, partly straight and blue. Subregion S2 is
particularly important: it is the region of missed spikes discussed
in section 4.3, corresponding to the self-intersection region of
Figure 3, lower panel. It contains those states that lead to spikes
missed by schemes that rely on the standard test (Equation 1).

Region S1 is separated from S2 by a dashed blue line, and
from NS1 by a continuous blue line, the continuation of the
dashed one. This partly dashed, partly continuous blue line
corresponds to the equation V = fh,Ie (I). Hence if the inequality
V < fh,Ie (I) is not satisfied then the initial state is in region
S2 or on its blue boundary, and there will be a spike. If the
inequality is satisfied the state could be in S2 − spike − or
NS1 ∪ NS2 − no spike; an undetermined case. This inequality
requires modest computational costs because it is linear in I
and Ie and involves exponentials of h. Regions S2 and NS2 are
separated by a black curve: this is the envelope, corresponding

to the equation V = bIe (I) for I ∈
[

Iθ − Ie, e
h
τs (Iθ − Ie)

]

.

Hence if the inequality V < bIe (I) is not satisfied the initial
state is in S2 or on its boundary, and there will be a spike. If
the inequality is satisfied the initial state is either in NS2, or

in NS1 with Iθ − Ie < I < e
h
τs (Iθ − Ie), and no spike will

occur.
The computationally most expensive inequality is V < bIe (I)

because it involves irrational powers of I and Ie. It is advisable to

avoid its direct computation as often as possible by pre-testing
a linear inequality. In section 3.2.3 we discussed how such a
pre-test is indeed possible thanks to the convexity of the no-
spike region. There, we argued that the curved envelope can be
approximated by a simplicial mesh, which simply reduce to one
straight segment in the present two-dimensional case: this is the
dot-dashed red line in Figure 6, separatingNS1 andNS2. This line
has equation V = gh,Ie (I) with

gh,Ie (I) := θ +
τse

h
τs

τ − τs

τ

C
I + e

h
τ

τ

C
(Iθ − Ie), (48)

and the corresponding inequality

V < gh,Ie (I) (49)

has the same computational costs as V < fh,Ie (I).
If the auxiliary inequality V < gh,Ie (I) is satisfied, the

initial state is in NS1 and V < bIe (I) is also satisfied. It is
therefore convenient to test the auxiliary inequality before the
computationally costly one, which can be discarded if the test
is positive. Figure 6 suggests that this test might be positive
for the majority of initial states because region NS1 is much
wider than NS2. This possibility would be very advantageous,
but we now argue that it should be verified by a dynamical
analysis.

The system (47) can be translated into a computational
algorithm in several different ways, depending on the order
of evaluation of its two inequalities and of the auxiliary
inequality (49). In simplified terms, such an algorithm consists
in a sequence of tests—variously implemented as if, and, or
constructs—for finding the initial state in space-time regions R1,
R2, and so on. The order of these tests is important. The average
time cost of the algorithm in a long simulation is given by

∑

i pici,
where pi is the frequency with which states are found in region Ri,
which we call “occupation frequency,” and ci is the cumulative
time cost of the test for region Ri. This time cost ci is cumulative
in the sense that all tests up to the (i − 1)th must have been
performed, with false outcomes, to arrive at the test for Ri. The
efficiency of an algorithm therefore depends on the mathematical
form of the inequalities defining a region and on the occupation
frequencies of the regions, determined by the dynamics. These
two factors can be extrapolated by a theoretical analysis, or
more practically measured by running long test simulations
with typical network setups corresponding to the cases one is
interested in.

