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Glucagon-like peptide-1 (GLP-1) is an incretin hormone known to stimulate glucose-dependent
insulin secretion. The GLP-1 receptor agonist, exendin-4, has similar properties to GLP-1 and is
currently in clinical use for type 2 diabetes mellitus. As GLP-1 and exendin-4 confer cardioprotection
after myocardial infarction, this study was designed to assess the neuroprotective effects
of exendin-4 against cerebral ischemia–reperfusion injury. Mice received a transvenous injection
of exendin-4, after a 60-minute focal cerebral ischemia. Exendin-4-treated vehicle and sham groups
were evaluated for infarct volume, neurologic deficit score, various physiologic parameters, and
immunohistochemical analyses at several time points after ischemia. Exendin-4 treatment
significantly reduced infarct volume and improved functional deficit. It also significantly suppressed
oxidative stress, inflammatory response, and cell death after reperfusion. Furthermore, intracellular
cyclic AMP (cAMP) levels were slightly higher in the exendin-4 group than in the vehicle group.
No serial changes were noted in insulin and glucose levels in both groups. This study suggested
that exendin-4 provides neuroprotection against ischemic injury and that this action is probably
mediated through increased intracellular cAMP levels. Exendin-4 is potentially useful in the
treatment of acute ischemic stroke.
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Introduction

Diabetes mellitus is a major independent risk factor
for stroke, and hyperglycemia is associated with poor
outcome because of reinforced oxidative stress and
inflammation (Kamada et al, 2007). We have recently
highlighted the benefits of glucagon-like peptide-1
receptor (GLP-1R) agonists, a new clinically available
class of therapeutic agents for diabetes mellitus, in
the control of blood glucose levels in the acute phase
of ischemic stroke (Bruno et al, 2002).

Oxidative stress and inflammation are responsible
for neuronal damage in acute cerebral ischemia.
In ischemia–reperfusion injury, reactive oxygen and
nitrogen species induce protein oxidation, DNA
damage, and lipid peroxidation (Warner et al,
2004). Oxidative damage induced by reactive oxygen
radicals causes complex interactions with inflamma-
tion and apoptosis-like cell death, and the results
expand brain damage (Andrabi et al, 2004). Hence,
control of these phenomena is important to achieve
neuroprotection.

Glucagon-like peptide-1 is a gut hormone secreted
from L cells of the small intestine in response to food
ingestion, and facilitates glucose-dependent insulin
secretion (Baggio and Drucker, 2007). Exendin-4 is a
GLP-1R agonist that shares 53% amino-acid se-
quence identity to GLP-1. It exhibits biologic actions
similar to GLP-1 and has a longer half-life than does
GLP-1 by resisting degradation by dipeptidyl pepti-
dase-4 (Perry and Greig, 2003). Furthermore, exen-
din-4 can also induce pancreatic b-cell proliferation
and inhibition of b-cell apoptosis, similar to GLP-1
(Baggio and Drucker, 2007). Consequently, exendin-4

Received 8 December 2010; revised 24 January 2011; accepted 12
March 2011; published online 13 April 2011

Correspondence: Professor T Urabe, Department of Neurology,
Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan.
E-mail: t_urabe@juntendo.ac.jp

This study was supported in part by a High Technology Research

Center grant and a Grant-in-Aid for exploratory research from the

Ministry of Education, Culture, Sports, Science and Technology,

Japan, and by a Grant-in Aid for Scientific Research (C) from the

Japan Society for the Promotion of Science (21500338).

