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NeTFactor, a framework for 
identifying transcriptional 
regulators of gene expression-
based biomarkers
Mehmet Eren Ahsen   1, Yoojin Chun1, Alexander Grishin2, Galina Grishina2, 
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Biological and regulatory mechanisms underlying many multi-gene expression-based disease 
biomarkers are often not readily evident. We describe an innovative framework, NeTFactor, that 
combines network analyses with gene expression data to identify transcription factors (TFs) that 
significantly and maximally regulate such a biomarker. NeTFactor uses a computationally-inferred 
context-specific gene regulatory network and applies topological, statistical, and optimization 
methods to identify regulator TFs. Application of NeTFactor to a multi-gene expression-based asthma 
biomarker identified ETS translocation variant 4 (ETV4) and peroxisome proliferator-activated receptor 
gamma (PPARG) as the biomarker’s most significant TF regulators. siRNA-based knock down of these 
TFs in an airway epithelial cell line model demonstrated significant reduction of cytokine expression 
relevant to asthma, validating NeTFactor’s top-scoring findings. While PPARG has been associated 
with airway inflammation, ETV4 has not yet been implicated in asthma, thus indicating the possibility 
of novel, disease-relevant discovery by NeTFactor. We also show that NeTFactor’s results are robust 
when the gene regulatory network and biomarker are derived from independent data. Additionally, 
our application of NeTFactor to a different disease biomarker identified TF regulators of interest. These 
results illustrate that the application of NeTFactor to multi-gene expression-based biomarkers could 
yield valuable insights into regulatory mechanisms and biological processes underlying disease.

Biological and regulatory mechanisms underlying most multi-gene expression-based disease biomarkers are 
often not readily evident. Using RNA sequencing (RNAseq)1 and machine learning2 in a well-characterized 
cohort of asthmatics and controls, we recently identified a nasal brush-based biomarker of asthma3. This bio-
marker consists of 90 genes, whose expression is interpreted through a logistic regression function3. Although our 
nasal biomarker of asthma produced accurate (AUC 0.994) and specific classification of asthma3, the biological 
and regulatory mechanisms underlying its performance were not readily evident. For instance, although the genes 
in the biomarker had a higher tendency to be differentially expressed (Kolmogorov-Smirnov statistic = 0.289, 
FDR = 2.73 × 10−37), only non-specific pathways such as defense response (fold change = 2.86, FDR = 0.006) 
were enriched in these genes, and only a minority have been previously studied in the context of asthma3. A gene 
expression-based biomarker like ours is expected to include genes known to associate with the target disease. 
However, it is also possible and even likely, given our incomplete understanding of complex diseases such as 
asthma, that genes not previously associated with the disease can provide information that is useful to the classi-
fication, and perhaps to the disease process itself. Indeed, such an approach has led to important results in other 
disease areas such as cancer4–7, illustrating the idea that RNA traits can serve as sensitive sensors of one state (e.g. 
disease) relative to another (e.g. healthy) beyond known associations with established disease-related pathways. 
It is intriguing to consider what further dissection of our asthma and other biomarkers could yield as insights into 
biologic mechanisms relevant to asthma and other diseases.
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Here we describe a novel framework that combines network analyses with RNA sequence (RNAseq) data 
to identify transcription factors (TFs) significantly regulating a disease biomarker. This framework, named 
NeTFactor (Network-identified Transcription Factor), uses a computationally inferred context-specific gene 
regulatory network (GRN)8 to guide the analysis. Such a GRN consists of directed edges denoting interactions 
between regulators (e.g. TFs) and their target(s) (e.g. gene(s) they regulate). NeTFactor utilizes the structure 
and constituents of such a GRN to identify the regulators, specifically TFs, that most significantly regulate the 
genes underlying the biomarker. To illustrate the utility of our framework, we applied NeTFactor to identify the 
most significant TF regulators of our nasal gene expression-based asthma biomarker3 and then experimentally 
validated the identified regulators using silencing RNA (siRNA)9 in airway epithelial cell line models. Further, 
we show that that NeTFactor’s results are robust when the gene regulatory network and biomarker are derived 
from independent data and additionally demonstrate application of NeTFactor to a different disease biomarker.

Biomolecular networks, including GRNs, have been widely used to glean useful insights into biological pro-
cesses and how the dysregulation of the constituent interactions may lead to disease8,10–12. In particular, network 
analyses have been used to identify disease-related genes and regulators, often connected through interactions in 
the network, representing a subnetwork or module13–15. Master Regulator Analysis (MRA)16 and its variants17 rep-
resent such an approach where a GRN is used to directly identify TF regulators that are expected to be associated 
with the target disease or phenotype. In parallel, similar to our asthma biomarker, multi-gene expression-based 
biomarkers have been developed in other disease areas, e.g., breast cancer prognosis4,18. The goal of this study was 
to analyze a GRN to identify the most significant set of key TF regulators of the set of genes constituting a sepa-
rately identified biomarker, namely our asthma biomarker. This is complementary to investigating the constituent 
genes of the biomarker individually, as well as only identifying TF regulators associated with the target disease or 
phenotype using methods like MRA. In other words, we used computational and systems biology principles19–21 
to develop a novel framework that integrates machine learning- and network-based analyses of complex biomo-
lecular data.

Results
Our study comprised multiple steps (Fig. 1), including the application of NeTFactor to construct a context-specific 
gene regulatory network (Box 1) and identify TF regulators of the biomarker (Box 2), followed by experimental 
validation of the inferred TF regulators (Box 3).

Development of NeTFactor and its application to nasal RNAseq data and the asthma biomarker.  
Generation of a context-specific gene regulatory network (GRN).  The first step of NeTFactor is the derivation of a 
base GRN that reflects the biological context, such as the same tissue of origin, of the target biomarker. For this, in 
our study, the application of the ARACNE algorithm22–24 to nasal RNAseq data from a case-control asthma cohort 
(n = 150) (Supplementary Table 1) yielded a base GRN consisting of 56976 interactions between 132 TFs and 
11049 genes. Since this network was inferred from nasal gene expression data, it is expected to be directly relevant 
to our nasal brush-based asthma biomarker as well as to asthma overall, given shared biology between the nasal 
and bronchial airways3,25,26. Applying ARACNE with 1000 bootstraps instead of the default value of 100 generated 
a much larger but fully encompassing GRN (Fig. 2A), indicating that the core network was preserved between 
these variations of the algorithm. Although there were no set criteria for selecting the size of the final GRN, we 
observed that the base network was the closest in size to the total number (66883) of curated TF → target gene 
interactions in MSigDB27,28 version 5.1, which was also the source of TFs used to derive the ARACNE networks. 
To capture the extent of our current knowledge of GRNs, we used the 100 bootstrap base GRN for further analy-
ses. However, due to the general lack of knowledge about human TFs and their putative target genes, this network 
only included 78 of the 90 (87%) genes in the asthma biomarker, placing an upper limit on how many of these 
genes could be regulated by the TFs in the GRN.

