
R AD I A T I ON ONCO LOG Y PH Y S I C S

Prediction of the output factor using machine and deep
learning approach in uniform scanning proton therapy

Hardev S. Grewal1,2 | Michael S. Chacko1 | Salahuddin Ahmad2 | Hosang Jin2

1Oklahoma Proton Center, Oklahoma City,

OK, USA

2Department of Radiation Oncology,

University of Oklahoma Health Sciences

Center, Oklahoma City, OK, USA

Author to whom correspondence should be

addressed. Hosang Jin

E‐mail: hosang-jin@ouhsc.edu; Telephone:

(405) 271‐3016; Fax: (405) 271‐8297

Abstract

Purpose: The purpose of this work is to develop machine and deep learning‐based
models to predict output and MU based on measured patient quality assurance

(QA) data in uniform scanning proton therapy (USPT).

Methods: This study involves 4,231 patient QA measurements conducted over the

last 6 years. In the current approach, output and MU are predicted by an empirical

model (EM) based on patient treatment plan parameters. In this study, two

MATLAB‐based machine and deep learning algorithms — Gaussian process regres-

sion (GPR) and shallow neural network (SNN) — were developed. The four parame-

ters from patient QA (range, modulation, field size, and measured output factor)

were used to train these algorithms. The data were randomized with a training set

containing 90% and a testing set containing remaining 10% of the data. The model

performance during training was accessed using root mean square error (RMSE) and

R‐squared values. The trained model was used to predict output based on the three

input parameters: range, modulation, and field size. The percent difference was cal-

culated between the predicted and measured output factors. The number of data

sets required to make prediction accuracy of GPR and SNN models' invariable was

also evaluated.

Results: The prediction accuracy of machine and deep learning algorithms is higher

than the EM. The output predictions with [GPR, SNN, and EM] within ± 2% and ±

3% difference were [97.16%, 97.64%, and 92.95%] and [99.76%, 99.29%, and

97.18%], respectively. The GPR model outperformed the SNN with a smaller num-

ber of training data sets.

Conclusion: The GPR and SNN models outperformed the EM in terms of prediction

accuracy. Machine and deep learning algorithms predicted the output factor and

MU for USPT with higher predictive accuracy than EM. In our clinic, these models

have been adopted as a secondary check of MU or output factors.
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1 | INTRODUCTION

Machine and deep learning techniques combine the power of com-

puter science and statistics, and have the potential to revolutionize

cancer treatment technologies in radiation oncology.1 Proton beam

therapy having desirable properties such as sharp dose falloff after

the Bragg peak has shown reduced dose to critical organs while

achieving comparable dose to the target volume as conventional

radiation therapy.2,3 Utilizing machine and deep learning techniques

in proton therapy will lead to the development of new tools that can

benefit patient care.4,5

In the uniform scanning proton therapy (USPT) delivery tech-

nique, the beam is delivered uniformly layer by layer by varying the

beam energy. Scanning magnets are used to move the beam in two

dimensions along the transverse plane. In radiation therapy, monitor

units (MU) and the output factor (OF), which is a ratio of measured

dose for a certain field with respect to a reference field, are required

for the accurate and reliable delivery of the treatment dose to the

patient. Due to the complexity of the USPT beam delivery, no com-

mercial treatment planning system is available to calculate MU.

The MU and OF are calculated in both USPT and passively dou-

ble‐scattered proton therapy (DSPT) from results of measurements,

empirical models (EMs), or Monte Carlo simulation of each patient‐
specific treatment field. There are several publications available

which report the calculations of OF for DSPT and USPT techniques.

For DSPT, Kooy et al.6,7 reported the analytical method for the cal-

culation of OF by combining the parameters of range, modulation,

and source shift change. The OF calculation procedure for DSPT at

M.D. Anderson Cancer Center was reported by Sahoo et al.8 Fergu-

son et al.9 compared the three output prediction models named,

Sahoo et al.'s correction‐based model, Kooy et al.'s analytical model,

and a quartic polynomial fit model for a compact double scattered

proton therapy system. They concluded that the differences among

these models were statistically insignificant. Zhao et al.10 at Midwest

Proton Radiotherapy Institute (MPRI) studied the sector integration

method for proton output calculations in a USPT technique. They

reported that this method improved accuracy for higher energy, lar-

ger spread out Bragg peaks, and large field sizes. For USPT, Zheng

et al.11 reported the calculation of OF for various beam conditions

at the Oklahoma Proton Center. The use of the machine learning

approach in intensity modulated radiation therapy (IMRT) quality

assurance (QA) is published by Valdes et al.12,13 They suggested that

the machine learning based on virtual IMRT QA method provided a

framework for the integration of the task group (TG) 100's risk‐
based QA program. The use of the machine learning approach for

the calculation of MU was reported by Sun et al.4 for DSPT tech-

nique.

