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SUMMARY

This novel study describes the role of serum amyloid A in a
murine model of colitis-associated colon cancer. We show
that a lack of serum amyloid A attenuates inflammation-
associated colon damage, macrophage infiltration, and
tumorigenesis in mice.

BACKGROUND & AIMS: Identifying new approaches to lessen
inflammation, as well as the associated malignant conse-
quences, remains crucial to improving the lives and prognosis
of patients diagnosed with inflammatory bowel diseases.
Although it previously has been suggested as a suitable
biomarker for monitoring disease activity in patients diagnosed
with Crohn’s disease, the role of the acute-phase protein serum
amyloid A (SAA) in inflammatory bowel disease remains un-
clear. In this study, we aimed to assess the role of SAA in colitis-
associated cancer.

METHODS: We established a model of colitis-associated cancer
in wild-type and SAA double-knockout (Saa1/2-/-) mice by
following the azoxymethane/dextran sulfate sodium protocol.
Disease activity was monitored throughout the study while
colon and tumor tissues were harvested for subsequent use in
cytokine analyses, Western blot, and immunohistochemistry
þexperiments.

RESULTS: We observed attenuated disease activity in mice
deficient for Saa1/2 as evidenced by decreased weight
loss, increased stool consistency, decreased rectal
bleeding, and decreased colitis-associated tissue damage.
Macrophage infiltration, including CD206þ M2-like mac-
rophages, also was attenuated in SAA knockout mice,
while levels of interleukin 4, interleukin 10, and tumor
necrosis factor-ɑ were decreased in the distal colon. Mice
deficient for SAA also showed a decreased tumor burden,
and tumors were found to have increased apoptotic ac-
tivity coupled with decreased expression for markers of
proliferation.

CONCLUSION: Based on these findings, we conclude that SAA has
an active role in inflammatory bowel disease and that it could
serve as a therapeutic target aimed at decreasing chronic inflam-
mation and the associated risk of developing colitis-associated
cancer. (Cell Mol Gastroenterol Hepatol 2021;12:1329–1341;
https://doi.org/10.1016/j.jcmgh.2021.06.016)
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hronic relapsing intestinal inflammation and a loss
1,2
Cof homeostasis in the gut immune response

characterize inflammatory bowel diseases (IBDs),
including Crohn’s disease and ulcerative colitis. Although
IBD significantly impacts a patient’s quality of life, the most
serious complication is an increased risk of developing
colitis-associated cancer (CAC). The importance of media-
tors that regulate inflammation in the development of IBD
and CAC cannot be understated. Accordingly, the identifi-
cation of such molecules that can be targeted remains a
strong focus in the search for effective therapies.3–5

Serum amyloid A (SAA) is a family of evolutionary
conserved proteins implicated in inflammation.6,7 SAA1 and
SAA2 are prominent acute-phase proteins and systemic
levels are up-regulated significantly upon inflammatory or
infectious stimuli, peaking 24-48 hours after stimulus
before returning to low baseline levels.7 Human SAA3P is a
pseudogene, while SAA4 predominantly is expressed
constitutively and thus not considered an acute-phase
protein.8–11 In mice, SAA3 also functions as an acute-phase
protein. Functionally, acute-phase SAA (apoSAA, SAA1 and
SAA2, including SAA3 in mice) have been reported to che-
moattract leukocytes, induce the secretion of various cyto-
kines, and promote angiogenesis and matrix
degradation.12–16 Unsurprisingly, apoSAA proteins also are
implicated in chronic inflammatory states and
inflammation-associated pathologies such as diabetes mel-
litus, Crohn’s disease, rheumatoid arthritis, and
amyloidosis.12,17–19 In addition, several studies also have
reported increased apoSAA serum levels and tissue
expression in various malignancies, including lung, breast,
pancreatic, and colon cancer.20–23 Studies investigating the
possibility of a direct role for SAA in cancer have indicated
that SAA can promote cancer metastasis, however, such
mechanistic studies remain very limited.24–28