We also generated a GRN containing the same number of edges as the base ARACNE network using the 
GENIE3 algorithm29, and found that the two networks overlapped significantly (Fig. 2B; Fisher’s exact test 
p < 2.2e-16). This supported the robustness of using ARACNE within NeTFactor and its resulting GRN.

VIPER identifies 12 asthma-associated TFs in the GRN.  NeTFactor next examines if a TF is differentially active 
in the disease under consideration, such as asthma in our application study, for the TF to be considered a reg-
ulator of the target biomarker under consideration. To identify such TFs, we applied the VIPER algorithm30 to 
the base GRN and the RNAseq data to identify TFs that are differentially active between asthmatic and control 
subjects. The output of VIPER consisted of a normalized enrichment score (NES), which was positive for TFs that 
were more active in asthma and negative for TFs more active in control subjects, as well as the associated false dis-
covery rate (FDRVIPER) value for each NES. Figure 2C shows the 12 TFs found to be differentially active in asthma 
(FDRVIPER ≤ 0.05). These TFs included HSF1, which has been reported to affect airway hyperresponsiveness and 
airway inflammation in mice with asthma31.

We also tested the sensitivity of the VIPER results to the choice of the input GRN and the algorithm used 
to infer it. For this, we compared the TF activity scores (NESs) inferred from the base GRN with those inferred 
from the ARACNE 1000 bootstrap and GENIE3 networks. As shown in Fig. 2D (Pearson’s correlation coef-
ficient = 0.99, p < 2.2e-16) and 2E (Pearson’s correlation coefficient = 0.97, p < 2.2e-16), the scores from these 
alternative GRNs were highly correlated with those from the base GRN. These results strongly support that the 
TF activity scores and downstream analyses utilizing them would be robust to the choice of the network inference 
algorithm and the resulting GRN.

Context-specific regulators of the asthma biomarker.  The next step of NeTFactor assesses if a TF significantly 
regulates the genes constituting the target biomarker. For this, we calculated the likelihood that a particular TF 
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regulated our asthma biomarker by conducting a Fisher’s exact test32 for the statistical significance of the overlap 
between the set of genes regulated by each TF in the base nasal GRN (i.e. its regulon) and the member genes of the 
asthma biomarker. This was followed by correction for multiple hypothesis testing using the Benjamini-Hochberg 
procedure33, which yielded a regulation likelihood for each TF (FDRBIOMARKER) that was used in subsequent anal-
yses (Supplementary Table 2). The most significant of these regulators (FDRBIOMARKER ≤ 0.05) included XBP1, 
which modulates endoplasmic reticulum stress in type 2 airway inflammation34 and mucin production35 that may 
relate to how the well-replicated asthma locus ORMDL affects asthma36.

Convex optimization identifies the most significant set of asthma-active TFs that most significantly and 
non-redundantly regulate the asthma biomarker.  The previous two steps of NeTFactor identified TFs that were 
disease-active and likely to regulate the target biomarker. The final step of the framework aims to identify the 
most significant set of TFs that scores highly on both these aspects, but has as little redundancy as possible among 
the sets of biomarker genes they regulate, thus maximizing the coverage of the biomarker. We considered several 
approaches for determining this most significant set. The greedy approach incrementally selects TFs ranked by 
the number of biomarker genes they target in the GRN, not taking the redundancy among target biomarker gene 
sets into account. In contrast, the LASSO-based convex optimization approach calculates a global weight for the 
TFs that incorporates the non-redundancy of their target biomarker gene sets, in addition to the FDRVIPER and 
FDRBIOMARKER likelihoods calculated above. The LASSO approach covers a higher total number of biomarker 
genes with fewer TFs than the greedy approach due to LASSO’s better control of redundancy (Supplementary 

Figure 1.  Study flow for the identification and validation of transcription factor (TF) regulators of a gene 
expression-based biomarker of asthma3 using the proposed NeTFactor framework. Box 1 denotes the first step 
of NeTFactor, namely the inference of gene regulatory networks (GRNs) from the datasets that yielded the 
original biomarker. Box 2 represents steps 2–4 of NeTFactor which identify the most significant set of likely TF 
regulators, which are themselves active in the disease and regulate a significant fraction of genes constituting 
the biomarker. Box 3 depicts siRNA-mediated knock-down experiments in an airway epithelial cell line model 
employed to experimentally validate the identified regulators.
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Figure 2.  Derivation of context-specific gene regulatory networks (GRNs) from and application of the VIPER 
algorithm30 to a nasal RNAseq data set. (A) Venn diagram showing the overlap between the TF→target gene 
interactions constituting GRNs generated by applying the ARACNE algorithm23 to a nasal RNAseq dataset using 100 
(N100) and 1000 (N1000) bootstraps shows that the former is completely contained in the latter. (B) Venn diagram 
showing the statistically significant overlap of the TF→target gene interactions constituting the N100 network and 
the GRN of the same size inferred using the GENIE3 algorithm29 from the same dataset (Fisher’s exact test p < 2.2e-
16). (C) Transcriptional activities of the 12 transcription factors most significantly differentially active in asthma. 
The first column indicates VIPER FDR value for differential activity (FDR ≤ 0.05) of TFs active in asthma. All genes 
in the nasal RNAseq data are graphically summarized in the second column, where each vertical line represents 
a gene, and the genes are rank-sorted left to right from most down-regulated to most up-regulated in asthma vs 
normal subjects. Blue and red bars indicate negative and positive regulation, respectively, of each gene by the TF 
shown in the third column. The fourth column shows VIPER-inferred differential activity of TFs, with red and blue 
entries indicating more and less activity of the TF in asthma, respectively. (D) Heatmap of VIPER-inferred activity 
scores of TFs constituting the N100 and N1000 networks. The scores are very highly correlated (Pearson’s correlation 
coefficient = 0.987, p < 2.2e-16). (E) Heatmap of VIPER-inferred activities of TFs constituting the N100 network 
and the GRN of the same size inferred using the GENIE3 algorithm. The scores are very highly correlated (Pearson’s 
correlation coefficient = 0.969, p < 2.2e-16).
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Fig. 1). For instance, with 40 selected TFs, the LASSO approach covered approximately 15 more biomarker genes 
than the greedy approach.

Based on these observations, we examined the results of the LASSO approach in greater detail, which revealed 
that there was substantial variation in the weights of the TFs, especially due to differences in FDRVIPER and 
FDRBIOMARKER. Details of the top seven weighted TFs and all 132 TFs in the base nasal GRN are provided in 
Table 1 and Supplementary Table 2 respectively. In particular, ETV4 and PPARG were the only TFs that met three 
criteria: (1) highly weighted, (2) significantly differentially active in asthma (FDRVIPER ≤ 0.05), and (3) signifi-
cantly regulating the asthma biomarker (FDRBIOMARKER ≤ 0.05) (Table 1). Just these two TFs regulated 24 (27%) 
of the asthma biomarker genes, including SERPINE237 and CDHR338, asthma-associated genes co-regulated by 
ETV4 and PPARG. Gene Ontology enrichment analysis, conducted using MSigDB)27,28, of the GRN subnetwork 
regulated by ETV4 and PPARG (Fig. 3) included terms highly relevant to disease processes in asthma, includ-
ing response to corticosteroid (FDR = 2.94 × 10−5), regulation of immune system process (FDR = 8.92 × 10−4), and 
innate immune response (FDR = 5.89 × 10−3). Given these results, we focused on ETV4 and PPARG in our exper-
imental validation efforts.