Journal of Cerebral Blood Flow & Metabolism (2011) 31, 1696–1705
& 2011 ISCBFM All rights reserved 0271-678X/11 $32.00

www.jcbfm.com

http://dx.doi.org/10.1038/jcbfm.2011.51
mailto:t_urabe@juntendo.ac.jp
http://www.jcbfm.com


was recently approved for the treatment of type 2
diabetes mellitus. Apart from their effects in dia-
betes, several studies have shown that GLP-1 and
exendin-4 are neuroprotective in brain damage
caused by various insults (Perry et al, 2002a, b,
2003; Perry and Greig, 2003) and can induce
neurogenesis after a 6-hydroxydopamine insult
(Bertilsson et al, 2008; Harkavyi et al, 2008). How-
ever, to our knowledge, no report has analyzed the
action of exendin-4 in cerebral ischemia, although
exendin-4 confers cardioprotection and myocardial
functional recovery under myocardial ischemic in-
jury (Bose et al, 2005; Timmers et al, 2009). In this
study, we investigated whether exendin-4 can pre-
vent brain damage after ischemia–reperfusion injury.

Materials and methods

Experimental Protocol

Animal procedures were conducted after obtaining the
approval of the Animal Care Committee of the Juntendo
University. Adult 8-week-old male C57BL/6 mice weighing
20 to 25 g were used in this study, and were housed under
controlled lighting and provided with food and water
ad libitum. Mice were divided at random into three groups.
(1) The exendin-4 group (n = 49): these mice were treated
with tail vein injection of exendin-4 (Sigma-Aldrich,
St Louis, MO, USA) after left middle cerebral artery
occlusion (MCAO), which was performed using an
intraluminal thread for 60 minutes as described previously
(Hara et al, 1996). The selected dose and schedule of
exendin-4 treatment were based on preliminary experi-
ments that used exendin-4 at 0.1, 1, 10, or 50 mg/100mL per
mouse and that administered exendin-4 at 0 (immediately),
1, or 3 hours after cerebral reperfusion. (2) The vehicle
group (n = 24) received intravenous infusion of 0.9%
saline after MCAO at a rate and volume similar to those
applied in the exendin-4 group. (3) The sham-operated
group (n = 8) underwent the procedure except for MCAO.
During this procedure, body temperature was kept at
37.01C±0.51C using a heating pad. Systolic blood pressure
was monitored using a noninvasive tail-cuff system
(Softron BP-98A NIBP, Softron Inc., Tokyo, Japan) in
conscious mice. Regional cerebral blood flow was mea-
sured by laser-Doppler flowmetry before, during, and after
MCAO, as well as before killing. At 24, 72 hours, or 7 days
after reperfusion, mice of each group were anesthetized by
an intraperitoneal injection of 50 mg/kg pentobarbital and
then decapitated. To evaluate infarct area and volume,
brain slices were stained with cresyl violet, scanned using
Axio-Vision software (Carl Zeiss, Jena, Germany), and
measured by the ImageJ program (NIH, http://rsb.info.
nih.gov/nih-image/) (Tureyen et al, 2004).

Neurologic Evaluation

Neurologic function was evaluated by a modified scoring
system described previously (Hara et al, 1996): 0, no
observable neurologic deficit (normal); 1, failure to extend
the right forepaw on lifting the whole body by the tail

(mild); 2, circling to the right side (moderate); 3, loss of
walking or righting reflex (severe).

Measurement of Insulin and Glucose Levels

Serum insulin level was determined using an insulin
enzyme-linked immunosorbent assay (Ultra Sensitive
Mouse Insulin ELISA Kit, Morinaga, Yokohama, Japan),
and plasma glucose level was measured using a blood
glucose meter (Johnson & Johnson, New Brunswick, NJ,
USA). In this experiment, blood (200 mL) was collected
from the ophthalmic venous plexus before MCAO and at
0 (immediately), 3, 6, 12, and 24 hours after reperfusion.