In the current study, we aimed to identify the role of
SAA in CAC by using the well-established azoxymethane/
dextran sulfate sodium (AOM/DSS) model in mice lacking
both Saa1 and Saa2. We observed that a lack of Saa1/2
decreases colitis disease activity and associated pathologies.
In addition, mice also showed decreased tumorigenesis.
Together, these results show that SAA could serve as a
therapeutic target in patients diagnosed with IBD to
decrease chronic inflammation and the associated risk of
developing CAC.
Abbreviations used in this paper: AOM, azoxymethane; apoSAA,
acute-phase serum amyloid A; CAC, colitis-associated cancer; DAI,
disease activity index; DSS, dextran sulfate sodium; IBD, inflammatory
bowel disease; IL, interleukin; MCM2, Minichromosome maintenance
2 protein; qPCR, quantitative real-time polymerase chain reaction;
SAA, serum amyloid A; SAADKO, serum amyloid A double-knockout;
TNF, tumor necrosis factor.
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Results
SAA Deficiency Attenuates Colitis Severity

To assess the role of SAA in colitis disease activity,
several disease-associated parameters were measured.
Although a gradual decrease in relative weight with
increased DSS exposure was observed in mice from both
genotypes, significantly less weight loss was observed in
SAA double-knockout (SAADKO) mice on selected days
throughout the model, particularly in cycle 3 of DSS treat-
ment (Figure 1A). Compared with wild-type mice, weight
loss in SAADKO mice also was delayed by 2 days in cycle 3
and mice showed improved recovery in cycle 1, while
SAADKO male mice also showed improved recovery in cycle
3 (Figure 1B–D). Disease activity also was assessed by
means of the disease activity index (DAI), in which SAADKO
mice consistently showed improved scores (Figure 1E–I).
With the combined DAI score, a lower score was observed in
female SAADKO mice, as well as when the scores of both
sexes were combined (Figure 1E). With the individual
scores for weight loss (Figure 1F), stool consistency
(Figure 1G and H), and rectal bleeding (Figure 1I), lower
scores also were observed for SAADKO mice when
compared with wild-type mice. However, in each instance,
differences were significant for only 1 sex when analyzed
separately. The relative colon length of SAADKO male mice
also was significantly longer than their wild-type counter-
parts (Figure 1J). Histomorphologic analyses also were
performed on H&E-stained tissue sections of the distal colon
to assess the degree of intestinal inflammation (Figure 2).
SAADKO mice scored significantly lower than wild-type
mice (Figure 2B), in which immune infiltration in both the
mucosa and submucosa, as well as extended areas of
epithelial defects and loss of architecture in the mucosa,
frequently were observed (Figure 2A).

A Deficiency in SAA Alters the Cytokine Profile
Within the Distal Colon

To investigate the role of SAA in modulating inflamma-
tion in the local environment, we performed a multiplex
assay for the cytokines interleukin (IL)4, IL6, IL10, IL17A,
and tumor necrosis factor ɑ (TNF-ɑ), with tissue lysates
from the distal colon. Compared with wild-type mice,
SAADKO mice had decreased levels of IL4, IL10, and TNF-ɑ
(Figure 3A). IL6 levels, although also decreased in SAADKO
mice, did not differ statistically from those in wild-type
mice. The multiplex failed to detect IL17A within the tis-
sue lysates, however, a quantitative real-time polymerase
chain reaction (qPCR) experiment with RNA extracted from
colon tissue showed no significant differences in Il17a
expression between wild-type and SAADKO mice
(Figure 3B).