Experimental validation of NeTFactor findings.  To test the results from NeTFactor, we chose to inves-
tigate how knockdown of the regulatory TFs prioritized by NeTFactor (ETV4 and PPARG) in nasal epithelial cell 
line models would affect the production of inflammatory cytokines involved in asthma39–42. We chose to employ a 
nasal epithelial cell line to optimize context-specific validation, given the asthma biomarker is based on nasal gene 
expression, and we also used nasal RNAseq data as input for NeTFactor. Recognizing the limitations of cell lines 
as a model for in vivo inflammation, we first conducted a series of pilot experiments to assess the baseline respon-
siveness of a commercially available nasal epithelial cell line (HNEpC) to inflammatory stimulation. In response 
to the immunostimulant polyinosinic:polycytidylic acid (poly(I:C)), this cell line produced detectable amounts of 
IL6, IL8, TGFβ, CCL2, TSLP, and CCL17, with the highest levels noted for IL6 and IL8 (Supplementary Table 3). 
There was no detectable production of IL25 or IL33, and the cell line was less responsive to stimulation with 
lipopolysaccharide (LPS) or cytosine–phosphate–guanosine (CpG). With these pilot results as background, we 
designed our experimental validation of NeTFactor findings to include the measurement of IL8 and IL6 following 
stimulation with poly(I:C) in the nasal epithelial cell line model with and without siRNA knockdown of ETV and 
PPARG.

Figure 4 shows that both at baseline and in response to inflammatory stimulation with poly(I:C), the nasal 
epithelial cell line with ETV4 knocked down by siRNA (siETV4+) produced significantly smaller quantities of 
IL8 (Fig. 4A) and IL6 (Fig. 4B) compared to the negative siRNA control with intact ETV4. Similarly, the nasal 
epithelial cell line with PPARG knocked down by siRNA (siPPARG) yielded significantly lower IL8 (Fig. 4A) and 
IL6 (Fig. 4B) compared to negative siRNA control. These findings supported our expectation that levels of IL8 and 
IL6 would be repressed both at baseline and more significantly with knock down of ETV4 and PPARG based on 
NeTFactor’s results and our understanding of these cytokines in inflammation.

NeTFactor’s performance when the biomarker and GRN are derived from different gene 
expression datasets.  Up to this point, we assessed NeTFactor’s performance when the GRN in its first 
step was derived from the same gene expression dataset from which the target biomarker was also identified. To 
assess NeTFactor’s performance when the GRN and biomarker are derived from different datasets, we derived 
a GRN from an independent nasal gene expression dataset from a cohort of asthmatic children and controls43 
different from the primary dataset from which the 90-gene biomarker was identified. Application of NeTFactor’s 
steps to the GRN derived from the independent cohort yielded a ranked list of TF regulators that largely over-
lapped with the ranked list obtained from when the GRN and biomarker were derived from the same dataset 
(Supplementary Table 4). Specifically, the top 10 ranked TFs from the two applications of NeTFactor significantly 
overlapped (Fisher’s exact test p = 0.0019), indicating consistency between the top-ranked regulators identified 

TF
LASSO 
weight FDRVIPER FDRBIOMARKER

Number of 
biomarker genes 
regulated

Cumulative 
number of 
biomarker genes 
regulated

PPARG 1.072 0.0151 0.006 16 16

ETV4 1.015 0.0324 0.00007 15 24

GTF2A2 1.014 0.0113 0.395 11 30

EGR1 1.006 0.566 0.286 3 33

SPI1 1.003 0.61 0.363 8 38

CEBPB 1.0008 0.887 0.062 7 41

XBP1 1.0005 0.998 0.0002 11 52

Table 1.  The top seven TFs (first column) ranked by LASSO weights (second column) produced by the final 
step of NeTFactor, indicating the TF’s likelihood of regulating the 90-gene asthma biomarker as significantly 
and non-redundantly as possible. The FDR values calculated in the two preceding steps of NeTFactor are 
also shown for reference, along with the number of biomarker genes regulated by each TF, as well as genes 
cumulatively regulated by it and all the TFs preceding it. These results show that ETV4 and PPARG are the 
strongest TF regulators of the asthma biomarker, as they are the only ones that are significantly associated with 
asthma (FDRVIPER ≤ 0.05) as well as significant regulators of the biomarker (FDRBIOMARKER ≤ 0.05).
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by the framework when distinct GRNs are used. The top two ranked regulators from the primary application 
of NeTFactor, ETV4 and PPARG, were the second and third ranked regulators when NeTFactor was applied to 
the independently-derived GRN. Due to clinical differences between the primary3 and additional independent 
cohort43 used to derive the two GRNs, most prominently differences in age given the original cohort consisted 
only of adult subjects while the independent cohort included only children, we expectedly did not find the exact 
same ranking of regulators, although as a group, the top ranked regulators were significantly consistent.

Application of NeTFactor to a different disease biomarker.  To assess NeTFactor’s ability to generalize 
to biomarkers of other diseases and/or phenotypes, we applied NeTFactor to identify TF regulators of a biomarker 
of peanut allergic reactions44. In this study, peanut allergic children underwent double-blind, placebo-controlled 
oral challenges to peanut where peripheral blood samples for whole blood transcriptome profiling were obtained 
during each challenge (i.e. peanut challenge and placebo challenge)44. All of the children reacted to peanut and 
none reacted to placebo44. In this scenario, peanut allergic reaction was the target phenotype, and the two classes 
were reaction (i.e. which occurred when peanut was given during peanut challenge), and no reaction (i.e. no 
reaction when placebo was given)44. In the primary study of this cohort44, a series of analyses on the subjects’ 

Figure 3.  Subnetwork of the base nasal GRN consisting of the seven regulator TFs listed in Table 1, and their 
target asthma biomarker genes, denoted by squares and small filled circles respectively. The most significant 
regulators of the biomarker, ETV4 and PPARG, and the genes regulated exclusively by each of them are shown 
in green and pink respectively, and those regulated by both TFs are shown in yellow. Other TFs and target 
genes are shown in grey, with the exception of ESR1, which is itself regulated by PPARG. Figure made using 
CytoScape71.
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whole blood transcriptome profiles were performed that identified 26 key driver genes of peanut allergic reaction 
(Supplementary Table 4 of ref.44). These 26 key driver genes were considered the target biomarker for NeTFactor.