Immunohistochemistry

Immunohistochemistry was performed on 20-mm-thick free-
floating brain sections. After pretreatment as reported
previously (Miyamoto et al, 2009), sections were stained
overnight using rabbit anti-GLP-1R (dilution 1:50, Medical
Biological Laboratories Co., Nagoya, Japan), mouse anti-8-
hydroxy deoxyguanosine (8-OHdG, dilution 1:100, Japan
Institute for the Control of Aging, Shizuoka, Japan), mouse
anti-4-hydroxy 2-hexenal (HHE, dilution 1:100, Japan
Institute for the Control of Aging), rabbit antiionized
calcium-binding adapter molecule-1 (Iba-1, dilution 1:500,
Wako Pure Chemical Industries, Osaka, Japan), and rabbit
antiphosphorylated cyclic AMP (cAMP) response element-
binding protein (pCREB, dilution 1:100, Upstate Biotechnol-
ogy, Lake Placid, NY, USA) antibodies. The antigen-retrieval
method was used for staining GLP-1R as described earlier
(Miyamoto et al, 2009). Sections were then incubated with
biotinylated secondary antibodies (dilution 1:300, Vector
Laboratories, Burlingame, CA, USA) and subsequently
processed using avidin-biotinylated peroxidase (Vectastatin
ABC kit, dilution 1:400, Vector Laboratories).

Double Immunofluorescence Histochemistry

Double immunofluorescence staining was performed by
simultaneous incubation of the sections with anti-GLP-1R
(dilution 1:50), mouse antineuronal nuclei (dilution 1:100,
Chemicon International Inc., Temecula, CA, USA), rat
anti-CD31 (dilution 1:100, BD Transduction Laboratories,
San Jose, CA, USA), mouse antiinducible nitric oxide (iNOS,
dilution 1:100, BD Transduction Laboratories), and anti-Iba-1
(dilution 1:500) antibodies. After incubation overnight with
the primary antibody, sections were treated with fluoro-
chrome-conjugated secondary antibody (Cy3 or fluorescein
isothiocyanate, dilution 1:500, Jackson Immunoresearch
Laboratories, West Grove, PA, USA), and then mounted
with a Vectashield mounting medium (Vector Laboratories).

Terminal Deoxynucleotidyl Transferase (TdT)-
Mediated dUTP-Biotin Nick-End Labeling Staining

For detection of in situ DNA fragmentation, staining
with TUNEL (terminal deoxynucleotidyl transferase
(TdT)-mediated dUTP-biotin nick-end labeling) was
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performed using an In Situ Cell Death Detection Kit (TMR
Red, Roche, Mannheim, Germany), as described in detail
previously (Miyamoto et al, 2008).

SDS-PAGE and Immunoblotting

In each animal, a brain sample was harvested from the
ischemic region comprising the cortex and the striatum on
the operated side at 24, 72 hours, and 7 days after
reperfusion. Protein extraction and electrophoresis were
performed as described previously (Miyamoto et al, 2008).
Block Ace (Dainichi-Seiyaku, Gifu, Japan) or phosphate-
buffered saline containing 0.05% Tween-20 (Sigma-Al-
drich) was used for blocking. The transferred membranes
were incubated overnight with anti-HHE (dilution 1:1,000),
anti-iNOS (dilution 1:1,000), anti-pCREB (dilution
1:1,000), rabbit anti-CREB (dilution 1:1,000, Cell Signaling
Technology, Beverly, MA, USA), and mouse anti-a-tubulin
(dilution 1:10,000, Santa Cruz Biotechnology, Santa Cruz,
CA, USA) antibodies, followed by reaction with the
horseradish peroxidase-conjugated secondary antibody
(dilution 1:5,000, Amersham, Buckinghamshire, UK).
Immunoreactive bands were visualized using enhanced
chemiluminescence (ECL kit, Amersham). Equal protein
loading was confirmed by measuring a-tubulin (53 kDa).

Cyclic AMP Assay

Each brain sample was taken from the ischemic region
comprising the cortex and the striatum on the operated
side at 24, 72 hours, and 7 days after MCAO. The samples
were lysed in CelLytic reagent (Sigma Chemical Co.,
St Louis, MO, USA) with protease inhibitor (Calbiochem,
La Jolla, CA, USA). The cAMP content in the homogenized
brain extracts was measured using an immunoassay kit
(R&D Systems Inc., Minneapolis, MN, USA) as described
previously (Choi et al, 2002).