To the best of our knowledge, there is no published work

regarding the use of machine and deep learning algorithms for the

calculation of OF for USPT technique. Accordingly, the purpose of

this study was to detail the procedure for the use of such algorithms

for the calculation and verification of OF and MU for the USPT

technique. This work demonstrates the potential of machine and

deep learning techniques to directly impact patient care in proton

therapy.

2 | MATERIALS AND METHODS

2.A | Patient and proton system

A total of 4,231 patient‐specific field QA measurements conducted

over a span of 6 years (2013–2018) were used in this study. All

measurements were performed using an IBA proton therapy system

(Louvain‐la‐Neuve, Belgium). The description of the beam line has

been detailed elsewhere.11,14 The proton system can deliver beam

modulation widths (proximal 95% to distal 95% isodose point) from

2.0 to 13.0 g/cm2 and 13.0 to 25.0 g/cm2 in increments of 0.5 and

1.0 g/cm2, respectively, and beam ranges (depth of the distal 90%

isodose point) from 4.0 to 31.5 g/cm2 in increments of 0.1 g/cm2.

The patient QA data include proton ranges from 4.0 to 31.5 g/cm2,

modulation widths from 2.0 to 25.0 g/cm2 and field sizes from

2 × 2 to 26 × 26 cm2. The field size was estimated by square root

of the product of the x‐axis and y‐axis at the opening of the aper-

ture. The patient QA measurements were performed using four

snout sizes: 10 cm diameter, 18 cm diameter, 25 cm diameter, and

30 × 40 cm2.

2.B | Output factor measurements and empirical
model

The empirical model (EM) used for the calculation of patient‐speci-
fic output factor and MU is described by Zheng et al.11 The EM

model was developed based on various treatment conditions using

combinations of ranges and modulations with the 10 cm aperture.

The measured OF was then modified with several multiplicative

factors such as field size, inverse square correction, and scanning

field size that were empirically determined. The OF and MU from

the EM for each patient‐specific field were verified by measure-

ments using a water tank of dimensions 32 × 21×21 cm3 and a

parallel plate ionization chamber (PPC05, IBA dosimetry, Sch-

warzenbruck, Germany). In our patient QA approach, the ionization

chamber collected the charge (Cref) first for the reference condi-

tion (range: 16.0 g/cm2, modulation width: 10.0 g/cm2, MUref: 150,

and air‐gap: 7 cm), and then the charge (Cpt) for each patient‐
specific field using the same range, modulation, MUpt as pre-

scribed in the treatment plan and EM with field specific apertures,

excluding the compensator. The measured output factor is then

calculated as:

OFmeas ¼ Cref

MUref
� Cpt

MUpt
(1)

If the measured OF agreed with the calculation of EM within 3%

for each field and had a weighted average less than 2% for all fields,

the model OF and MU were used. If the measurements disagreed

with the model calculation over 3% for each field or 2% overall, OF

and MU were assigned based on the measurements.

GREWAL ET AL. | 129



2.C | Machine and Deep learning models

Since our problem involved nonlinear data fitting and multidimen-

sional data, two MATLAB (The MathWorks, Natick, MA; version

2018b)‐based machine and deep learning algorithms — Gaussian

process regression (GPR) and shallow neural network (SNN) — using

supervised learning method were developed. The supervised learning

model approach for GPR is shown in Fig. 1. In this study, we distin-

guishably used “machine learning (GPR)” and “deep learning (SNN)”

as used in MATLAB even if deep learning can be viewed as an

extension or a subset of machine learning techniques. The four

parameters from patient QA (range, modulation, field size, and mea-

sured output factor) were used to train these algorithms. The data

were randomized and the models were developed with a training set

containing 90% of the data and a testing set of remaining 10%.