SAA Deficiency Decreases Macrophage
Infiltration

To assess the degree of macrophage infiltration in the
lamina propria of the mucosa and in the submucosa of the
distal colon, we performed immunohistochemical staining
for the general macrophage marker F4/80. SAADKO mice
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Figure 1. Colitis disease
activity is attenuated in
serum amyloid A double-
knockout (SAADKO)
mice. (A) Relative weight of
animals during each
dextran sulfate sodium
(DSS) cycle. Data points
include the 5 days of DSS
treatment and the first 4
days of the recovery
period. Weights are relative
to animal weight on day
0 of each cycle. (B) Per-
centage weight recovered
for mice after cycle 1 and
(C) cycle 3, as well as for
(D) male mice after cycle 3.
Weight recovery was
calculated as the percent-
age animal weight on day 4
of the recovery period
relative to the weight at the
start of the DSS cycle. (E)
Average disease activity
score (DAI) score of ani-
mals during DSS cycle 1.
(F) Average weight loss
score of animals during
DSS cycle 3. (G) Average
stool consistency score of
animals during cycle 1 and
(H) cycle 3. (I) Average
rectal bleeding score of
animals during DSS cycle
1. (J) Relative colon length
of animals. Measurements
are relative to the last
weight measurement of
each animal. *P < .05, **P
< .01, ***P < .001, and
****P < .0001.
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Figure 2. Colitis-associated histomorphologic abnormalities are decreased in serum amyloid A double-knockout
(SAADKO) mice. (A) Representative images of H&E stains of the distal colon of wild-type and SAADKO mice. Epithelial
defects and loss of architecture in the mucosa are highlighted (solid arrow), as well as immune infiltrates in the mucosa (dashed
arrow) and submucosa (dotted arrow). (B) Quantified histomorphologic scores for wild-type and SAADKO mice. **P < .01.

1332 Davis et al Cellular and Molecular Gastroenterology and Hepatology Vol. 12, No. 4
showed significantly less macrophage infiltration in the
distal colon when compared with wild-type mice
(Figure 4). Although M1-like inducible nitric oxide
synthase–positive (iNOSþ) macrophages were abundant,
no differences in the amount of these macrophages were
observed between SAADKO and wild-type mice. In
contrast, although M2-like macrophages staining positive
for CD206 were less abundant, the distal colon of SAADKO
mice had significantly less CD206þ macrophages when
compared with wild-type mice.

SAA Deficiency Decreases Tumorigenesis
To determine whether the effects of SAA include a role

in tumorigenesis, we compared the tumor characteristics
between the 2 genotypes. SAADKO mice had significantly
fewer tumors than their wild-type counterparts
(Figure 5A). The majority of the tumors observed in the
distal colon of the mice ranged between 1 and 2 mm in
size, and SAADKO mice showed a significant decrease in
these tumor occurrences (Figure 5B). We also performed
Western blot experiments with the isolated tumors. In
general, tumors isolated from SAADKO mice showed a
lesser proliferative phenotype than tumors isolated from
wild-type mice. Increased expression of the proliferation
marker Minichromosome maintenance 2 protein (MCM2)
was detected in tumors from wild-type mice (Figure 5C
and D). This coincided with decreased levels of apoptosis,
as evidenced by a decrease in the cleaved (active) form of
the apoptosis marker, caspase 3 (Figure 5C and F). We also
assessed whether there were differences in the level of b-
catenin. Indeed, tumors from wild-type mice showed
increased levels of active b-catenin, although, interest-
ingly, tumors from female wild-type mice showed levels
similar to those of SAADKO mice (Figure 5C and E).
Intratumor IL6 expression also was assessed, but no dif-
ferences were observed (Figure 5C). To further support
these results, we performed immunohistochemical stain-
ing of Ki-67 and determined its expression in areas of
dysplasia within the distal colon. In agreement with the
previous results, decreased Ki-67 staining intensity was
observed in SAADKO mice when compared with wild-type
mice (Figure 6).

Deficiency in Saa1 and Saa2 Limits Saa3
Expression

To determine whether the lack of Saa1 and Saa2 affects
Saa3 expression in mice, we performed qPCR to quantify
Saa3 gene expression in the tumors and distal colons of
mice. In both tissues, we detected a significant decrease in
Saa3 gene expression in SAADKO mice when compared with
wild-type mice (Figure 7).
Discussion
SAA is a major acute-phase protein and its persistent

activation is widely associated with inflammation-
associated pathologies, including ulcerative colitis and
Crohn’s disease.18,29,30 In IL2-/- and IL10-/- mouse models of
colitis, serum SAA levels were reported to increase with
animal age and correlate with disease severity.31–33 In this
study we investigated the role of SAA in a mouse model of
CAC by comparing wild-type mice and mutant mice lacking
Saa1/2. The AOM/DSS model is widely used to study CAC in
rodents because of its simplicity, reproducibility, and ability
to recapitulate the events that promote colorectal carcino-
genesis related to chronic inflammation in human beings.34

Key features of colitis that often are assessed in this and
other models of colitis include macroscopic assessments
such as animal weight and the DAI, as well as microscopic
features such as mucosal damage, immune cell infiltrates,
and cytokine levels.

