
SYSTEMATIC REVIEW
published: 29 October 2021

doi: 10.3389/fcvm.2021.765749

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 October 2021 | Volume 8 | Article 765749

Edited by:

Nathalie Pamir,

Oregon Health and Science University,

United States

Reviewed by:

Laurent Calvier,

University of Texas Southwestern

Medical Center, United States

Robert Kiss,

McGill University, Canada

*Correspondence:

Daoquan Peng

pengdq@csu.edu.cn

Specialty section:

This article was submitted to

Lipids in Cardiovascular Disease,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 27 August 2021

Accepted: 30 September 2021

Published: 29 October 2021

Citation:

Luo Y, Ren X, Weng S, Yan C, Mao Q

and Peng D (2021) Improvements in

High-Density Lipoprotein Quantity and

Quality Contribute to the

Cardiovascular Benefits by Anti-tumor

Necrosis Factor Therapies in

Rheumatoid Arthritis: A Systemic

Review and Meta-Analysis.

Front. Cardiovasc. Med. 8:765749.

doi: 10.3389/fcvm.2021.765749

Improvements in High-Density
Lipoprotein Quantity and Quality
Contribute to the Cardiovascular
Benefits by Anti-tumor Necrosis
Factor Therapies in Rheumatoid
Arthritis: A Systemic Review and
Meta-Analysis
Yonghong Luo 1, Xiaolei Ren 2,3, Shuwei Weng 1, Chunhui Yan 4, Qiaoxia Mao 5 and

Daoquan Peng 1*

1Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China,
2Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China, 3Hunan Key

Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha,

China, 4Department of Cardiovascular Medicine, Brain Hospital of Hunan Province, Changsha, China, 5Department of

Cardiovascular Medicine, Loudi Central Hospital, Loudi, China

Objective: Inflammation plays important role in atherosclerotic cardiovascular diseases

(CVDs), but the interaction between the inflammation and lipid profile is largely unrevealed

in humans. Patients with rheumatoid arthritis (RA) suffer from a higher risk of CVDs.

Decreased total cholesterol (TC) and high-density lipoprotein (HDL) were prevalent in

patients with RA. Anti-tumor necrosis factor (TNF) therapies relieve disease activity and

decrease CVDs risk in RA, but their comprehensive effects on the lipid profile are unclear.

This study aims to investigate the changes in blood lipid profile along time in the patients

with RA accepting anti-TNF therapies by meta-analysis.

Methods: The MEDLINE, the Embase, and the Cochrane Central Register of Controlled

Trials (CENTRAL) were searched for eligible literature. Data of lipids were classified

into short-, mid-, and long-term according to treatment duration. Meta-analyses were

performed to compare the lipid levels before and after treatments.

Results: A total of 44 records and 3,935 patients were included in the

meta-analyses. Anti-TNF therapies were associated with significant increase in TC

[mean difference (MD): +0.14, +0.23, and +0.26 mmol/l, respectively] and HDL

(MD): +0.11, +0.12, and +0.11 mmol/l, respectively) in the short-, mid-, and

long-term; anti-TNF therapies were associated with increased low-density lipoprotein

(LDL) (MD: +0.06 mmol/l) and apolipoprotein A1 (ApoA1) (MD: +0.07 g/l)

in the short-term, but not in the mid-term and long-term; triglyceride (TG)

and apolipoprotein B (ApoB) do not change significantly in all the periods;

proatherosclerotic indexes (TC/HDL, ApoB/ApoA1, and LDL/HDL) tend to decrease in

the short- and mid-term, but return to baseline in the long-term after TNF inhibition.
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Conclusion: Anti-TNF therapies were related to a long-term raised HDL level, which,

together with evidence of improved HDL function, may contribute partially to the

decreased CVDs risk by TNF inhibition.