We now try to determine the most efficient algorithm
for the present case. Region S1 is the least costly, because
bounded by one line and therefore involving one inequality
linear in I; then region NS1, bounded by two lines involving
two linear inequalities; and finally regions NS2 and S2,
bounded by the curve that involves rational exponentiation.
For this example model, we tried different orderings but
show here only two possible extreme cases to illustrate
that there is no significant difference in the computational
cost.
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FIGURE 6 | State-space subregions formed by the intersections of the reduced inequalities (Equation 47): V < fh,Ie (I) (straight blue line, partly dashed partly

continuous) and V < bh(I) (black curve), and by the auxiliary inequality (Equation 49): V < gh,Ie (I) (dot-dashed straight purple line). The spike region is S1 ∪ S2, the

no-spike region is NS1 ∪ NS2. The subregion S2 contains all states that emit spikes undetected by the standard test (Equation 1); they are detected by the lossless

method.

Algorithm 1

bool is_spike(h):
pre-compute gh,Ie (I)
if V 6 fh,Ie (I) and V < gh,Ie (I) then

return false

else if V > gh,Ie (I) then
return true

else if V > bIe (I) then
return true

else

return false

Algorithm 1 is based on the assumption that the occupation
frequency of a subregion is proportional to that subregion’s
relative size. If we check the two largest first, in the order NS1,
S1, S2, NS2, we are therefore more likely to exit the test in its first
if branches. The value of gh,Ie is used in two if branches, so it
is computed just once and saved before the if sequence in order
to save some computations.

Algorithm 2 uses a composite or-and condition rather than
several ifs. Assuming left-to-right evaluation, the algorithm
corresponds to testing first S1 (left side of or), then S2 (right
side of or), either case leading to a spike. If neither is true,
no further tests are necessary because the state must necessarily
be in the no-spike region. The test for S2 is made less costly
on average by using the auxiliary inequality (Equation 49). This
algorithm uses one test less overall than the previous one, but
it may require one more test on average, if NS1 is the region
with highest occupation frequency. The left-to-right evaluation
assumption does not always hold in modern processors, which
build their own statistics to optimize the test order of logical
constructs.

Algorithm 2

bool is_spike(h):
if V > gh,Ie (I) or
[V > fh,Ie (I) and V > bIe (I)] then
return true

else

return false

The analysis assumed Ie < Iθ ≡ θC/τ . The reduced system
(47) and the Algorithms 1 and 2 are, however, also valid in
the case that Ie > Iθ , corresponding to the lower panel of
Figure 5. In this case subregions NS2 and S2 do not exist below
the threshold, and the inequalities V < bIe (I) and V < gh,Ie (I)
are always satisfied when V < θ ; they always evaluate to
true in both algorithms. Both algorithms therefore correctly
distinguish spiking from non-spiking states in this case, although
they become inefficient owing to the additional superfluous
evaluations of bIe (I) and gh,Ie (I) for spiking states. We decide
not to modify them in the present work because the case Ie >
Iθ is unusual in real applications. More efficient algorithms for
this case can be designed by interested readers following the
guidelines just given in this section.

4.4.2. Occupation Frequencies
We want to measure the occupation frequencies in the typical
case of a neuron embedded in a recurrent network, receiving
fluctuating synaptic input. The setup for this simulation
is illustrated in Figure 7A and its formula explained in
Appendix section A.2. One neuron is coupled with strengths J
and −J to an excitatory and an inhibitory Poisson generator and
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A B

FIGURE 7 | (A) Schematic of the simulation setup used to calculate occupation frequencies and to compare the hybrid scheme with lossless method Algorithm 1,

with lossless method 2, and with the standard test. The neuron model (empty red circle), implementing one of the three schemes, receives input from an external

current and from one excitatory (E) and one inhibitory (I) Poisson generator. The total input has mean µ and variance σ2. (B) Sample of membrane-potential evolution

for µ = 15 mV and σ2 = 25 mV2.

also receives a constant external current. The Poisson generators
each mimic an excitatory and an inhibitory population. The
neuron thus receives a fluctuating input current having average
µ and variance σ 2. In this instance the code of the simulation
includes a subroutine that informs us of the current state every
time the lossless method test is called, without altering the test or
the dynamics.