2.C.1 | Gaussian process regression

The GPR model, a form of Bayesian nonlinear regression, attempts

to predict a response variable from input variables using an approach

that yields certain advantages.15,16 Given a set of training data, clas-

sical algorithms attempt to fit a single model to the data by optimiz-

ing several parameters; the model is then used to predict future

inputs. Such an approach characterized by discrete parameters is

known to be parametric. In contrast, GPR is nonparametric, meaning

that it is not bounded by any single function, but can calculate a

probability distribution over every possible function that presumably

may fit the input data. Naturally, this also leads to the added benefit

of obtaining uncertainty information regarding the algorithm's predic-

tions.

The Gaussian process is defined by two functions: the mean

function that outputs the expected value and the covariance func-

tion that defines how it changes as the input changes (smoothness)

given that the variables included in the model come from a joint,

multivariate Gaussian distribution. The mean function in this model

was set to be a constant value. The covariance function can be

defined as a kernel, selected to be exponential in this model, and is

parameterized by a set of kernel parameters commonly known as

hyperparameters. The nonisotropic exponential kernel used in the

model has all predictor variables with their own correlation length

scale. The exponential kernel is defined as:

k(xi;xjÞ ¼ σ2f exp
�r
σl

� �
(2)

where xi and xj are values in input space, σf is the signal standard

deviation, σl is the characteristics length scale and r is the Euclidean

distance between xi and xj.

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �T

xi � xj
� �q

(3)

The GPR model implemented in MATLAB can be trained via the

fitrgp function.17 Observation values are projected into a feature

space using basis functions. Given the basis function, the covariance

function, and the initial parameter values, the fitrgp function esti-

mates basis function coefficients, the noise variance, and the hyper-

parameters (signal variance and characteristics length scale) for the

covariance kernel.

2.C.2 | Shallow neural network

The shallow neural network as the name suggests uses fewer num-

ber of hidden layers, usually one hidden layer and one output layer

as shown in Fig. 2. The number of neurons in the hidden layer may

vary. Neural networks which are sets of algorithms or computing

models mimicking the neural network structured in the brain can be

trained for pattern recognition, classifying data, and regression prob-

lems which describe the relationship between output and one or

more input variables.

A two‐layer feed‐forward SNN was constructed in this fitting

problem.18 The hidden layer used 100 neurons with the tan‐sigmoid

transfer function due to the inherent nonlinearity of our data. The

sum of the weighted inputs and bias is used as the input to the tan‐
sigmoid transfer function. The output layer uses the linear transfer

function.

For optimal neural network training, the 90% training data set

was divided into three subsets: training (80%), validation (15%), and

testing (5%). The training set was used to compute the gradient and

updating the network's weights and biases. During training process,

the validation set error was monitored and decreased. To avoid

F I G . 1 . Supervised learning algorithm approach for gaussian process regression.
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overfitting, which is characterized by the rise in the validation set

error, weights and biases were saved at the minimum of the valida-

tion error. To optimize the performance function for training multi-

layer feed‐forward network, a Levenberg–Marquardt back‐
propagation algorithm19,20 was used.

2.D | Dependency of the size of the data set

In order to determine how many data points were needed to train

the GPR and SNN models to make their output factor prediction

accuracy invariable, the output prediction by the models was tested

with 1%, 5%, 10%, 20%, 40%, 80%, and 100% of the training

data set.

2.E | Algorithm evaluation

The algorithm performance during training was assessed using root

mean square error (RMSE) and R‐squared values. The trained

model was used to make the output predictions based on the

three input parameters: range, modulation, and field size. The test-

ing data set is shown in Fig. 3. Percent difference was calculated

between the predicted and measured output factor from the test-

ing data set. A two‐tailed t‐test was performed using a signifi-

cance level of 0.05.