Keywords: tumor necrosis factor, rheumatoid arthritis, high-density lipoprotein, lipid, meta-analysis

INTRODUCTION

Inflammation plays important role in atherosclerotic
cardiovascular diseases (CVDs). Recently, two anti-inflammatory
therapies, i.e., the interleukin-1β (IL-1β) monoclonal antibody,
canakinumab and colchicine, have brought encouraging results
in reducing the residual risks in atherosclerosis in addition to
and independent of lipid-lowering effect (1–3). However, the
interaction between the inflammation and lipid profile is largely
unrevealed in humans.

Patients with rheumatoid arthritis (RA) are at higher risk
of CVDs, which can be partially explained by traditional risk
factors of CVDs including smoking, hypertension, obesity, and
diabetes. Interestingly, lipid profile in the patients with RA
changes toward an “atheroprotective” direction. Patients with RA
have lower blood total cholesterol (TC), low-density lipoprotein
(LDL), and high-density lipoprotein (HDL) compared to the
general population. The lower TC and LDL are unexpectedly
associated with higher CVD risk, which is called the lipid
paradox (4). Some of the anti-RA therapies are associated
with altered lipid profile and decreased CVDs risk, indicating
that chronic systemic inflammation contributes to the lipid
paradox and additional risk of CVDs (5–7). Among the anti-
RA therapies, inhibition of tumor necrosis factor (TNF), an
important proinflammatory cytokine that contributes to RA
development, effectively ameliorates RA activity and reduces
CVDs risk in the patients with RA (8). The mechanisms
behind the CVD-protective role of anti-TNF therapies are poorly
understood. Previous meta-analyses imply that an increase
in HDL after anti-TNF therapies may contribute to CVD
amelioration. However, the concomitant increase in TC, which
is atherogenic, contradicts the potential benefits of HDL (9–
11). Besides, LDL and triglyceride (TG) change vary among
studies, making it confusing to interpret the effects of changes
in the comprehensive lipid profile on CVDs. Lipid ratios,
including atherogenic index (AI) (TC/HDL), apolipoprotein
B/apolipoprotein A1 (ApoB/ApoA1), and LDL/HDL, may help
to determine a combined effect of the changes in both the
anti- and proatherogenic lipids, but previous meta-analyses
seldom analyzed them systematically because of limited data. In
addition, lipid changes after long-term anti-TNF treatments are
seldom evaluated.

This study aims to systematically assess the changes in blood
lipid profile after short-, mid-, and long-term anti-TNF therapies
in patients with RA by meta-analysis of the literature. We also
aim to review the evidence of altered lipoprotein functions after
TNF inhibition in patients with RA, trying to investigate the
possible effects of systemic inflammation inhibition on lipid
profile, especially HDL.

METHODS

Search Strategy
Refer to Supplementary Material 1.

Study Selection
Study selection was performed by YL and XR independently.
When divergency comes, a third person DP would make the
final decision. Studies meet all the following criteria that were
included for meta-analysis: (1) prospective studies; (2) with
patients diagnosed with RA; (3) including any one of the anti-
TNF therapies: infliximab (IFX), etanercept (ETN), adalimumab
(ADA), certolizumab, or golimumab; and (4) with mean, SD,
sample size, and treatment duration of any one of the following
lipid profile both before and after anti-TNF therapies are available
(either directly available, can be estimated as described in the
“data extraction” section, or available from the authors): TC, TG,
HDL, LDL, TC/HDL (AI), ApoA1, ApoB, ApoB/ApoA1 ratio, or
LDL/HDL ratio.

Quality Assessment of Studies
Quality assessment was performed by SW and CY independently.
When divergency comes, a third person DP would make the
final decision. Quality assessment was a combination based on:
(1) the Cochrane Collaboration’s tool for assessing the risk of
bias in randomized trials (12), (2) the Newcastle–Ottawa Scale
(NOS) for the cohort studies (13), (3) the methodological index
for nonrandomized studies (MINORS) (14), (4) the quality
assessment of diagnostic accuracy studies (QUADAS) tool for
the diagnostic studies (15), and (5) potential factors that may
affect lipid profile in the patients with RA. A total of 14
entries are evaluated for each included study as shown in
Supplementary Table 3. Studies with at least nine scores are
considered as high quality.