In our model, mice lacking Saa1/2 showed attenuated
colitis disease activity when compared with their wild-type
counterparts. SAADKO mice showed reduced weight loss
(Figure 1A), improved recovery (Figure 1B–D), lower DAI
scores (Figure 1E–I), and lessened histologic damage
(Figure 2). These results are in agreement with recent
findings from Lee et al,35 in which mice deficient for Saa1-3
showed reduced colitis-associated histologic features, and
mice lacking Saa1/2 showed attenuated and delayed disease



Figure 3. Macrophage infiltration is decreased in serum amyloid A double-knockout (SAADKO) mice. Representative
immunohistochemical images of the distal colon of wild-type and SAADKO mice stained with antibodies for F4/80, inducible
nitric oxide synthase (iNOS), and CD206, and hematoxylin as counterstain, along with quantified scoring results for each
marker. ***P < .001 and ****P < .0001.
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onset in a model of experimental autoimmune encephalo-
myelitis. In these models, SAA1 was found to promote
pathogenic T-helper 17 cell responses, including a gene
signature consisting of several chronic inflammatory
disease-associated genes.

Immune cells play a central role in inflammation and
extensive immune cell infiltration represents a hallmark of
colitis. To determine whether SAA influenced the infiltration
of macrophages, we assessed their presence in the lamina
propria of the distal colon. SAADKO mice showed a
decreased number of macrophages when compared with
wild-type mice (Figure 4). SAA also has been reported
previously to function as a chemokine for various immune
cells, including monocytes,13,36 and thus the absence of
SAA1/2 in the lamina propria of SAADKO mice also could
have contributed directly to reduced macrophage infiltra-
tion. Interestingly, although we did not observe any changes
in the number of macrophages staining positive for iNOS,
representative of classic proinflammatory M1-like macro-
phages, we did observe a significant reduction in CD206þ

M2 macrophages, which represents M2-like macrophages.
This is supported by recent findings from Sun et al,37 who
showed that SAA induced several M2-macrophage markers,
including CD206, in both human blood–derived monocytes
and murine bone marrow–derived and peritoneal-derived
macrophages. Furthermore, SAA-activated macrophages
also showed enhanced efferocytosis of apoptotic neutro-
phils, a classic function of M2 macrophages during tissue
repair and remodeling. Work by Wang et al38 also described
the M2b-like activation of murine bone marrow–derived



Figure 4. Cytokine profiles are altered in serum amyloid A double-knockout (SAADKO) mice. (A) Concentrations of
interleukin (IL)4, IL10, tumor necrosis factor a (TNF-a), and IL6 in the distal colon of wild-type and SAADKO mice, as deter-
mined with a multiplex assay. (B) Relative gene expression of Il17a in the distal colon of wild-type and SAADKO mice. *P < .05.
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macrophages after exposure to recombinant SAA, however,
the expression of CD206 was not assessed.

Several in vitro studies have reported SAA-mediated
cytokine production in various cell types.14,38,39 In partic-
ular, TNF-ɑ and IL6 cytokines play vital roles in colitis and
CAC.40 To determine whether SAA1/2 mediated cytokine
alterations in vivo, we assessed the local concentrations of
these and other cytokines in the distal colon after acute
colitis. As expected, SAADKO mice showed decreased levels
of the proinflammatory cytokines TNF-ɑ and IL6, although
the latter did not reach statistical significance (Figure 3A). A
significant decrease in IL4 and IL10 also was observed. SAA
has been shown previously to induce IL10 expression, as
part of the M2b-like activation of macrophages.38 Of note,
this subcategory of alternatively activated macrophages also
secrete TNF-ɑ and IL6, and these cytokines also were
induced by SAA during macrophage activation.