Figure 8A gives a visual idea of the occupation frequencies for
µ = 15 mV, σ 2 = 25 mV2, and J = 0.1 mV (all expressed in
volts through multiplication by a resistance of τ/C = 40 M�),
which correspond to the case Ie < Iθ . These values correspond
to a composite average input of 250, 000 spikes/s, and a total
average input current of 400 pA. This presynaptic input makes
the neuron fire at an average rate of seven spikes/s. A sample of
its membrane evolution is shown in Figure 7B. Subregion NS1
has the overwhelmingly largest occupation frequency. The other
three subregions have actually very small areas, as clear from the
axis ranges of Figure 8B, owing to the very small value of the
average timestep, h = 4 × 10−3 ms, given by the inverse of the
input rate in this hybrid scheme.

A more precise comparison of the occupation frequencies

of the four regions NS1, NS2, S1, S2 is shown in Figure 9 for

several combinations of three network parameters, producing
different dynamical regimes. The parameters are the average µ,

the variance σ 2 of the input current, and the presynaptic coupling

strength J (all expressed in volts through multiplication by a

resistance of τ/C = 40 M�). The values of the parameters

(µ, σ 2, J) include typical realistic cases as well as some extreme

cases, like unusually high coupling strengths. Each panel of

Figure 9 shows the occupation frequencies for a set of dynamical
regimes with constant J,β , and several σ 2. The panels in the last
row correspond to the case Ie ≡ µC/τ > Iθ ≡ θC/τ , or µ > θ ,
in which subregions NS2 and S2 do not exist below threshold.

It is important to remember that the boundary and size
of the regions of Figure 6 vary with the timestep h, which is

a parameter of the simulation scheme, not of the dynamics
per se. In an event-driven or hybrid scheme, this step varies
inversely with the event input rate, which for Poisson input
generators is proportional to σ 2/J2. As a consequence, the
frequencies displayed in Figure 9 are not determined by the
Liouville distribution of the dynamical trajectory (Equation 27)
alone, but also by the details of the numerical-implementation
scheme. The dependence of the boundaries on h is illustrated in
Figure 8B. As h decreases, the line V = fh,Ie (I) and the auxiliary
line V = gh,Ie (I) gets closer to the threshold, and the subregions
S1, S2, NS2 disappear. This is plausible since in the limit of h = 0
we are not evolving the initial state at all. As h increases the
point of tangency between the envelope V = bIe (I) and the line
V = fh,Ie (I) moves to increasingly lower voltages and higher
currents; subregion S2 takes over S1 and subregion NS1 becomes
wider. For typical timestep values of several milliseconds, though,
subregions S1, S2, NS2 are still very small.

A rough estimate of the dependence of the areas of the
bounded regions S2 and NS2 on the parameters (µ, σ 2, J), for
µ < θ , can be obtained by looking at Figure 9 and considering
that these areas together form a triangle with vertices

(Iθ − Ie, θ),
(

eh/τs (Iθ − Ie), bIe [e
h/τs (Iθ − Ie)]

)

, (If , θ),

with If such that fh,Ie (If ) = θ . (50)

This triangle has base |If − (Iθ − Ie)| and height |θ −
bIe [e

h/τs (Iθ−Ie)]|. Expressing h and Ie in terms ofµ and σ 2 using
Equation (A3), where h is inversely proportional to the input rate
rI + rE, we find

areas of S2 and NS2 ∝
C

τ
(θ − µ)2

[

1−
τeh/τ − τse

h/τs

τ − τs

]

[

eh/τs (τ − τs) (1− eh/τ )

τs (eh/τ − eh/τs )
− 1

]

with h =
τ J2

σ 2
. (51)
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A B

FIGURE 8 | (A) Frequency density of states over state space at each call of the threshold-crossing test, for network parameters µ = 15 mV, σ2 = 25 mV2,

J = 0.1 mV, excitatory and inhibitory time constants, τexc = τinh = 2 ms. The colorbar is in units of 6× 109 mV−1 pA−1 (obtained from total number of events × area

element). The dotted purple line is the threshold θ . The only visible region in this plot is NS1. and the horizontal blue line is the boundary between no-spike and spike

regions. The spike region S1 ∪ S2 and subregion NS2 are not visible on this scale because of the exceedingly small average timestep h = 4× 10−3 ms.