Data Extraction
Data extraction was performed by YL and XR independently.
When inconsistency arose, a third person QM would double
check the original reference. Mean ± SD of lipid profile in the
patients with RA before (baseline) and after (endpoint) anti-
TNF therapies was extracted. When mean ± SD of lipid profile
was not available in the articles or from the authors, mean was
estimated from median if available (16) and SD was estimated
from either SEM (17), interquartile range (IQR) (16), range
(16), or CI (17). When either SD of baseline or endpoint was
missing, estimate one from the other. When only baseline and
change from baseline data were available, endpoint data were
estimated by using baseline and change from baseline data (17).
TC, HDL, and LDL levels in mg/ml were converted to mmol/l
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by multiplying by 0.02586; TG level in mg/ml was converted
to mmol/l by multiplying by 0.01129. The effects of anti-TNF
therapies on lipid profile were divided into short-term (0–12
weeks), mid-term (13–26 weeks), and long-term (>26 weeks)
effects. For reports that present lipid data from the same clinical
trial, use the data from the latest report. For the short-term
and mid-term effects, if lipid data at multiple time points were
available, choose the latest time point for analysis. For the long-
term effect, if lipid data at multiple time points were available,
choose the latest time point if the latest time point was less than
1 year; otherwise, choose the earliest time point (in this way, we
are able to let the long-term treatment duration reside in a similar
period around 1 year as close as possible).

Statistical Analysis
Mean differences (MDs) with corresponding 95% CIs were
calculated by using a fixed-effects model when low heterogeneity
was indicated; otherwise, meta-analyses were performed by using
a random-effects model. Heterogeneity was assessed by using the
I2 statistic. Low heterogeneity was defined as I2 < 50% and p
> 0.05 (17). In case of heterogeneity, subgroup analyses were
performed according to quality score (≥9 vs. <9); study design
(randomized controlled study vs. prospective cohort study); RA
duration (≥6 vs. <6 months) (18); the Disease Activity Score-28
(DAS28) (>5.1 vs. ≤5.1) (18); age (≥55 vs. <55 years old); drug
(IFX, ADA, ETN, and mixed); baseline lipid level (for TC: ≥5.2
vs. <5.2 mmol/l, for TG: ≥1.7 vs. <1.7 mmol/l, for HDL: >1.5
vs. ≤1.5 mmol/l, and for LDL: ≥3.4 vs. <3.4 mmol/l) (19). For
lipids with more than 10 studies available for analysis (17), meta-
regression was also performed to discover the potential sources of
heterogeneity. Sensitivity analyses were performed to evaluate the
robustness of the meta-analyses. The funnel plot, Begg’s test, and
Egger’s test were performed to evaluate the potential publication
bias when the number of studies included in the meta-analyses
was no less than 10 (17). All the analyses were performed by Stata
12.0 software, Texas, USA.

RESULTS

Search Results
A total of 1,900 records were obtained from the primary search
of the three databases. After removing duplicates, titles and
abstracts of 1,694 records were screened, among which 1,534
records were excluded according to the inclusion criteria. Full
text of 160 records was read, and finally, 44 records were included
in the meta-analyses (Figure 1).