Cell Count and Statistical Analysis

In immunohistochemical analysis, positively stained cells
in the ischemic boundary zone adjacent to the ischemic
core (0.25 mm2, Supplementary Figure 1) were counted by
an investigator blinded to the experimental groups, using
Axio-Vision software (Carl Zeiss). All values in this
study are expressed as mean±s.e.m. One-way analysis of
variance followed by post hoc Fisher’s protected least
significant difference test was used to determine the
significance of differences in various indexes among the
different groups. A P-value < 0.05 denoted the presence of
a statistically significant difference.

Results

Exendin-4 Reduces Infarct Volume and Improves
Neurologic Deficit

The protocol to be used for exendin-4 treatment was
determined in a series of preliminary experiments

involving the use of different doses and schedules of
exendin-4. In these experiments, the infarct volume
was clearly smaller in mice treated with exendin-4 at
X10mg than in vehicle mice (Figure 1Aa), and
injection of exendin-4 at 0 hours after reperfusion
produced the best effect with regard to infarct
volume (Figure 1Ab). Hence, in the remaining
experiments, we used 10mg exendin-4 at 0 hours.
Significant reductions in infarct volume were ob-
served at 24, 72 hours, and 7 days after reperfusion in
the exendin-4 group than in the vehicle group
(Figures 1B and 1C). Furthermore, mice of the
exendin-4 group showed better functional recovery
than did those of the vehicle group (Figure 1D).

Physiologic Parameters

The serial changes in serum insulin and plasma
glucose levels during the entire experiment until
24 hours after reperfusion were similar in the
exendin-4 and vehicle groups (Figure 2A). Similarly,
there were no differences in various physiologic
parameters including regional cerebral blood flow
(Figure 2B) between the two groups.

Expression of Glucagon-Like Peptide-1 Receptor
in the Mouse Brain

Glucagon-like peptide-1 has multiple roles in the
central nervous system, and the expression of GLP-
1R in the brains of rodents and humans has been
established (Perry et al, 2003). First, we confirmed
the expression of GLP-1R in the brain. Glucagon-like
peptide-1R-immunopositive cells were detected in
the brain (normal, untreated), as reported previously
(Figure 3A). In addition, double immunostaining
showed colocalization of GLP-1R with both neuronal
nuclei (a neuronal marker) and CD31 (an endothelial
cell marker) (Figure 3B) apart from glial fibrillary
acidic protein (which is specifically expressed in
astrocytes) and Iba-1 (which is specifically expressed
in microglia and cells of monocytic lineage) (data not
shown).

Exendin-4 Suppresses Oxidative DNA Damage and
Lipid Peroxidation

Next, we investigated whether exendin-4 can control
oxidative stress in ischemia–reperfusion injury using
8-OHdG and HHE. 8-Hydroxy deoxyguanosine is a
major form of oxidative DNA damage product, and
HHE is one of the major lipid peroxidation products
that are formed by n-3 polyunsaturated fatty acids in
cells exposed to oxidative stress (Yamada et al,
2004). 8-Hydroxy deoxyguanosine- and HHE-posi-
tive cells increased until 72 hours after reperfusion,
and then tended to decrease. The number of these
oxidative stress marker-immunopositive cells was
significantly decreased in the exendin-4 group than
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in vehicle group (Figure 4A). The immunoreactivity
of HHE-positive band (75 kDa) at each time point was
similar to the results of immunohistochemistry, and
the intensity of the band in the exendin-4 group was
weaker than that in the vehicle group (Figure 4B).

Exendin-4 Suppresses Microglial Activation and
Inducible Nitric Oxide Expression

Next, we determined the relationship between
exendin-4 and reactive oxygen species by examining

microglial activation and iNOS formation. The
number of ramified Iba-1-positive microglia reached
a peak level at 72 hours after reperfusion, and then
tended to decrease. The number of Iba-1-positive
cells at each time point was significantly lower in
the exendin-4 group than in the vehicle group
(Figure 5A). The iNOS immunostaining was ob-
served in the microglia from 24 hours after reperfu-
sion, and detected abundantly in the microglia at
72 hours (Figure 5B). The intensity of the iNOS
protein band (130 kDa) was stronger until 72 hours
after reperfusion, and then tended to decrease. Band

Figure 2 Physiologic parameters. (A) Changes in serum insulin (a) and plasma glucose (b) levels in the vehicle and exendin-4 groups
until 24 hours after reperfusion. Base, nonoperation state; post, after middle cerebral artery occlusion (MCAO). (B) Temporal changes
in rCBF. Pre, before MCAO; during, during MCAO. Data are mean±s.e.m. of four mice (panel A) and five mice (panel B) in each
group. Ex-4, exendin-4; rCBF, regional cerebral blood flow.