To discern them we need to zoom in, as done in upper panel (B): the curved envelope and the two straight lines that separate S1, S2, and NS2 extend horizontally

and vertically for just about 1 pA and 10−5 mV. (B) Lower panel. In contrast, for a much larger timestep h = 5 ms the three boundaries would have a larger extension,

about 5, 500 pA and 20 mV, and be discernible in plot (A).

When τs . τ and J2 . σ 2 a Taylor expansion in J2/σ 2 to fourth
order gives a good approximation, with a relative error below
10%:

areas of S2 and NS2 ∝
C

τ
(θ − µ)2

[

τ 2

4τ 2s

(

J2

σ 2

)3

+
τ 2 (τ + τs)

8τs3

(

J2

σ 2

)4

+O

(

J2

σ 2

)5
]

.

(52)

This approximate formula shows that subregions NS2 and S2
grow with the square of the input mean µ and with the third
or fourth power of the ratio J2/σ 2. Recall that these regions
do not exist for µ > θ . The occupation frequencies do not
depend on the areas alone, however, but also on the dynamics, as
explained in the previous section. We can identify several other
dynamical mechanisms for their dependence on the parameters
(µ, σ 2, J):

• an increase in mean input µ leads to more frequent threshold
crossings, thus frequently bringing the voltage to its reset
value, underneath subregions NS2 and S2. The occupation
frequencies of these subregions may therefore decrease with
µ even though their areas grow with µ;

• for low mean input µ, an increase in variance σ 2 means a
higher chance of high-V regions, and thus an increase in the

occupation frequencies of NS2 and S2, even though their areas
shrink with σ 2;

• for mean input µ close to the threshold, an increase in the
variance σ 2 leads to more frequent threshold crossings, and
may thus increase occupation frequency of S2 with σ 2, even
though its area shrinks with σ 2.

The occupation frequency of subregion NS1 (green circles)
dominates all others, varying from 90% to 100% depending on
the network parameters. Subregion S1 (yellow crosses) follows
in order of frequency and is the most frequently visited between
the two spike subregions. Subregions NS2 (blue squares) and S2
(red stars) are scarcely visited for lower synaptic amplitudes, with
frequencies from 0 to 10−6; and slightly more often at higher
synaptic amplitudes (frequencies from 0 to 10−2).

4.4.3. Time Performance and Accuracy of a Hybrid

Scheme Based on the Lossless Method
The average time costs of Algorithms 1 and 2 within a hybrid
scheme can be assessed by real-time simulation measurements.
The average time cost of a hybrid scheme based on the standard
test (1) can also be assessed in the same way for comparison. We
therefore compare the two algorithms of the lossless method and
the standard test in this section.

The basic setup is the same as for the frequency analysis
of section section 4.4.1, explained in Appendix section A.2,
with network parameters (µ, σ 2, J). The only difference is that
in the present case the code does not include the subroutine
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FIGURE 9 | Occupation frequencies of the four subregions NS1 (green circles), S1 (yellow crosses), NS2 (blue squares), S2 (red stars) of Figure 6, for various sets

(µ, σ2, J) of input-current mean and variance, and synaptic strength. Each panel shows the frequencies vs. current variance for fixed current mean and synaptic

strength. The columns have the same J, ranging from 0.1 mV (leftmost) to 5 mV (rightmost). The rows have the same µ, ranging from 10 mV (top) to 22 mV (bottom).