Table 2 shows the top-ranked TF regulators of the peanut allergy biomarker identified by NeTFactor (full 
ranking of TFs in Supplementary Table 5). Specifically, these TFs were identified using the LASSO procedure in 
NeTFactor’s last step and also satisfied the conditions of having both FDRVIPER and FDRBIOMARKER ≤ 0.05, support-
ing both their significant association with disease and biomarker relevance. These top-ranked regulators included 
STAT6, a TF known to have a central role in allergy through its modulation of Th2 cell differentiation, cell surface 
marker expression, and class-switching of immunoglobulins45, as well as, NFIL3, which is induced by STAT6 
and regulates IgE production, an immunoglobulin central to allergy46. STAT3 plays a pivotal role in immune 
responses, regulating B cells and CD4+ and CD8+ T cells47, and whose dysregulation has been linked to aber-
rent IgE production and allergy48. SPI1 regulates follicular B cell development and germinal center responses49, 
and VDR is the receptor for vitamin D3, where studies have suggested that vitamin D is associated with allergy 
outcomes50,51.

Figure 4.  Experimental Validation of NeTFactor Predictions. Nasal epithelial cell lines with siRNA-mediated 
knockdowns of PPARG (siPPARG) and ETV4 mRNA (siETV), as well as negative siRNA control (Negative 
siRNA), were stimulated with Poly (I:C) and also left unstimulated. The concentrations of IL8 (Panel A) and IL6 
(Panel B) at 24 hours are shown.

TF LASSO weight FDRVIPER FDRBIOMARKER

NFIL3 0.951 1.12 × 10−22 0.0084

SPI1 0.914 2.44 × 10−8 0.0103

STAT3 0.698 1.41 × 10−5 3.34 × 10−5

STAT6 0.573 0.0122 0.0055

VDR 0.515 0.004 0.0114

Table 2.  Top-ranked TFs identified by NeTFactor for the peanut allergy biomarker, ranked by LASSO weights. 
The TFs that are significantly associated with peanut allergy reaction (FDRVIPER < 0.05) and are significant 
regulators of the biomarker (FDRBIOMARKER < 0.05) are shown here.
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Discussion
With rapid advances in genomic technology, several multi-gene expression-based biomarkers have been identified 
for diseases like asthma3, breast cancer52, stroke53 and Alzheimer’s disease54. Although some of these biomarkers 
are already used in clinical practice, such as MammaPrint and Oncotype DX for breast cancer prognosis4,18, their 
biological interpretation beyond examination of their individual constituent genes or enriched Gene Ontology 
terms or pathway is not commonly undertaken. In this paper, we have proposed the NeTFactor framework, 
which is designed to identify the most significant set of transcription factors (TFs) most likely to regulate such a 
biomarker. This is complementary to investigating the constituent genes individually or only identifying regula-
tors associated with the target disease or phenotype using methods like MRA16. Based on NeTFactor’s findings 
when applied to our nasal brush-based biomarker of asthma3, we knocked down the identified regulator TFs in 
a nasal epithelial cell line model, finding that cytokine output was appropriately repressed as expected given our 
understanding of the role of these cytokines in inflammation and asthma. We also demonstrated that NeTFactor 
can be used to identify TF regulators of a peanut allergy biomarker44. Our findings demonstrate that NeTFactor 
can be successfully applied to identify TF regulators of multi-gene expression-based biomarkers, yielding valuable 
insights into disease-relevant biological processes and allowing us to gain more from biomarkers beyond their 
main role as classifiers or predictors.

NeTFactor requires as input a GRN, preferably a reliable context-specific one, the inference of which generally 
requires a sizeable gene expression data set. Our results show that the GRN may be derived from the same or 
different disease-relevant data set from which the biomarker is derived. However, in applications where such data 
may not be available, one can still use the NeTFactor algorithm by providing a generic network, such as the set 
of TF → target gene interactions in MSigDB27,28, as input. However, this may result in reduced sensitivity of the 
results, as NeTFactor will not have access to the biological context expected from the GRN. Another requirement 
of NeTFactor is a set of TFs that are needed for inferring the GRN, which we obtained from MSigDB in this study. 
If this set is not reliable or comprehensive, the resulting GRN and downstream analyses, especially the assessment 
of the constituent TFs’ disease-relevant activity (FDRVIPER) and enrichment of the biomarker genes among their 
targets (FDRBIOMARKER), may be adversely affected.

The final step of NeTFactor adopts a novel LASSO-based convex optimization approach to determine the 
most significant set of regulator TFs that maximizes the coverage of the biomarker genes. This approach has 
the benefit of collectively optimizing the relevant factors, namely FDRVIPER, FDRBIOMARKER, and non-redundancy 
among the target biomarker genes, for determining the most significant TF regulators of the biomarker. However, 
in certain cases, the solution of such an optimization problem may result in local optima, and consequently 
potentially false discoveries. More generally, due to the computational nature of NeTFactor, the possibility of false 
positive and negative results from the framework cannot be ruled out. The reliability of the results can be partially 
addressed by experimentally validating the results, as was done in this study, but that necessitates resources for 
this validation. These potential issues also indicate the possibility of developing alternative regulator prioritization 
methods that may improve the results of the LASSO approach used in this work.

Application of NeTFactor to a cohort of asthmatics and controls indicated that PPARG and ETV4 were 
the most likely regulators of an asthma biomarker. PPARG has been reported in some contexts to exert 
anti-inflammatory effects through the regulation of signaling in immune cells, including monocytes/mac-
rophages, platelets, lymphocytes, and dendritic cells (DCs), as well as in epithelial, endothelial, and smooth mus-
cle cells55–57. However, its role in asthma is more controversial with heterogeneous findings. While activation of 
PPARG has been associated with anti-inflammatory effects on airway58–63, PPARG signaling has more recently 
been shown to be critical for IL33–driven Th2 effector function in type-2 allergic airway responses, suggest-
ing a contrasting pro-inflammatory role63. Furthermore, upregulation of PPARG in lung-resident CD11b+ DCs 
enhances migration to draining lymph nodes and Th2 priming capacity63.

Distinct from PPARG, far less is known about ETV4 (ETS variant 4) in the context of asthma. ETV4 belongs 
to the PEA3 (polyomavirus enhancer activator 3) subfamily of a larger E26 transformation-specific gene family 
of transcription factors63–66. ETV4 promotes morphogenesis of epithelial organs including lung during embryo-
genesis and plays a role in cell proliferation, growth, migration and apoptosis64. Our findings indicate a novel role 
of this transcription factor in asthma.

Our application of NeTFactor to a biomarker of peanut allergy44 revealed top-ranking TF regulators with 
established roles in immune regulation and allergy45–51. NeTFactor’s results suggest that their specific roles in 
peanut allergy in particular may be worth further study.

To conclude, we propose NeTFactor, an innovative framework that combines gene expression data 
and network analyses to identify the most significant set of transcription factor regulators of a multi-gene 
expression-based biomarker. Such regulators can yield valuable insights into regulatory mechanisms and 
disease-relevant biological processes related to their biomarkers, extending their utility beyond being mainly 
used as classifiers or predictors.