Figure 1 Neuroprotective effects of exendin-4 (Ex-4) against ischemia–reperfusion injury. (A) The trail of various doses (a) and
schedules (b) of exendin-4 for determination of exendin-4 treatment protocol to be used in this study. (B) Typical infarct area in the
vehicle (a) and exendin-4 (b) groups at 24 hours after reperfusion. Bar = 2 mm. (C) Infarct volume in the vehicle and exendin-4
groups. (D) Neurologic deficit score in the vehicle and exendin-4 groups. Data are mean±s.e.m. of five mice (panels A, C, and D) in
each group. *P < 0.05, **P < 0.001, compared with the vehicle group.
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density was significantly lower in the exendin-4
group than in the vehicle group (Figure 5C).

Exendin-4 Prevents Cell Death

Next, we evaluated cell death using TUNEL staining.
The number of TUNEL-positive cells increased until
72 hours after reperfusion, and then tended to

decrease. Exendin-4 significantly reduced the num-
ber of such cells, compared with the vehicle group
(Figure 6).

Exendin-4 Stimulates Cyclic AMP Response

Finally, we examined the correlation between
exendin-4 and cAMP response because activation

Figure 3 Expression of GLP-1R in the brain. (A) Photomicrograph of GLP-1R in the mouse brain (normal, untreated). Arrowheads,
positive cells. Bar = 50 mm. (B) Double immunofluorescence staining for GLP-1R (green (a, d)), NeuN (red, b) and CD31 (red, e).
Arrowheads, merged cells. Bar = 20mm. GLP-1R, glucagon-like peptide-1 receptor; NeuN, neuronal nuclei.

Figure 4 Effects of exendin-4 on oxidative stress. (A) Photomicrographs of 8-OHdG (a, c) and HHE (b, d) in the vehicle (a, b) and
exendin-4 (c, d) groups at 72 hours after reperfusion. Bar = 50mm. (e) Number of 8-OHdG- and HHE-positive cells in the ischemic
boundary zone. (B) (a) Immunoblot analysis of HHE. Equal protein loading was confirmed by measuring a-tubulin. Veh, vehicle
group. (b) Densitometric analysis of HHE-modified protein. Data are mean±s.e.m. of five mice (panel A) and three mice (panel B) in
each group. *P < 0.001 compared with the vehicle group. 8-OHdG, 8-hydroxy deoxyguanosine; Ex-4, exendin-4; HHE, 4-hydroxy
2-hexenal.
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of GLP-1R is known to increase intracellular levels of
cAMP and modulate cell-survival mechanisms in
various types of cells (Perry and Greig, 2003). In the
exendin-4 group, cAMP levels were somewhat high-
er than those in the vehicle group at each time point,

although the levels decreased in a time-dependent
manner in both groups (Figure 7A). The pCREB-
positive cells and band (43 kDa) were enhanced
mostly at 24 hours after reperfusion, and then
gradually decreased in a time-dependent manner.

Figure 5 Effect of exendin-4 on the inflammatory response. (A) Photomicrographs of Iba-1 in the vehicle (a) and exendin-4 (b)
groups at 72 hours after reperfusion. Bar = 50 mm. (c) Number of Iba-1-positive cells in the ischemic boundary zone. (B) Double
immunofluorescence of iNOS (green, a) and Iba-1 (red, b) in the ischemic boundary zone at 24 hours after reperfusion, and that of
iNOS (green, d) and Iba-1 (red, e) in the same zone at 72 hours. Bar = 50mm. (C) (a) Immunoblot analysis of iNOS. Equal protein
loading was confirmed by measuring a-tubulin. Veh, vehicle group. (b) Densitometric analysis of iNOS protein. Data are
mean±s.e.m. of five mice (panel A) and three mice (panel C) in each group. *P < 0.001, compared with the vehicle group. iNOS,
inducible nitric oxide.