3 | RESULTS

3.A | Output prediction and model comparison

Table I shows the percentage of output factor predictions that were

within ± 2% and ± 3% as compared to the measured values for EM,

GPR, and SNN. Table I also shows the mean absolute error with

standard deviation (SD), mean error with SD, and maximum absolute

error for these models. Prediction accuracy of both machine and

deep learning algorithms were higher than the EM. Both GPR and

SNN demonstrated prediction accuracy of greater than 97% for out-

put factor difference within ± 2% as compared to the 92.95% for

EM. All three models showed prediction accuracy of greater than

97% for difference between predicted and measured output factors

to be within ± 3%. The GPR model outperformed the other two

models with the least mean absolute error, SD, and maximum abso-

lute error. The difference between GPR and SNN was not statisti-

cally significant (P = 0.415). However, the difference between EM

and (GPR or SNN) was statistically significant (P < 0.001). Figure 4

shows the histogram and normal distribution fit of the percent dif-

ferences between modeled and measured output factors for all

patient QA data for EM, GPR, and SNN.

Figure 5 shows the distribution of the error versus r, where r =

(R‐M)/M (R: proton range, M: beam modulation width) for all the

F I G . 2 . Shallow neural network
design, W, weight; b, bias.

F I G . 3 . Testing data set used to make
trained model predictions.
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three models. The small r‐values where range is close to the modula-

tion show the maximum percent difference error. EM has consider-

ably more error for small r‐values as compared to GPR and SNN,

having a maximum absolute error of 6.9% as compared to 4.8% and

5.6% for GPR and SNN, respectively, for small r‐values. These find-

ings are consistent with the results for DSPT reported by Sun et al.4

The percent difference errors are scattered more symmetrically

around zero for GPR and SNN. The shape of the error plot for EM

changes moving from left to right, which indicates the need of

improvement in the model.

In the testing data set, eight data points had field size less than

or equal to 3 cm. For these data points, SNN and EM had one result

more than ± 2% difference between measured and predicted OF,

but GPR had all results less than ± 2%. None of the model had ± 3%

or more difference between measured and predicted OF for field

size of 3 cm or less. For the field size greater than 15 cm (27 data

points), OF predictions with [GPR, SNN, and EM] within ± 2% and ±

3% difference were [92.6%, 92.6%, and 77.8%] and [100%, 96.3%,

and 88.9%], respectively.

3.B | Dependency of the size of the data set

The GPR model outperformed the SNN model for the sets which

contained a smaller number of training data points. As the training

set varied from 1% to 100% of all data points, the percentage of

OF predictions within ± 2% from the measurements varied from

77% to 97% and 11% to 97% of fields for GPR and SNN, respec-

tively. Both the models became saturated in output factor predic-

tion accuracy at the 40% of the training data set mark as shown in

Fig. 6.

4 | DISCUSSION

In radiation therapy, the success of the treatment is primarily depen-

dent upon accurate dose calculation. In USPT, the conversion of the

dose to MUs through the OF is presently accomplished by empirical

models. Based on the patient's treatment plan QA data, two machine

and deep learning models (GPR and SNN) were employed for the

OF prediction. Our results indicate that both models outperformed

the EM in parameters of mean error, mean absolute error, maximum

absolute error, and difference within ± 2% and ± 3% of modeled OF.

These encouraging results led to the development of a MATLAB

compiled executable application for use in our clinic as a secondary

check of MUs.

As implemented clinically, the current EM quantifies each of

three features (range, modulation, and field size) into their relative

contribution to the final OF. In this interpolative approach, each fea-

ture must be measured holding the other constants; as such, the

incorporation of more data for treatment fields is cumbersome,

requiring multiple measurement setups to quantify each individual

feature alone. The machine learning approach, by contrast, allows

incorporation of new data quickly, without the need for interpolation

across multiple features.

Both the GPR and SNN models reported accuracy to over 97%

of fields for a 2% difference between predicted and measured OF.

The Cubist machine learning model developed by Sun et al.4 for their

DSPT reported 97.5% prediction accuracy for a difference within 2%

between predicted and measured OFs.