Materials and Methods
Primary study population and RNAseq data.  In the primary study, we applied NeTFactor to the same 
development set of RNAseq-derived nasal gene expression data from 150 subjects with and without asthma that 
was used to identify the asthma biomarker in our earlier study3. The baseline characteristics of this study pop-
ulation are shown in Supplementary Table 1. This is one of the largest publicly available datasets of nasal gene 
expression from a well-characterized asthma cohort. The use of this rich data set for complementary analyses 
underlying our biomarker and NeTFactor is expected to improve our ability to identify regulatory network-de-
rived explanations for the strong performance of our biomarker.

https://doi.org/10.1038/s41598-019-49498-y
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NeTFactor.  Below, we describe the four main steps of NeTFactor, which finds the most significant set of TF 
regulators for a given biomarker, explained in terms of its main application to our asthma biomarker and the 
associated nasal RNAseq dataset mentioned above:

	(1)	 Reverse engineering a context-specific Gene Regulatory Network (GRN): We applied the well-established 
and publicly available ARACNE algorithm22–24 to the RNAseq dataset to infer a GRN specific to the nasal 
tissue. Briefly, ARACNE22,24 uses mutual information67, a symmetric information theoretic similarity 
measure that accounts for possible non-linear relationship(s) between two entities (here, genes). Given a 
sample gene×  expression matrix, ARACNE calculates mutual information between all pairs of genes 
(columns of the matrix), representing an initial fully connected network. Next, augmented with a list of 
putative TFs provided, ARACNE uses the data processing inequality (DPI)67 to remove interactions whose 
constituent information is sufficiently captured by the rest of the interactions, which generates the resulting 
GRN consisting of TF → target gene interactions24. Specifically, for all the cliques consisting of three gene 
↔ gene edges, where some of the genes represent the putative TFs, ARACNE removes the edge with the 
lowest value of mutual information in accordance with DPI. The only exceptions to this process are the 
cases where this removal will retain a non-TF ↔ non-TF edge, which is not considered a transcriptional 
interaction, and is removed instead. Repeating this process throughout the original mutual information 
matrix generates the resulting GRN consisting of TF → target gene interactions.
The Adaptive Partitioning (AP) version of ARACNE23 improves its computational efficiency and robust-
ness using multiple bootstraps of the gene expression data and averaging the resulting network to create 
the final GRN. We applied this version with the default number of bootstraps (100) in the publicly available 
implementation23 to create the nasal GRN for further analysis, but also tested other numbers of bootstraps 
(e.g., 1000) to test the GRN’s dependence on this parameter’s value. 221 putative TFs for running ARACNE 
were obtained from the Molecular Signature Database (MSigDB)27,28 version 5.1 (accessed June 3rd, 2016).

	(2)	 Inferring disease-related activity of TFs in the GRN: To enhance the functional relevance of candidate 
regulator TFs, NeTFactor requires such TFs to be differentially active under disease conditions. For this, 
we applied the VIPER algorithm30 to the nasal GRN, along with the asthma/no-asthma status of the 
expression profiles used to derive the GRN. Specifically, VIPER was run with the sample-based permuta-
tion option to build the null hypothesis. The output of VIPER consists of a normalized enrichment score, 
which is positive and negative for TFs that are more active in asthma and no-asthma respectively. VIPER 
also produces the associated False Discovery Rate values (FDRVIPER), which were used in NeTFactor as a 
measure of the disease-related activity of the TFs constituting the GRN. This is also the goal of methods 
like MRA16 and its variants17.

	(3)	 Calculating the likelihood of a TF regulating the biomarker gene set: Even if a TF is determined to be active 
in a disease in the above step, it may not necessarily regulate the target biomarker, as it may be regulating 
other genes. Therefore, to determine the likelihood of a TF regulating the biomarker gene set, we used the 
Fisher’s exact test32 to assess the statistical significance of the number of genes in the overlapping the set of 
genes regulated by the TF in the GRN (its regulon) and the biomarker. We then used the Benjamini-Hoch-
berg procedure33 to correct for multiple hypothesis testing and used the resulting FDRBIOMARKER as the final 
likelihood of the TF regulating the biomarker gene set for further analysis.

	(4)	 Using convex optimization to find the most significant set of regulators: Since a gene in the biomarker 
may be regulated by multiple TFs, there may be redundancy (overlap) among the targets of the regulator 
TFs identified. To enhance NeTFactor’s ability to identify a set of regulators that reveal complementary 
aspects of disease biology, this step of the framework also takes into account the sets of biomarker genes 
each regulator targets. A possible greedy approach to this task is to incrementally select TFs by the number 
of biomarker genes they target in the corresponding GRN, until a certain fraction, say 80%, of all the bio-
marker genes has been covered. However, this approach does not tackle the redundancy issue, as several of 
the selected regulators may still regulate highly overlapping sets of biomarker genes. Therefore, NeTFactor 
adopts a convex optimization method for prioritizing candidate regulators based on the GRN inferred in 
Step 1 and the likelihoods calculated in Steps 2 and 3. Mathematically, this optimization problem can be 
formulated as

| | . . ≥ ∈minimize x s t x xA 1, {0, 1},0

where A is the (#TFs in GRN)X(#biomarker genes) matrix, with the A(i, j) entry representing the likelihood that 
TF i is active and regulating gene j in the biomarker set, which is defined as (1 − FDRVIPER) × (1 − FDRBIOMARKER) 
if j is a target of i in the GRN, and 0 otherwise.

The purpose of solving the above optimization problem stated is to find the value of the vector x, which con-
tains one entry for each TF, such that there are as few non-zero entries in x as possible (purpose of the L0 norm) 
and each gene in the biomarker would be targeted/covered by at least one TF (denoted by the xA 1≥  condition) 
in the GRN. However, since this problem is known to be computationally intractable68, we relaxed it by using the 
L1 norm, thus changing the optimization problem to

minimize x s t xA 11| | . . ≥ .

This problem is a derivative of the well-known LASSO algorithm, and thus can be solved using standard meth-
ods69 and packages like CVXR70. The decreasing magnitudes of the values constituting x (LASSO weights) that are 
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obtained by solving the above problem were used to rank the TFs in terms of their likelihood of non-redundantly 
regulating the biomarker.

Finally, to facilitate deeper examination of the top-ranking regulators, such as experimental validation in this 
study, we were most interested in determining the most significant subset of these regulator TFs that maximizes 
coverage of the biomarker. For this, we only selected TFs that were both significantly relevant to the disease 
(FDRVIPER ≤ 0.05) and the biomarker (FDRBIOMARKER ≤ 0.05) for further study.

Testing the robustness of NeTFactor’s results to the choice of the GRN inference algorithm.  To 
test this aspect, we applied NeTFactor to the nasal RNAseq data by replacing the constituent ARACNE algorithm 
with GENIE329, another well-established algorithm to infer GRNs. We used GENIE3’s publicly available R imple-
mentation (https://bioconductor.org/packages/release/bioc/html/GENIE3.html), setting the number of potential 
regulators of each gene, a required input parameter, to the default value of the square root of the total number of 
genes in the nasal RNAseq dataset. To compare the results obtained with the ARACNE-based ones, we selected 
the same number of top-weighted edges in the inferred GENIE3 network as the original nasal ARACNE GRN.