The frequencies were measured from N samples, depending on (µ, σ2, J). Excitatory and inhibitory time constants, τexc = τinh = 2 ms. The dotted lines in each plot

show the inverse number of samples 1/N for that network regime. The thickness of the segments connecting the data points equals one standard deviation. The

shaded regions show where the limiting frequencies (N → ∞) are expected to lie with 87% probability, using a Johnson-Dirichlet model with parameter k = 0.05

determined by posterior maximization (Johnson, 1932; Good, 1966; Zabell, 1982, 2005; Bernardo and Smith, 2000, § 3.2.5). The frequencies of region S2 (red stars)

are particularly important: they are the frequencies of spike-misses of the standard test (Equation 1).

that informs us of the frequencies, which would otherwise
increase and bias the real-time durations of the simulations.
Three instances of the basic setup are prepared: in the first the

neuron is modeled by a hybrid scheme with lossless method
Algorithm 1, in the second the neuron is modeled by a hybrid
scheme with lossless method Algorithm 2, and in the third
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the neuron is modeled by a hybrid scheme with the standard
threshold-crossing test (Equation 1). The various random-
number-generator seeds of the three instances are exactly the
same, so that the three neurons receive exactly the same input,
spike-for-spike; this is essential for a fair comparison between
the three schemes. The three instances are run for a long
time (2 × 106 ms) and repeated (in parallel) for several
times (Equation 10), enough to collect reliable statistics. The
statistics are collected for the same sets of (µ, σ 2, J) values
as in the frequency analysis. The total real-time length of a
simulation depends, in all three schemes, on how often the
checkpoints and threshold-crossing tests occurs, and this in
turn depends on the presynaptic input frequency, as already
discussed.

Rather than showing the results for all sets of parameters
(µ, σ 2, J), which in this case are not very informative, we show
in Figure 10 those with the (J,µ) values that yield the slowest
and fastest performances. The average computation costs of
Algorithms 1 and 2, which embody the lossless method, turn
out to be very similar—within each other’s standard deviations—
and basically identical in comparison with the cost of the scheme
based on the standard test (Equation 1). Both are slower than
the hybrid scheme with the standard test: from around 30%
slower in the case of high-activity regime with frequent incoming
spikes (µ = 18 mV, J = 0.1 mV), to around 20% slower in
the case of low activity regime and infrequent incoming spikes
(µ = 10 mV, J = 5 mV). These are the extremes shown
in Figure 10. In most other sets of network parameters the
hybrid scheme with lossless method was around 20–25% slower
than the standard hybrid scheme with threshold-crossing test
(Equation 1).

As mentioned in section 4.3, subregion S2 contains all
states for which the standard threshold-crossing test misses
a spike. The occupation frequencies of this subregion are
therefore a direct measure of the number of spike missed, per
neuron, by the standard hybrid scheme. They are shown as red
stars in Figure 9 for the various sets of network parameters
(µ, σ 2, J). The frequency of missed spikes does not have a simple
monotonic dependence on the three parameters, owing to the
interaction of several mechanisms, discussed in section 4.4.2.
An increase in synaptic coupling J or input current µ generally
leads to more frequently missed spikes because the neuron
spikes more often overall. For very high—suprathreshold—
input currents, however, the frequency decreases again until
no spikes are missed anymore; this change in trend happens
because the checkpoints become more frequent. Regimes of low
J are diffusion-like processes, where frequent arrival of synaptic
events does not lead to missed spikes. Regimes of high J are
shot-noise processes, where sudden and infrequent arrival of
synaptic events leads to suprathreshold excursions and missed
spikes. Separate simulations show that the hybrid scheme based
on the lossless method, with either algorithm, reproduce the
analytic solution of the neuron model within floating point
precision.

For biologically realistic synaptic couplings, J < 1 mV, the
standard hybrid scheme is 30% faster than the scheme with the

A

B

FIGURE 10 | Computational costs of the hybrid scheme with lossless method,

Algorithm 1 (red), lossless method, Algorithm 2 (green), and standard

threshold-crossing test (1) (blue). (A) µ = 18 mV, J = 0.1 mV describes

regimes where the lossless method has the highest increase in computational

cost, around 30%. These are regimes of high activity and frequently incoming

spikes. (B) µ = 10 mV, J = 5 mV describe regimes where the lossless method

has the lowest increase in computational cost, around 20%. These are

regimes of low activity and infrequently incoming spikes. The data comes from

10 simulations of 2× 106 ms simulation-time each.

lossless method, and misses <1 spike every 106 test calls, per
neuron; for very low couplings J < 1 mV this figure even
becomes <1 spike every 108 test calls. For synaptic couplings
J > 1 mV the standard hybrid scheme starts to miss more
spikes, reaching even one missed spike every 500 test calls for
subthreshold average input currents; and it is only 8% faster than
the hybrid scheme with the lossless method. From these figures a
user can decide to use the hybrid scheme with the standard or the
lossless test, depending on the desired balance of accuracy and
speed.