Numerous studies have reported on serum and tissue
SAA expression levels in various malignancies, including
colon cancer, in which increased SAA generally is correlated
with more advanced disease and poor survival.20,21,23,41

Mechanistic studies investigating a direct role for SAA in
tumorigenesis, however, are limited. In our model of CAC,
mice lacking Saa1/2 showed a decreased tumor burden
when compared with wild-type mice (Figure 5A and B).
Furthermore, when compared with those of SAADKO mice,
tumors in wild-type mice also were more proliferative, as
evidenced by increased MCM2 (Figure 5C and D) and Ki-67
(Figure 6) expression, as well as decreased levels of
apoptosis, as evidenced by decreased caspase 3 activation
(Figure 5C and F). Expression of active b-catenin, which
frequently shows aberrant activation in colon cancer, also
was increased in tumors from wild-type mice (Figure 5C
and E). The majority of studies describing a role for SAA in
cancer relates to tumor metastasis, however, recombinant
SAA was reported to increase the proliferation of glioma
cells in vitro.26 In light of the important role that inflam-
mation plays in tumorigenesis in CAC, it also should be
considered that the decreased tumor burden observed in
SAADKO mice may be owing to the attenuated inflammation
and colitis disease activity in these mice. In addition, the role
of macrophages themselves also should not be overlooked.
Depletion of macrophages was shown to reduce the tumor
burden of mice in an AOM/DSS model.42 Here, decreased
levels of the cytokines IL10 and IL6 also were observed in
the distal colons of mice.

Human apoSAA consists only of SAA1 and SAA2, with
SAA3 being a pseudogene. Mice, however, have a functional
Saa3 protein, which has been reported to function in
inflammation.35,43 Ebert et al44 reported that SAA can
modulate its own expression, and we previously observed
that treatment of Phorbol myristate acetate (PMA)-
differentiated human monocytic cell line (THP-1) monocytes
with recombinant SAA1 induces SAA1 expression (data not
shown), therefore, we investigated whether a lack of Saa1/2
affected Saa3 expression in our model of CAC. Indeed,
decreased Saa3 expression was detected in both the distal
colon and colonic tumors of SAADKO mice (Figure 7). We
hypothesize that 3 potential scenarios could contribute to
these results. First, that the lack of Saa1/2 signaling in



Figure 5. Tumorigenesis is decreased in serum amyloid A double-knockout (SAADKO) mice. (A) Total amount of tumors
recorded in mice. (B) Average number of tumors in mice, according to size, where small is less than 1 mm, medium is 1–2 mm,
and large is greater than 2 mm. These sizes, respectively, represent 25%, 70%, and 5% of tumors in wild-type mice, and 39%,
47%, and 14% of tumors in SAADKO mice. (C) Representative images of Western blots, along with quantified results for
(D) MCM2, (E) non–phospho Ser45 (active) b-catenin, and (F) the ratio of cleaved caspase 3 over total caspase 3. *P < .05,
**P < .01, ***P < .001, and ****P < .0001.
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SAADKO resulted in reduced Saa3 expression. Although it
previously has been shown that recombinant Saa1 can
induce Saa3 gene expression,24 the precise signaling mech-
anism(s) is unclear. SAA can bind various cell surface re-
ceptors, and reporter assays performed in cells lacking these
receptors could be performed to delineate the feedback loop
involving Saa1/2 and Saa3. Second, Saa3 expression could be
decreased owing to the attenuated inflammation in these
mice. Third, because macrophages are reported to be a major
local source of Saa332 and we observed decreased macro-
phage infiltration in the distal colon, the reduction in Saa3
expression also could be attributed to a decrease in the cells
responsible for its secretion. Indeed, basal expression of Saa3
was found to be significantly higher in macrophages than in



Figure 6. Ki-67 expression is decreased in serum amyloid A double-knockout (SAADKO) mice. Representative immu-
nohistochemical images of areas of dysplasia in the distal colon of wild-type and SAADKO mice stained with Ki-67, along with
the quantified intensity. *P < .05.
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colon epithelial cells,45 suggesting that a small decrease in
the number of macrophages could have a large impact on the
level of expression.