Experimental validation.  We used a human nasal epithelial primary cell line (PromoCell (Heidelberg, 
Germany)) at second passage for our experimental work, based on the rationale that a nasal epithelial cell line is 
from tissue closest in nature to the nasal brush samples that yielded the nasal RNAseq data used to develop the 
asthma biomarker. The cell line was grown according to manufacturer instructions in the presence of Primocin 
(Millipore Sigma, St Louis, MO, USA) at 1:500 dilution in Opti-MEM™ Reduced Serum Medium (Thermo Fisher 
Scientific, Waltham, MA, USA). Cells were cultured to a confluence of 70–90% in a 24-well plate. For pilot studies 
to determine optimal stimulant concentration, stimulations were done with lipopolysaccharide (LPS) (Millipore 
Sigma, St Louis, MO, USA) at 1 mg/mL, polyinosinic:polycytidylic acid (Poly (I:C)) (InvivoGen, San Diego, CA, 
USA) at 20 and 50 mg/mL, and immunostimulatory cytosine–phosphate–guanosine (CpG) (InvivoGen, San 
Diego, CA, USA) at 2.5 mM. Supernatants were collected at 6, 24, 48 and 72 hours and stored frozen at −80 °C for 
further experiments.

siRNA-mediated knockdown of PPARG and ETV4 mRNA was performed according to the protocol and 
supplies from ThermoFisher Scientific (RNAi Handbook, ThermoFisher Scientific, Waltham, MA, USA; ther-
mofisher.com/RNAi). Cells were seeded at the sixth passage on a 24-well plate at ~2 × 104 cell per well. At 
48 hours, cell media were refreshed. siRNA for PPARG and ETV4, as well as the corresponding negative siRNA 
controls were each mixed with Lipofectamine RNAiMAX reagent and added to the well at 5 pmol/0.5 mL 
medium/well. At 72 hours following addition of the transfection mix, cells were stimulated with Poly(I:C) or 
media control for 24 hours. Cytokine and chemokine levels in supernatants were then measured using X Multiplex 
Human Cytokine/chemokine assay kits (Millipore Sigma, St. Louis, MO, USA).

Testing the generalizability of NeTFactor to scenarios when the GRN and biomarker are 
derived from different data sets.  To assess the generalizability of NetTFactor’s performance to instances 
when the GRN and biomarker are derived from different data sets, we also applied NeTFactor to a GRN derived 
from an independent dataset from a distinct cohort of children with asthma and controls43. This independent 
nasal transcriptome dataset was generated from 225 asthmatics and controls recruited separately from the origi-
nal dataset. All subjects were recruited as part of an IRB-approved study at the Mount Sinai Health System, New 
York, NY and provided written informed consent.

Specifically, we constructed a new GRN using nasal transcriptome data from the independent cohort by apply-
ing ARACNE with 100 bootstraps and the seed set of 132 MSigDB TFs–the same settings used to derive the orig-
inal asthma GRN. We then applied the same four steps of NetFactor as had been applied to the original GRN to 
this independently-derived GRN to identify potential regulators of the 90-gene asthma biomarker.

Application of NeTFactor to a different disease biomarker.  To assess NeTFactor’s ability to gen-
eralize to biomarkers of other diseases and/or phenotypes, we applied NeTFactor to identify TF regulators of a 
biomarker of peanut allergic reactions44. The data for GRN construction included whole blood transcriptome 
profiles from 40 peanut allergic children undergoing double-blind, placebo-controlled oral challenges to peanut. 
Longitudinal peripheral blood samples for whole blood transcriptome profiling were obtained during each chal-
lenge44. Here, peanut allergic reaction was the target phenotype, and the two classes were reaction (i.e. captured 
by samples obtained during peanut challenge), and no reaction (i.e. captured by samples obtained during placebo 
challenge)44. In the primary study of this cohort44, 26 key driver genes of peanut allergic reaction were identified 
(Supplementary Table 4 of this ref.44) and were considered the biomarker for NeTFactor.

We applied the NeTFactor framework to the gene expression data from the peanut allergy cohort and the bio-
marker of peanut allergic reactions44. For GRN inference using ARACNE, we used 100 bootstraps and the seed set 
of 221 MSigDB TFs, the same settings used to derive the original asthma GRN. The other steps of NeTFactor were 
applied exactly as in the original asthma case study, with the exception that VIPER was run with the gene-based 
permutation option to build the null hypothesis due to the fact that each subject had whole blood transcriptome 
profiles from longitudinal samples obtained during both peanut and placebo challenges, and samples were thus 
not independent within or between the classes.

Ethics approval and consent to participate.  The institutional review boards of Brigham & Women’s 
Hospital and the Icahn School of Medicine at Mount Sinai approved the study protocols. Written informed con-
sent was obtained from all subjects and all research was performed in accordance with relevant guidelines and 
regulations.
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Software Availability
The code for NeTFactor implementation is available at https://github.com/GauravPandeyLab/NeTFactor.

Data Availability
RNAseq data from the asthma cohort that yielded the primary nasal gene expression data set used in this study 
are available at https://www.synapse.org/#!Synapse:syn9878922/files/ (https://doi.org/10.7303/syn9878922). The 
RNAseq data for the peanut allergy cohort can be found at https://www.synapse.org/#!Synapse:syn10212437/
files/ (https://doi.org/10.7303/syn10212437).

References
	 1.	 Ozsolak, F. & Milos, P. M. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12, 87–98 (2011).
	 2.	 Libbrecht, M. W. & Noble, W. S. Machine learning applications in genetics and genomics. Nat Rev Genet 16, 321–332 (2015).
	 3.	 Pandey, G. et al. A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data. 

Scientific Reports 8, 8826 (2018).
	 4.	 van ’t Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).
	 5.	 van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347, 1999–2009 (2002).
	 6.	 Badal, B. et al. Transcriptional dissection of melanoma identifies a high-risk subtype underlying TP53 family genes and epigenome 

deregulation. JCI Insight 2 (2017).
	 7.	 Rykunov, D. et al. A new molecular signature method for prediction of driver cancer pathways from transcriptional data. Nucleic 

Acids Res 44, e110 (2016).
	 8.	 Schlitt, T. & Brazma, A. Current approaches to gene regulatory network modelling. BMC Bioinformatics 8, S9 (2007).
	 9.	 Dana, H. et al. Molecular Mechanisms and Biological Functions of siRNA. Int J Biomed Sci 13, 48–57 (2017).
	10.	 de la Fuente, A. From ‘differential expression’ to ‘differential networking’ - identification of dysfunctional regulatory networks in 

diseases. Trends Genet 26, 326–333 (2010).
	11.	 Hasty, J., McMillen, D., Isaacs, F. & Collins, J. J. Computational studies of gene regulatory networks: in numero molecular biology. 