Figure 6 Effect of exendin-4 on cell death. (A) TUNEL staining in the vehicle (a) and exendin-4 (b) groups at 72 hours after
reperfusion. Bar = 50 mm. (B) Number of TUNEL-positive cells in the ischemic boundary zone. Data are mean±s.e.m. of five mice
in each group. *P < 0.001 compared with the vehicle group. Ex-4, exendin-4; TUNEL, terminal deoxynucleotidyl transferase
(TdT)-mediated dUTP-biotin nick-end labeling.
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The pCREB immunoreactivity in the exendin-4
group was stronger than that in the vehicle group
(Figures 7B and 7C).

Discussion

The major finding of this study was that exendin-4
exhibited neuroprotective effects against ischemia–
reperfusion injury. Intravenous injection of exendin-
4 after MCAO significantly reduced infarct volume
and resulted in recovery of the neurologic deficit.
In addition, it provided long-term protection after
ischemic injury.

Both GLP-1 and its longer-acting GLP-1R agonist,
exendin-4, have multiple physiologic functions,
such as the induction of glucose-dependent insulin
release, inhibition of glucagon secretion, stimulation
of b-cell replication, and antiapoptotic action (Baggio
and Drucker, 2007). In the central nervous system,
GLP-1 and exendin-4 have relatively smaller
molecules, and both can diffuse readily across the
blood–brain barrier and access the brain parenchyma

directly (Hassan et al, 1999; Kastin et al, 2002; Kastin
and Akerstrom, 2003). Peripheral administration of a
much larger GLP-1–albumin recombinant fusion
protein, which does not cross the blood–brain
barrier, also activated neurons coupled to feeding
in the central nervous system (Baggio et al, 2004).
Glucagon-like peptide-1 receptor is distributed in
various tissues including the brain in rodents and
humans (Wei and Mojsov, 1995), and is widely
expressed throughout the brain (Baggio and Drucker,
2007; Perry and Greig, 2003). The latter was
confirmed in this study, which defined the presence
of GLP-1R in neurons and endothelial cells of mice.
Both central and peripheral administration of GLP-
1R agonists decelerated food intake and weight gain
in rodents (Meeran et al, 1999; Szayna et al, 2000;
Turton et al, 1996). Similarly, in humans, adminis-
tration of the GLP-1R agonist peripherally inhibited
feeding behavior and promoted weight loss (Zander
et al, 2002). Glucagon-like peptide-1 receptor stimu-
lation enhanced cognitive functions and preserved
hippocampal neurons from kainic acid neurotoxicity
(During et al, 2003). Other studies showed that GLP-1