In our model, we observed a number of sex-based dif-
ferences in the results. This includes the assessments of
colitis disease activity (Figure 1B–G) as well as differential
expression of b-catenin between males and females in the
tumors of mice (Figure 5C and E). Although the majority of
the colitis disease activity assessments showed the same
trend between males and females, albeit nonsignificantly in
the latter, the potential influence of sex hormones should
not be overlooked. Indeed, sex-based differences in colitis
murine models have been observed before, and the inci-
dence of IBD among men and women also differs.46–48

Furthermore, sex-based differences in immune response
and the risk for several autoimmune diseases have been
well described.49 It is hypothesized that female sex hor-
mones provide a protective effect owing to anti-
inflammatory properties, however proinflammatory and
anti-inflammatory effects were reported in 2 different
models of murine colitis, indicating that these properties
may be dependent on the type of model.50

In a recent study, increased SAA expression was
detected and associated with an aggravated
neuroinflammatory response in male mice compared with
females after traumatic brain injury.51 This could suggest
that differences in inflammatory-based diseases between
wild-type and SAA knockout mice, such as in this study,
could be more evident in males, although this would
require further investigation.

Collectively, our results show that the presence of SAA
aggravates colitis disease severity and promotes tumori-
genesis in a mouse model of CAC. Our findings are consis-
tent with several other reports describing a pathologic role
for SAA in inflammation-associated diseases.35,51–53 Tradi-
tionally, SAA is described as a proinflammatory mediator of
the acute-phase response. This description is fitting given its
association with inflammatory disease and the reported
proinflammatory functions therein. However, alternative
functions relating to the activation of M2 macrophages
suggest a potential role in the resolution of inflammation,
immunoregulation, and wound healing. Some of our re-
ported results also support this. Nevertheless, the function
of SAA most likely is influenced by the nature of the in-
flammatory episode and the relevant constituents. Indeed,
SAA was reported to modulate fibrogenic responses in the
liver in either a positive or negative fashion, depending on
the presence of nuclear factor-kb.54 Deciphering the true
Figure 7. Saa3 expres-
sion is decreased in
serum amyloid A double-
knockout (SAADKO)
mice. Saa3 gene expres-
sion (A) within tumors and
(B) in the distal colons of
wild-type and SAADKO
mice. ***P < .001.
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nature and impact of SAA modulation represents an exciting
new avenue for research and should be the focus of future
research. Ultimately, this holds the potential of fine-tuning
the inflammatory process with the end goal of improving
patient quality of life and prognosis.

Materials and Methods
Animal Models

Ethical clearance was obtained from the Stellenbosch
University Research Ethics Committee (ACU-2019-6307) and
all procedures were performed under the committee’s
guidelines. Ten male and 10 female SAADKO (Saa1-/- Saa2-/-)
mice,55 8 weeks old, were used in the study along with 20
age- and sex-matched wild-type C57BL/6 control mice. All
mice were housed at the Stellenbosch University animal
facility in individually ventilated cages with autoclaved
bedding and standard chow and water provided ad libitum.

CAC was induced by following the AOM/DSS protocol,
modified from Thaker et al.56 Briefly, mice received an
intraperitoneal injection of 12.5 mg/kg AOM (Sigma-Aldrich,
St. Louis, MO), prepared in saline. One week later, DSS (40
kilodaltons; Alfa Aesar, Ward Hill, MA) treatment
commenced and was administered in autoclaved drinking
water at a concentration of 2.5% for a total of 5 days, fol-
lowed by a recovery period of 16 days. DSS treatment was
administered for a total of 3 cycles. Animals were monitored
daily, and weight measurements and stool samples were
collected every day during DSS treatment as well as the first
4 days of the recovery period. At the end of the third DSS
cycle, mice were killed and samples were collected. For
colon length measurements, images were taken of the
excised colon and the length was measured from the ceco-
colic junction to the rectum on scaled images with Fiji
(Madison, WI) software.57

Scoring for the DAI was based on the literature58,59 and
was calculated as the sum of individual scores for weight
loss (0 ¼ 0%; 1 ¼ 0%–4.99%; 2 ¼ 5%–9.99%; 3 ¼ 10%–
14.99%; and 4 ¼ 15%–20%), stool consistency (0 ¼ normal
stool; 2 ¼ loose/pasty stool; 3 ¼ delayed defecation; and
4 ¼ diarrhea), and rectal bleeding (0 ¼ negative; 2 ¼ pos-
itive for occult blood; and 4 ¼ gross rectal bleeding). The
presence of fecal occult blood was detected by dissolving
the pellet in dH2O and mixing a sample of the supernatant
with a luminol-based solution.60

For colon tissue samples used in multiplex analyses, an
acute-colitis model was established with 8-week-old, sex-
matched, wild-type and SAADKO mice (N ¼ 12 per geno-
type). Mice received 2.5% DSS, administered for a total of 5
days in autoclaved drinking water, before death and sample
collection.