Nat Rev Genet 2, 268–279 (2001).
	12.	 Vidal, M., Cusick, M. E. & Barabasi, A. L. Interactome networks and human disease. Cell 144, 986–998 (2011).
	13.	 Huang, J. K. et al. Systematic Evaluation of Molecular Networks for Discovery of Disease Genes. Cell Systems 6, 484–495.e485 

(2018).
	14.	 Wang, X., Gulbahce, N. & Yu, H. Network-based methods for human disease gene prediction. Briefings in Functional Genomics 10, 

280–293 (2011).
	15.	 Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nature Reviews 

Genetics 12, 56 (2010).
	16.	 Lim, W. K., Lyashenko, E. & Califano, A. Master regulators used as breast cancer metastasis classifier. Pac Symp Biocomput, 504–515 

(2009).
	17.	 Califano, A. & Alvarez, M. J. The recurrent architecture of tumour initiation, progression and drug sensitivity. Nat Rev Cancer 17, 

116–130 (2017).
	18.	 Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351, 

2817–2826 (2004).
	19.	 Bunyavanich, S. & Schadt, E. E. Systems biology of asthma and allergic diseases: A multiscale approach. The Journal of allergy and 

clinical immunology (2014).
	20.	 Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).
	21.	 Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).
	22.	 Margolin, A. A. et al. ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular 

Context. BMC Bioinformatics 7, S7 (2006).
	23.	 Lachmann, A., Giorgi, F. M., Lopez, G. & Califano, A. ARACNe-AP: gene network reverse engineering through adaptive partitioning 

inference of mutual information. Bioinformatics 32, 2233–2235 (2016).
	24.	 Margolin, A. A. et al. Reverse engineering cellular networks. Nature Protocols 1, 662 (2006).
	25.	 Yii, A. C. A. et al. Precision medicine in united airways disease: A “treatable traits” approach. Allergy (2018).
	26.	 Fazlollahi, M. et al. The nasal microbiome in asthma. The Journal of allergy and clinical immunology (2018).
	27.	 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. 

Proc Natl Acad Sci USA 102, 15545–15550 (2005).
	28.	 Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).
	29.	 Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory networks from expression data using tree-based 

methods. PLoS One 5 (2010).
	30.	 Alvarez, M. J. et al. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. 

Nat Genet 48, 838–847 (2016).
	31.	 Wang, J., Li-Hong, X., Cheng, W., Wang, Z. & Zhang, W. Effect of heat shock factor 1 on airway hyperresponsiveness and airway 

inflammation in mice with allergic asthma. Chinese Journal of Contemporary Pediatrics 19, 222–228 (2017).
	32.	 Sprent, P. Fisher Exact Test. In: International Encyclopedia of Statistical Science (ed^(eds) (2011).
	33.	 Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal 

of the Royal Statistical Society Series B (Methodological) 57, 289–300 (1995).
	34.	 Bhakta, N. R. et al. IFN-stimulated Gene Expression, Type 2 Inflammation, and Endoplasmic Reticulum Stress in Asthma. Am J 

Respir Crit Care Med 197, 313–324 (2018).
	35.	 Martino, M. B. et al. The ER stress transducer IRE1beta is required for airway epithelial mucin production. Mucosal Immunol 6, 

639–654 (2013).
	36.	 Liu, Y. P. et al. Association of ORMDL3 with rhinovirus-induced endoplasmic reticulum stress and type I Interferon responses in 

human leucocytes. Clin Exp Allergy 47, 371–382 (2017).
	37.	 Himes, B. E. et al. Association of SERPINE2 with asthma. Chest 140, 667–674 (2011).
	38.	 Bochkov, Y. A. et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C 

binding and replication. Proc Natl Acad Sci USA 112, 5485–5490 (2015).
	39.	 Gandhi, V. D. & Vliagoftis, H. Airway epithelium interactions with aeroallergens: role of secreted cytokines and chemokines in 

innate immunity. Front Immunol 6, 147 (2015).
	40.	 Divekar, R. & Kita, H. Recent advances in epithelium-derived cytokines (IL-33, IL-25, and thymic stromal lymphopoietin) and 

allergic inflammation. Curr Opin Allergy Clin Immunol 15, 98–103 (2015).
	41.	 Kumar, R. K., Herbert, C. & Foster, P. S. Expression of growth factors by airway epithelial cells in a model of chronic asthma: 

regulation and relationship to subepithelial fibrosis. Clin Exp Allergy 34, 567–575 (2004).
	42.	 Wang, Y., Bai, C., Li, K., Adler, K. B. & Wang, X. Role of airway epithelial cells in development of asthma and allergic rhinitis. Respir 

Med 102, 949–955 (2008).

https://doi.org/10.1038/s41598-019-49498-y
https://github.com/GauravPandeyLab/NeTFactor
https://www.synapse.org/#!Synapse:syn9878922/files/
https://doi.org/10.7303/syn9878922
https://www.synapse.org/#!Synapse:syn10212437/files/
https://www.synapse.org/#!Synapse:syn10212437/files/
https://doi.org/10.7303/syn10212437


1 2Scientific Reports |         (2019) 9:12970  | https://doi.org/10.1038/s41598-019-49498-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

	43.	 Do, A. N. et al. Network analysis reveals causal key driver genes of severe asthma in children. Journal of Allergy and Clinical 
Immunology 143, AB186 (2019).

	44.	 Watson, C. T. et al. Integrative transcriptomic analysis reveals key drivers of acute peanut allergic reactions. Nat Commun 8, 1943 
(2017).

	45.	 Junttila, I. S. Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Front Immunol 9, 888 
(2018).

	46.	 Rothman, P. B. The transcriptional regulator NFIL3 controls IgE production. Trans Am Clin Climatol Assoc 121, 156–171; discussion 
171 (2010).

	47.	 Deenick, E. K., Pelham, S. J., Kane, A. & Ma, C. S. Signal Transducer and Activator of Transcription 3 Control of Human T and B Cell 
Responses. Front Immunol 9, 168 (2018).

	48.	 Lyons, J. J. et al. ERBIN deficiency links STAT3 and TGF-beta pathway defects with atopy in humans. J Exp Med 214, 669–680 
(2017).

	49.	 Wang, H. et al. Transcription factors IRF8 and PU.1 are required for follicular B cell development and BCL6-driven germinal center 
responses. Proc Natl Acad Sci USA 116, 9511–9520 (2019).

	50.	 Yepes-Nunez, J. J. et al. Vitamin D supplementation in primary allergy prevention: Systematic review of randomized and non-
randomized studies. Allergy 73, 37–49 (2018).

	51.	 Bunyavanich, S. et al. Prenatal, perinatal, and childhood vitamin D exposure and their association with childhood allergic rhinitis 
and allergic sensitization. The Journal of allergy and clinical immunology 137, 1063–1070 e1062 (2016).