Figure 7 Induction of cAMP upregulation and CREB activation by exendin-4. (A) cAMP levels in the vehicle and exendin-4 groups.
(B) Photomicrographs of pCREB in the vehicle (a) and exendin-4 (b) groups at 24 hours after reperfusion. Bar = 50 mm. (c) Number
of pCREB-positive cells in the ischemic boundary zone. (C) (a) Immunoblot analysis of pCREB and CREB. Equal protein loading was
confirmed by measuring a-tubulin. Veh, vehicle group. (b) Densitometric analysis of pCREB protein. Data are mean±s.e.m. of three
mice (Panels A and C) and five mice (panel B) in each group. *P < 0.05, **P < 0.001, compared with the vehicle group. cAMP,
cyclic AMP; Ex-4, exendin-4; pCREB, phosphorylated cyclic AMP (cAMP) response element-binding protein.
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and exendin-4 have neurotrophic actions involving
neurite outgrowth in PC12 cells (Bertilsson et al,
2008; Perry et al, 2002b) and provide neuroprotec-
tion against excitotoxicity caused by neurodegenera-
tion (Harkavyi et al, 2008; Perry et al, 2002a, 2003).
In addition to the above-mentioned effects, exendin-
4 has been recently reported to prevent the genera-
tion of reactive oxygen species in INS-1 cells
(a pancreatic b-cell line) and in the liver (Raab
et al, 2009), and to suppress oxidative stress after
myocardial infarction (Timmers et al, 2009). Further-
more, GLP-1R agonists were reported to protect
neurons from brain injury induced by oxidative
damage (Perry and Greig, 2003). Expansion of the
brain damage area after ischemia–reperfusion injury
is explained by the immediate and direct cytotoxic
effects of oxidative DNA damage and lipid peroxida-
tion (Love, 1999), and the subsequent redox-
mediated inflammatory insult that generates oxy-
gen-free radicals (Peters et al, 1998). Microglial
activation, an inflammatory response, induces var-
ious cytotoxic mediators such as NO and inflamma-
tory cytokines, and contributes to infarct progression
in the postischemic period. Accordingly, suppres-
sion of oxidative damage is a key factor in neuropro-
tection. Using 8-OHdG and HHE as markers
of oxidative stress and Iba-1 and iNOS as markers
of inflammatory response, our study showed that
exendin-4 reduced accumulation of oxidative DNA
damage and lipid peroxidation and inhibited the
inflammatory pathway of microglial activation, fol-
lowed by induction of iNOS. Moreover, exendin-4
treatment significantly reduced cell death. These
results indicate that exendin-4 has antioxidant and
antiinflammatory properties in cerebral ischemia.

The relationship between GLP-1 and cAMP
has been examined in detail previously. Ligand
activation of GLP-1R stimulates adenylyl cyclase,
leading to an increase in cAMP levels in various cells
including b-cells (Perry and Greig, 2003). Elevation
of cAMP levels suppresses the generation of super-
oxide and hydrogen peroxide (Takei et al, 1998). In
addition, upregulated cAMP can trigger phospho-
rylation of CREB at serine 133. The role of CREB
phosphorylation in neurons has been studied exten-
sively, and is known to be important in neuronal
development, synaptic plasticity, and memory for-
mation (Silva et al, 1998). Furthermore, CREB
phosphorylation leads to the expression of neuro-
protective genes such as B-cell lymphoma 2 and
Brain-derived neurotrophic factor (Kitagawa, 2007),
and has a role in neuroprotection against ischemic
insults (Tanaka et al, 1999; Walton et al, 1996).
Cilostazol, an antiplatelet drug, increases intracellu-
lar cAMP levels by blocking its hydrolysis by type III
phosphodiesterase, and its use resulted in a decrease
in cerebral infarction by reduction of oxidative and
apoptosis-like cell death associated with increased
cAMP (Choi et al, 2002). One previous study
reported that GLP-1 and exendin-4 prevented neu-
rodegeneration through a cascade involving cAMP

(Perry et al, 2002a). In this study, exendin-4 resulted
in a slight increase in cAMP contents and in a
significant activation of CREB compared with the
vehicle group. These findings suggest that the
neuroprotective actions of exendin-4 are mediated,
at least in part, through the cAMP/CREB signaling
pathway.

Insulin and glucose levels can influence brain
injury. In particular, insulin is reported to reduce
brain damage induced by ischemia–reperfusion
injury in animal and human studies (Hui et al,
2005; Rizk et al, 2006). However, because we used
nondiabetic animals, insulin-dependent neuropro-
tection was limited. In fact, insulin levels remained
unchanged after administration of exendin-4.

In conclusion, this study showed that exendin-4
can protect against oxidative products and neuronal
cell death caused by ischemic brain damage. Ex-
endin-4 treatment slightly increased intracellular
cAMP levels. Activation of the cAMP response
could, at least in part, mediate GLP-1-induced
neuroprotection in cerebral ischemia. Our results
suggest that GLP-1-related agents, like exendin-4, are
potentially useful for the treatment of patients with
acute ischemic stroke.
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