Histology, Immunohistochemistry, and Image
Analyses

Colon tissues were rolled using the Swiss-roll method
before being formalin-fixed and wax-embedded. Tissue
sections were cut to 5 mm. Standard H&E staining was per-
formed to assess tissue morphology. For immunohisto-
chemistry, sections underwent deparaffinization and
rehydration before heat-mediated antigen retrieval in so-
dium citrate buffer (with the exception of sections stained
for F4/80, which underwent antigen retrieval in Tris-EDTA
buffer). Sections were blocked in 5% goat serum for 90
minutes before overnight primary antibody incubation. The
following primary antibodies were used: F4/80 (MA516363;
Thermo Fisher Scientific, Waltham, MA) as a general marker
for macrophages, iNOS (PA1036; Thermo Fisher Scientific)
to identify M1-like macrophages, CD206 (NBP1-90020;
Novus Bio, Centennial, CO) to identify M2-like macrophages,
and Ki-67 (SP6) (ab16667; Abcam, Cambridge, UK), used as
a marker of proliferation. On the following day, sections
were blocked in 3% hydrogen peroxide for 10 minutes and
incubated in goat anti-rabbit secondary (7074; Cell Signaling
Technology, Danvers, MA) for 45 minutes. Sections were
developed with 3,30-diaminobenzidine tetra hydrochloride
chromogen (ab64238; Abcam) for 10 minutes and counter-
stained with hematoxylin before dehydration and mounting.
Brightfield images were acquired on a Nikon Eclipse E400
microscope (Tokyo, Japan) equipped with a DS-Fi2 color
digital camera and the same acquisition settings were
maintained throughout imaging of all sections for each stain.
At least 3 different areas of the distal colon from a total of 20
animals were imaged using a 20� objective, with equal
representation of genotype and sex.

Histomorphologic evaluation of intestinal inflammation
was calculated as the sum of 2 parameters,61 and was
scored as follows: inflammatory infiltration (0¼ absent; 1 ¼
mild, limited to mucosa; 2 ¼ moderate, including mucosa
and submucosa; and 3 ¼ marked, extended transmural) and
epithelial and mucosal architecture (0 ¼ normal; 1 ¼ focal
erosion; 2 ¼ erosion ± focal ulceration; and 3 ¼ extended
ulceration ± granulation tissue). Macrophage infiltration
was defined as the degree of F4/80þ cell infiltration in the
lamina propria of the mucosa and in the submucosa, ac-
cording to the following scores: 0 ¼ absent; 1 ¼ minimal;
2 ¼ moderate; 3 ¼ abundant; and 4 ¼ extensive. The
amount of iNOS and CD206-positive macrophages was
determined by assessing the relative percentage of cells
positive for F4/80 and either iNOS or CD206 in corre-
sponding areas of individually stained consecutive sections.
To aid in the identification of positive cells, color deconvo-
lution was performed with the CMYK color model62 using
Fiji software. The relative percentages of iNOSþ/F4/80þ

and CD206þ/F4/80þ cells were scored as follows: 0 ¼ 0%;
1 ¼ 1%–25%; 2 ¼ 26%–50%; 3 ¼ 51%–75%; and 4 ¼
76%–100%. Ki-67 expression in areas of dysplasia was
assessed by quantifying the optical density of the 3,30-dia-
minobenzidine tetra hydrochloride chromogen after color
deconvolution with the built-in HDAB vector in Fiji and
using the following equation: optical density, OD ¼ log
(maximum intensity/mean intensity).63,64

Western Blot
Colonic tumors were snap-frozen in liquid nitrogen after

harvest and stored at -80�C until further processing. Tu-
mors were cut into pieces, followed by incubation and
sonication in RIPA buffer supplemented with a protease
inhibitor cocktail (Roche, Basel Switzerland). Protein



1338 Davis et al Cellular and Molecular Gastroenterology and Hepatology Vol. 12, No. 4
concentration was determined with a standard Bradford
assay and samples were mixed with Laemli’s sample buffer
before electrophoresis. Protein samples were separated on
12% TGX FastCast gels (Bio-Rad, Hercules, CA), transferred
onto polyvinylidene difluoride membranes (Bio-Rad), and
blocked in 5% milk for 60 minutes before overnight pri-
mary antibody incubation. The following primary anti-
bodies were used: MCM2 (ab108935; Abcam), caspase 3
(9662; Cell Signaling Technology), non–phospho (Ser45)
b-catenin (19807; Cell Signaling Technology), and IL6
(ab9324; Abcam).