	52.	 Carlson, J. J. & Roth, J. A. The impact of the Oncotype Dx breast cancer assay in clinical practice: a systematic review and meta-
analysis. Breast Cancer Res Treat 141, 13–22 (2013).

	53.	 Adamski, M. G. et al. Expression profile based gene clusters for ischemic stroke detection. Genomics 104, 163–169 (2014).
	54.	 Arisi, I. et al. Gene expression biomarkers in the brain of a mouse model for Alzheimer’s disease: mining of microarray data by logic 

classification and feature selection. J Alzheimers Dis 24, 721–738 (2011).
	55.	 Kim, J.-H., Song, J. & Park, K. W. The multifaceted factor peroxisome proliferator-activated receptor γ (PPARγ) in metabolism, 

immunity, and cancer. Arch Pharm Res 38, 302–312 (2015).
	56.	 Croasdell, A. et al. PPARγ and the Innate Immune System Mediate the Resolution of Inflammation. PPAR Res 2015, 549691 (2015).
	57.	 da Rocha Junior, L. F. et al. PPARγ Agonists in Adaptive Immunity: What Do Immune Disorders and Their Models Have to Tell Us? 

PPAR Res 2013, 519724 (2013).
	58.	 Wang, A. C., Dai, X., Luu, B. & Conrad, D. J. Peroxisome proliferator-activated receptor-gamma regulates airway epithelial cell 

activation. Am J Respir Cell Mol Biol 24, 688–693 (2001).
	59.	 Trifilieff, A. et al. PPAR-alpha and -gamma but not -delta agonists inhibit airway inflammation in a murine model of asthma: in vitro 

evidence for an NF-kappaB-independent effect. Br J Pharmacol 139, 163–171 (2003).
	60.	 Woerly, G. et al. Peroxisome proliferator-activated receptors alpha and gamma down-regulate allergic inflammation and eosinophil 

activation. J Exp Med 198, 411–421 (2003).
	61.	 Zhao, Y. et al. Rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, attenuates airway inflammation by inhibiting 

the proliferation of effector T cells in a murine model of neutrophilic asthma. Immunol Lett 157, 9–15 (2014).
	62.	 Lee, H. Y. et al. Effect of intranasal rosiglitazone on airway inflammation and remodeling in a murine model of chronic asthma. 

Korean J Intern Med 31, 89–97 (2016).
	63.	 Nobs, S. P. et al. PPARγ in dendritic cells and T cells drives pathogenic type-2 effector responses in lung inflammation. J Exp Med 

214, 3015–3035 (2017).
	64.	 Oh, S., Shin, S. & Janknecht, R. ETV1, 4 and 5: an oncogenic subfamily of ETS transcription factors. Biochim Biophys Acta 1826, 

1–12 (2012).
	65.	 Tyagi, N. et al. ETV4 Facilitates Cell-Cycle Progression in Pancreatic Cells through Transcriptional Regulation of Cyclin D1. Mol 

Cancer Res 16, 187–196 (2018).
	66.	 Zeng, S. et al. ETV4 collaborates with Wnt/β-catenin signaling to alter cell cycle activity and promote tumor aggressiveness in 

gastrointestinal stromal tumor. Oncotarget 8, 114195–114209 (2017).
	67.	 Cover, T. M. & Thomas, J. A. Elements of information theory. John Wiley & Sons (2012).
	68.	 Jin, J., Gu, Y.-T. & Mei, S.-L. An Introduction to Compressive Sampling and Its Applications. Journal of electronics information & 

technology 32, 470–475 (2010).
	69.	 Tibshirani, R. Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc Series B Stat Methodol 73, 273–282 

(2011).
	70.	 Fu, A., Narasimhan, B. & Boyd, S. CVXR: An R Package for Disciplined Convex Optimization. arXiv preprint arXiv:171107582 

(2017).
	71.	 Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 

2498–2504 (2003).

Acknowledgements
This study was enabled in part by computational resources provided by Scientific Computing at the Icahn School 
of Medicine at Mount Sinai. We thank Dr. Madhan Masilamani for sharing his perspectives on the design of cell-
line experiments, and Dr. Avner Schlessinger for his advice on the preparation of this manuscript. This work was 
supported by NIH grants R01AI118833 and K08AI093538 to SB, and R01GM114434 to GP, a pilot project grant 
from the Mount Sinai Mindich Child Health and Development Institute to SB and GP, and an IBM Faculty Award 
to GP. The funders had no role in study design, data collection and analysis, decision to publish, or preparation 
of the manuscript.

Author Contributions
G.P., S.B., G.S. and M.E.A. conceived the study. G.P. and S.B. supervised the work. M.E.A. and Y.C. executed the 
computational components of the study, while A.G. and G.G. executed the experimental aims. All the authors 
reviewed and approved the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-49498-y.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41598-019-49498-y
https://doi.org/10.1038/s41598-019-49498-y


13Scientific Reports |         (2019) 9:12970  | https://doi.org/10.1038/s41598-019-49498-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-49498-y
http://creativecommons.org/licenses/by/4.0/

	NeTFactor, a framework for identifying transcriptional regulators of gene expression-based biomarkers

	Results

	Development of NeTFactor and its application to nasal RNAseq data and the asthma biomarker. 
	Generation of a context-specific gene regulatory network (GRN). 
	VIPER identifies 12 asthma-associated TFs in the GRN. 
	Context-specific regulators of the asthma biomarker. 
	Convex optimization identifies the most significant set of asthma-active TFs that most significantly and non-redundantly re ...

	Experimental validation of NeTFactor findings. 
	NeTFactor’s performance when the biomarker and GRN are derived from different gene expression datasets. 
	Application of NeTFactor to a different disease biomarker. 

	Discussion

	Materials and Methods

	Primary study population and RNAseq data. 
	NeTFactor. 
	Testing the robustness of NeTFactor’s results to the choice of the GRN inference algorithm. 
	Experimental validation. 
	Testing the generalizability of NeTFactor to scenarios when the GRN and biomarker are derived from different data sets. 
	Application of NeTFactor to a different disease biomarker. 
	Ethics approval and consent to participate. 

	Software Availability

	Acknowledgements

	Figure 1 Study flow for the identification and validation of transcription factor (TF) regulators of a gene expression-based biomarker of asthma3 using the proposed NeTFactor framework.
	Figure 2 Derivation of context-specific gene regulatory networks (GRNs) from and application of the VIPER algorithm30 to a nasal RNAseq data set.
	Figure 3 Subnetwork of the base nasal GRN consisting of the seven regulator TFs listed in Table 1, and their target asthma biomarker genes, denoted by squares and small filled circles respectively.
	Figure 4 Experimental Validation of NeTFactor Predictions.
	Table 1 The top seven TFs (first column) ranked by LASSO weights (second column) produced by the final step of NeTFactor, indicating the TF’s likelihood of regulating the 90-gene asthma biomarker as significantly and non-redundantly as possible.
	Table 2 Top-ranked TFs identified by NeTFactor for the peanut allergy biomarker, ranked by LASSO weights.