Study Characteristics and Quality
Assessment
The study design, number of patients, female proportion,
disease duration, the DAS28, age of the patient, drugs used,
follow-up duration, lipid measurement, and lipid profile in
each study were collected (Table 1). The baseline concomitant
uses of drugs that may affect blood lipids were also listed
including conventional disease-modifying antirheumatic drugs
(cDMARDs), corticosteroids, and lipid-lowering drugs (e.g.,
statins) (Supplementary Table 1). A total of 3,935 patients were

included in the study. Among the 44 studies included, 11 studies
are randomized controlled trials (RCTs) and 33 studies are
prospective cohort studies. Clinical trial registration numbers
for RCTs are available in Supplementary Table 2. Six studies
have more than one arm of the patients treated with anti-TNF
therapies and each arm was considered an independent study.
Most of the patients are female with RA duration for more than
6 months and with high disease activity (DAS28 > 5.1). Patients
were treated with either IFX, ETN, or ADA and followed up for
at least 2 weeks. Patients treated with golimumab or certolizumab
(except in studies with mixed anti-TNF therapies) were not
included in the current meta-analysis because of ineligibility or
insufficient data for meta-analysis. For most of the included
studies, fasting blood was used to measure lipids.

The quality of the included studies was assessed by the
quality assessment lists consisted of 15 items that may affect the
lipid outcomes (Supplementary Table 3). About nine studies are
assessed as low quality (quality < 9).

Primary Outcomes
Short-Term Changes in Lipid Profile
Short-term changes in lipid profile after anti-TNF treatments
are summarized in Table 2 and the forest plots are shown
in Figure 2. Short-term anti-TNF treatments are associated
with a significant increase in blood TC (Figure 2A), LDL
(Figure 2D), and ApoA1 (Figure 2F) without heterogeneity.
Blood TG (Figure 2B) andApoB (Figure 2G) show no significant
changes without heterogeneity. HDL increased significantly
with heterogeneity (Figure 2C). AI does not change with
heterogeneity (Figure 2E). ApoB/ApoA1 ratio (Figure 2H) and
LDL/HDL ratio (Figure 2I) tend to decrease but do not reach
statistical significance without heterogeneity.

To test the robustness of the meta-analyses, we performed
the sensitivity analyses (Supplementary Figure 1). The
ENTRACTE trial greatly influences the variation of pooled
MD of TC, TG, HDL, and LDL because of a large patient
number, but it does not change the direction of the
results (Supplementary Figures 1A–D). After removing the
ENTRACTE trial, the pooled MD of TC, HDL, and LDL
increases more. The results of AI, ApoA1, ApoB, ApoB/ApoA1
ratio, and LDL/HDL ratio are not affected by removing any one
of the included studies (Supplementary Figures 1E–I).

The funnel plot, Begg’s test, and Egger’s test show that the
pooled MD of TC and HDL is at high risk of publication
bias, while another lipid profile is at low risk of publication
bias (Supplementary Figures 2A–I). Because the ENTRACTE
trial greatly influences the robustness of TC and HDL
meta-analyses (Supplementary Figures 1A,C), we removed the
ENTRACTE study and reperformed the analyses. Removing
the ENTRACTE trial results in the symmetrical funnel plot
and nonsignificant p-values of the Begg’s test and Egger’s
test for TC and HDL (Supplementary Figure 3). Besides,
removing the ENTRACTE study also significantly decreases the
heterogeneity of the meta-analysis of short-term HDL changes
(Supplementary Figure 3C), indicating the ENTRACTE trial
as a potential source of heterogeneity. We re-examined the
characteristics of the ENTRACTE trial. We found that the trial
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FIGURE 1 | Flow diagram of studies identified, included, and excluded. CENTRAL, Cochrane Central Register of Controlled Trials.

included patients with at least one traditional CVD risk factor or
a history of CVD events, which may bring confounding factors
that affect lipid profile (21). Also, concomitant use of cDMARDs,
corticosteroids, and lipid-lowering therapies that may influence
lipid profile was not well controlled in the trial, resulting in a
low-quality score (Supplementary Table 3).