5. SUMMARY AND DISCUSSION

We have presented a general method to detect threshold crossing
for an integrable, affine or linear neuronal dynamical law.
This method is based on the geometric idea of propagating
the threshold plane backwards in time and to determine
whether the swept volume contains the initial state, rather
than checking whether the membrane potential of the forward-
evolved state has a maximum above threshold. These two
procedures are mathematically equivalent but geometrically
different. The forward-propagation procedure geometrically
checks for the intersection of a curve (the state trajectory)
with a hypersurface (the threshold). Our backward-propagation
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procedure geometrically checks for the “intersection” of a point
(the state) with a hypervolume (the threshold trajectory), i.e.,
the inclusion of the former in the latter. This geometric view
translates into a set of inequalities that an initial state has to
satisfy in order not to cross the threshold during its evolution;
and vice versa, if the system is not satisfied, a threshold
crossing is certain. If In the latter case its time of occurrence is
calculated by standard root-finding algorithms (Press et al., 2007,
ch. 9).

We have calculated the system of inequalities expressing
the threshold-crossing condition for a generic affine or linear
neuronal dynamical law in any dimension. The result is the
conjunction of inequalities (Equation 25). It consists of two linear
inequalities in the state-space variables, voltage and currents,
and a non-linear one. The numerical implementation of this
system of inequalities can be further optimized, on a case-by-
case basis. In order to give a concrete implementation example of
the generic inequalities (Equation 25), to show their geometrical
meaning, and to give an example of optimization, we have
applied our procedure step-by-step to the two-dimensional case
of a leaky integrate-and-fire neuron with exponentially decaying
post-synaptic currents (Rotter and Diesmann, 1999). The generic
inequalities (Equation 25) take in this case the concrete form
(Equation 46).

The quantitative data in the present work are obtained by
integrating these inequalities into a combined event-and-time-
driven simulation framework (Morrison et al., 2007) for large-
scale spiking neuronal network models as released by Bos et al.
(2015). Implementation and comparison to earlier work show
that:

• the system of inequalities, the non-linear one in particular,
can be expressed analytically in terms of the state-space
variables even when the original threshold-crossing condition
involves a transcendental equation; compare Equation (46)
with Equation (31);

• the computationally expensive non-linear function in the
system can be conveniently approximated by a simplicial
mesh, speeding up the algorithm even further by testing a
linear inequality first, ruling out the majority of initial states;

• our method reproduces the analytic solution of the neuron
model within floating point precision. It detects all threshold
crossings, in particular those that the approximate test
(Equation 1) of Hanuschkin et al. (2010)misses in some ranges
of mean activity, fluctuation, and synaptic-coupling strength
(Figure 9);

• at the default spike accuracy of 0.1 ms of the reference
simulator, our method is 20–30% slower than the fastest
available solver with spike loss (Hanuschkin et al., 2010). It
therefore compares with embedded event driven methods in
speed (see Hanuschkin et al., 2010, Figure 5, inset).

In practice the method of Hanuschkin et al. (2010) rarely
misses spikes for biologically realistic synaptic amplitudes. At
low frequencies of afferent synaptic events, however, threshold
crossings can be missed, because fewer incoming events mean

fewer checkpoints on the grid, and more time available for the
voltage of a neuron to surpass threshold and go below it again.
Our method offers an alternative for users who need exact spike
detection and are willing to pay a price in terms of a slightly
longer computation time.