On the following day, membranes were incubated in
anti-rabbit secondary antibody (7074; Cell Signaling Tech-
nology) for 60 minutes before developing with Clarity ECL
(Bio-Rad).

Analyses were performed with Image Lab software (Bio-
Rad), using the total protein content on each membrane for
normalization and a total of 8 animals per genotype.

qPCR
Tissues were placed in RNAlater (Sigma-Aldrich)

immediately after harvest and subsequently stored at -80�C
before RNA extraction. Tissues were cut into smaller pieces
and the RNA was extracted with TRIzol Reagent (Thermo
Fisher Scientific) according to the manufacturer’s protocol.
Total RNA was incubated with DNase I (ThermoFisher Sci-
entific) before being reverse-transcribed with the Luna-
Script RT mix (New England Biolabs, Ipswitch, MA).
Complementary DNA (5 ng) was used as a template for
qPCR reactions performed with the Luna Universal qPCR
Master Mix (New England Biolabs) on a StepOnePlus in-
strument (Applied Biosystems, Waltham, MA). The following
primers were used for amplification: Saa3 (NM_011315.3)
forward: 5’-ACAGCCAAAGATGGGTCCAG-3’, reverse: 5’-
CTGGCATCGCTGATGACTTT-3’ (amplicon length, 190 bp); Il-
17a (NM_010552.3) forward: 5’-GGACTCTCCACCGCAAT-
GAA-3’, reverse: 5’-TTTCCCTCCGCATTGACACA-3’ (amplicon
length, 94 bp); Eef2 (NM_007907.2) forward: 5’-
AGTGTCCTGAGCAAGTGGTG-3’, reverse: 5’-CGGTGAAGC-
CAAAGGACTCA-3’ (amplicon length, 144 bp); and Tbp
(NM_013684.3) forward: 5’-GCAGTGCCCAGCATCACTAT-3’,
reverse: 5’-GCCCTGAGCATAAGGTGGAA-3’ (amplicon length,
160 bp). All primers were designed to span exon–exon
boundaries. The quantitation cycle values of Saa3 and
Il17a were normalized to the values of the Eef2 and Tbp
reference genes, and gene expression was quantified using
the delta-delta quantitation cycle method. Results are shown
as expression relative to wild-type samples (N ¼ 4–6).

Multiplex Cytokine Analyses
Concentrations of TNF-ɑ, IL6, IL17A, IL4, and IL10 were

determined in colon tissue lysate samples by means of
multiplex analyses using a premixed mouse Magnetic
Luminex Assay (R&D Systems, Minneapolis, MN), performed
according to the manufacturer’s guidelines, on a Bioplex 200
Luminex instrument and using Bioplex Manager software
version 6.1. To prepare the lysates, the distal end of the
colon (12–20 mm) was cleaned before being placed in
sterile phosphate-buffered saline containing a protease in-
hibitor cocktail (Roche). The tissue then was homogenized,
and an equal volume of Cell Lysis Buffer 2 (R&D Systems)
was added and the tissues were lysed for 30 minutes at
room temperature with gentle agitation. Cellular debris
were removed by centrifugation at 16,000 � g for 20 mi-
nutes at 4�C. Aliquots were prepared and stored at -80�C
until assayed. Concentrations of the cytokines were
normalized according to tissue length (N ¼ 6).
Statistical Analyses
All data are shown as means ± SEM. Data were assessed

for normality with the Shapiro–Wilk normality test and sta-
tistical significance was assessed with either an unpaired
Student t test or the Mann–Whitney U test, using P < .05 as
the cut-off value for significant differences. All analyses were
performed with GraphPad Prism version 7 (San Diego, CA).
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