One of the limitations of the machine and deep learning approach

is the need of significant amount of data points in order to build an

acceptable model. Both of the models become saturated in prediction

accuracy utilizing 40% of the training data set, which corresponds to

approximately 1500 data points. Even though the GPR model needed

only approximately 750 data points to achieve a prediction accuracy

of more than 95%, Sun et al.4 reported that the implementation of

the Cubist machine learning model required 1200 measured OFs. The

results indicate that GPR needs less data points than the Cubist

model, but SNN needs more to build an accurate model. The machine

and deep learning models were built without curating the training

data set. Patient data used for the training were not uniformly dis-

tributed across all model parameters as a result of the nonuniform

distribution of disease sites treated. For example, most prostate plans

were concentrated in the 24–27 g/cm2 range with 6–8 g/cm2 modula-

tion width and ~ 7×7 cm2
field size. In contrast, the empirical model

was built with 338 individual measurements by uniformly covering

the entire range and modulation width. As a result, it is difficult to

directly contrast the number of measurement points necessary

between these models; however, it indicates that the empirical model

requires fewer measurements to commission.

The daily output variation of our cyclotron‐based proton machine

is less than 2%. This deviation may add an additional noise to the

patient‐specific OF measurements. To correct this deviation, the OF

of the reference field (Range: 16 cm, Modulation: 10 cm, MU: 150,

Aperture size: 10 cm diameter, and Air gap: 7 cm) is measured

before the start of patient‐specific QA. This reference field OF is

used to normalize the patient‐specific OF.

The field size factor is interdependent upon a number of factors

including range, modulation, snout position, and calibration depth.

Zheng et al.21 reported that by varying the field size from 10 to

TAB L E 1 Percent difference, mean and maximum error, standard
deviation (SD) between measured and predicted output factor.

Empirical
model (%)

Gaussian process
regression (%)

Shallow neural
network (%)

Difference

within 2%

92.95 97.16 97.64

Difference

within 3%

97.18 99.76 99.29

Mean absolute

error ± SD

0.92 ± 0.89 0.61 ± 0.57 0.69 ± 0.65

Mean

error ± SD

0.43 ± 1.26 −0.03 ± 0.83 0.02 ± 0.95

Maximum

absolute error

6.9 4.8 5.6
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F I G . 4 . Histogram of the percent
difference between measured and
predicted output factors for empirical
model, gaussian process regression, and
shallow neural network.

F I G . 5 . Error distribution for empirical
model, gaussian process regression, and
shallow neural network as a function of
r = (R‐M)/M.

F I G . 6 . Output factor prediction
accuracy as a function of training data.
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3 cm diameter, the field size factor decreased over 10% for high

energy proton beam. For accurate dose delivery, OF must include

dependence on the field size factor. One of the limitations of the

Cubist machine learning model developed by Sun et al.4 is that the

field size factor was not included in model development. Both GPR

and SNN models include the field size for the model development,

as defined at the isocenter plane. This plane is independent of the

snout position, which was excluded from the current model develop-

ment as it was by Sun et al.4

The EM yields large errors in predicting OF when modulation is

nearly equal to the proton beam range. Similar results were reported

by Kim et al.22 when r < 0.3, OF had large prediction uncertainty.

The reason behind this mismatch is due to the uncertainty involving

modulation width (proximal 95% to distal 95% dose point). When

the modulation width is nearly equivalent to the beam range, the

shape of the depth dose curve is nearly flat from entrance to distal

95% dose point. This led to the large uncertainty in determining the

modulation width and therefore the OF. The GPR and SNN models

show less sensitivity to small r values. Moreover, percent difference

errors were symmetrically scattered about zero, indicating that both

models had nearly the same probability of over‐ and underpredicting

the OF.

The machine and deep learning models have also a potential for

secondary output check or patient‐specific QA prediction for pencil‐
beam scanning (PBS) systems. However, the main challenge is the

number of input parameters for PBS systems compared to that of

DS or US proton systems. OF of DS or US systems depends on only

three main input parameters (range, modulation width, and field size)

for each beam while OF of the PBS system depends on too many

input parameters (spot position, spot energy, spot spacing, energy

layer spacing, spot per MU, field optimization technique (single‐field
or multiple‐field), and so on). Generalization of these input parame-

ters is a successful key to build an acceptable OF prediction model

for PBS.

5 | CONCLUSION

The accurate conversion of the planned dose to the machine read-

able monitor units is one of the most important parts of treatment

planning in uniform scanning proton therapy. We developed two

output prediction methods based on machine and deep learning

algorithms using GPR and SNN. Both of these algorithms outper-

formed the empirical model. In our clinic, these models have been

used as secondary check of MU or output factor.
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