In many simulations the time constants of excitatory and
inhibitory currents are different, because these currents are
mediated by various receptors, each with its characteristic time
scale. The state of such a model is a vector in a three-dimensional
state space, its variables being the excitatory and inhibitory
currents and the membrane voltage. If the dynamical law of such
model is still affine or linear, the general method we have here
presented can still be applied to find the threshold crossings
without losses. The threshold is in this case a two-dimensional
flat surface, and its back-propagated image is also a flat surface
within the three-dimensional space, as shown in Figure 4.

In state spaces of higher dimensions it can be more difficult
to derive the non-linear inequality of the curved envelope in the
system (Equation 25) in closed form, but it is still possible to
construct a nested sequence of linear inequalities, corresponding
to a flat simplicial mesh over the curved envelope, that
approximate the non-linear inequality to any desired precision,
as explained in section 3.2.3 and exemplified in section 4.4.1. Such
construction needs to be done only once for any given model,
prior to the simulation, and it cannot miss spikes owing to the
concavity of the envelope. Being linear, such nested inequalities
are likely computationally not too expensive, but further work
must investigate the scaling of the computational cost of our
method in such cases. The model considered here presents the
simplest non-trivial case in which our algorithm can be applied.

At the same time, the step from a model without synaptic
filtering to one with synaptic filtering is of qualitative nature:
the response properties of the two models are fundamentally
different, for example in terms of the weak signal transmission
in the limit of high frequencies (Brunel and Wang, 2001). As
such the described model is relevant, because it remedies some
artifacts of its simpler counterparts.

An important extension of the method presented here is
the inclusion of non-linear sub-threshold dynamics, such as
in Hodgkin-Huxley dynamics, the quadratic integrate and fire
model, or the exponential integrate-and-fire model (Gerstner
and Kistler, 2002). Having a non-linear sub-threshold dynamics
does not invalidate the general idea we have used, but makes
it more complex to derive a system of inequalities separating
the states that lead to spikes from those who do not. In
principle the idea of back-propagation of the threshold plane
can still be applied to a non-linear dynamical law, although the
states on the threshold, when backpropagated, will not lie on a
hyperplane. The hypersurface separating the spike and no-spike
regions is still a set of critical points given by the vanishing
of the Jacobian determinant of the backpropagation map, as
in section 3.2.1. The uniqueness of the solution of differential
equations guarantees the validity of this approach. In practice the
resulting mathematical expressions will be analytically tractable
only in very special cases. Yet, the resulting envelope could still
be found with numerical methods—as we said this only needs to
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be done once per simulation—and it could be approximated by a
mesh of simplices or splines.

Most models with non-linear sub-threshold evolution
equations, however, do not require the approach described here
in the first place. The reason is that the non-linearity in these
models typically causes the generation of an explicit action
potential, the rapid increase (or divergence in some models) of
the membrane potential. This is certainly true for the examples
mentioned above. The very threshold-crossing problem that
we have solved here for the simplified leaky integrate-and-fire
dynamics is therefore absent in these more biophysically realistic
models at the expense of having to solve a non-linear set of
differential equations at each time step.

The problem of detecting some sort of threshold crossing in a
system of coupled first-order linear differential equations appears
in many other applications and phenomena like switching,
friction, and saturation (Hiebert and Shampine, 1980). For
example, in an air-conditioning unit a thermostat controls the
on-off state based on a certain threshold value of the room
temperature (Shampine, 1994). The dynamics of this system is
similar to that described in section 4.1. Another example is the
problem of ejecting a pilot such that collision with the aircraft
stabilizer is avoided.

The present work has used concepts from differential
geometry, in particular extrusions (Bossavit, 2003) and critical
points of maps betweenmanifolds, and shows that these concepts
have a readily understandable geometrical and visual meaning.
The notion of extrusion has recently found applications in
numerical and discretization techniques for partial and integral
differential equations (Desbrun et al., 2005). The notion of critical
points of a manifold mapping is ubiquitous in science: from
the caustics of propagating seismic fronts, at which the seismic
wave changes its phase (Romanowicz and Dziewonski, 2007) §

1.04, to the singularities between two coordinate charts in general
relativity (Misner et al., 2003), which affect the accuracy of global
navigation satellite systems (Coll et al., 2012; Sáez and Puchades,
2013).

Indeed, the neuron model analyzed in section 4 exhibits a
similarity with the dynamics of a point mass near a black hole.
If the simulation timestep h is very large the curved surface
separating the states that lead to a spike from those that do not
acts like an event horizon in general relativity: a state evolved
from the spike region can enter the no-spike region, but once

there it cannot escape and will always remain a “no-spike”
state. This is only true for the dynamical law (Equation 7),
though, with constant affine term and no resets at threshold.
Inputs from other neurons lead to discontinuous changes in the
affine term of the dynamical law, causing a “transport” of initial
states out of the event horizon, from the no-spike to the spike
region. Nevertheless, such similarities are maybe more than mere
coincidences. For example, the trajectory of the threshold surface
of a leaky integrate-and-fire model with α-shaped post-synaptic
currents (Bernard et al., 1994) can be implicitly expressed in
terms of the Lambert-W function (Corless et al., 1996), as an
analysis along the lines of section 3.1 shows; and this function
also appears in the implicit expression of point-mass trajectories
in (1+ 1)-dimensional general relativity (Mann and Ohta, 1997).

It is surely worthwhile to bring the younger field of neuronal
dynamics closer to ideas and techniques of the elder fields of
differential geometry and general relativity.
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A. APPENDIX

A.1. Interpolation for Threshold-Crossing
Time
If we know that the neuron voltageV is below threshold at times t
and t+h but above threshold somewhere in the interval ]t, t+h],
then by continuity it must reach a maximum above threshold at
a time tmax ∈ ]t, t + h]. This time can be obtained solving the
equation V̇(tmax) = 0, with V(t) given by Equation (27). The
solution (Hanuschkin et al., 2010) is

tmax = −
ττs

τ − τs
ln

[

τ

τs
−

τ − τs

τ

(

Ie

I
−

CV

τ I

)]

, (A1)

from which the potential V(tmax) > θ can also be easily
calculated.

The time tθ ∈ ]t, tmax] at which the first threshold crossing
occurs, V(tθ ) = θ , must lie between t and tmax, with V(t) <

V(tθ ) < V(tmax), and can thus be interpolated using a root-
finding algorithm (Press et al., 2007).

A.2. Network Setup
The dynamics of the membrane potential V and synaptic
current I can be described, if the input is treated stochastically
and for weak synaptic couplings, by a diffusion process with
equations (Fourcaud and Brunel, 2002)

τ
dV

dt
= −V(t)+ (RI)(t),

τs
d(RI)

dt
= −(RI)(t)+ µ + σ

√
τξ (t).

(A2)

with ξ a zero-mean Gaussian process. The parameters µ and σ 2

characterize the stochastic input and are the mean and variance
of the total incoming synaptic current. They are related to the
synaptic couplings {Ji} and firing rates {ri} of the input neurons
via µ = τ

∑

i Jiri and σ 2 = τ
∑

i Ji
2ri. If we have one excitatory

and one inhibitory population of input neurons, mimicked by
two Poisson generators with rates rE and rI coupled to the
neuron with strengths JE and JI (where J = τ

Cw and w is the
synaptic weight of the current), and by an input current Ie,
then

µ =
Ieτ

C
+ τ (JIrI + JErE)

σ 2 = τ (JI
2rI + JE

2rE),

1

r
= τr + τ

√
π

∫
θ−µ

σ
+ |ζ (1/2)|√

2

√
τs
τ

Vr−µ
σ

+ |ζ (1/2)|√
2

√
τs
τ

ey
2
[1+ erf(y)] dy,

(A3)

where r is the output firing rate of the neuron, approximated
to linear order in

√
τs/τ , τr is the refractory time, Vr the

reset voltage, and ζ the zeta function (Abramowitz and Stegun,
1972).
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