Mid-term Changes in Lipid Profile
Mid-term changes in lipid profile after anti-TNF treatments
are summarized in Table 2 and the forest plots are shown in
Figure 3. Mid-term anti-TNF treatments are associated with a
significant increase in TC (Figure 3A) andHDL (Figure 3C) with
heterogeneity. Similar to short-term, blood TG does not change

without heterogeneity (Figure 3B). LDL (Figure 3D) and ApoB
(Figure 3G) do not change after mid-term anti-TNF therapies
with and without heterogeneity, respectively. ApoA1 (Figure 3F)
tends to increase without heterogeneity. Mid-term anti-TNF
therapies tend to decrease AI (Figure 3E), ApoB/ApoA1 ratio
(Figure 3H), and LDL/HDL ratio (Figure 3I). One study
presented the ApoA1 and ApoB data in mmol/l and was excluded
from the meta-analyses (46).

Sensitivity analyses of TC and LDL indicate that one
arm of the TEAR (TEAR1) study obviously influences the
results of pooled MD (Supplementary Figures 4A,D) and
removing the TEAR1 study from meta-analysis decreases
the heterogeneity (Supplementary Figures 5A,B). When we
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TABLE 1 | Summary of the included studies.

Study Design Patients Female RA durationa DAS28b Agec Drug Follow-upd Lipide Outcomes

Masic et al. (20) RCT 86 61.6% 83 (43–132)# 5.6 ± 1.2 53.4 ± 15.7 ADA 52w NF TC, TG, HDL, LDL

Giles et al. (21) RCT 1542 78.0% 7.2 (3.1–4.6) - 61 ± 8 ETN 12, 24, 48w NF TC, TG, HDL, LDL

Corrado et al. (22) cohort 10 90% - 3.85 ± 0.9 49 ± 13.06 ADA 12, 24w F TC, TG, HDL, LDL, AI, LDL/HDL

Corrado et al. (22) cohort 11 91% - 4.05 ± 0.9 54.18 ± 10.9 IFX 12, 24w F TC, TG, HDL, LDL, AI, LDL/HDL

Corrado et al. (22) cohort 12 75% - 3.75 ± 0.4 53.42 ± 5.75 ETN 12, 24w F TC, TG, HDL, LDL, AI, LDL/HDL

Virone et al. (23) RCT 96 83.3% - 5.0 (4.1–5.6) 56.0 (45.4–64.3) Mixed 24w NF Apo A1

Bergstrom et al. (24) cohort 14 78.6% 9.0 (2.6–11.6) 5.6 ± 1.3 63.7 ± 8.9 ADA 12w F TC, TG, HDL, LDL, LDL/HDL, Apo B, Apo A1, Apo B/A1

Rodriguez-Carrio et al. (25) cohort 13 92.3% - 5.08 ± 1.93 43 (30–65) Mixed 12w F TG, HDL

O’Neill et al. (26) RCT 11 72.7% 6m- 3y 4.68 ± 1.56 61.30 ± 11.05 IFX 46w F TC, TG, HDL, LDL

Gabay et al. (27) RCT 145 82% 6.3 ± 6.9 6.8 ± 0.9 53.3 ± 12.4 ADA 8w F TC, TG, HDL, LDL, AI

Charles-Schoeman et al. (28) RCT 141
71.84% 3.30 ± 5.70* 5.82 ± 1.07 50.87 ± 12.58

ETN 24, 48, 102w NF TC, HDL, LDL

Charles-Schoeman et al. (28) RCT 104 ETN 24, 78w NF TC, HDL, LDL

Bissell et al. (29) RCT 35 68% 1.00 (0.72–1.45)* - 52.3 ± 13.0 IFX 26, 78w F HDL, LDL, AI, Apo B

Deodhar et al. (30) RCT 98 82.7% 7.4 ± 8.1 4.9 ± 0.8 55.5 ± 12.8 ETN 12w F TC, TG, HDL, LDL, Apo A1, Apo B

Deodhar et al. (30) RCT 106 70.8% 8.3 ± 11.2 4.9 ± 0.7 56.5 ± 12.1 ETN 12, 24w F TC, TG, HDL, LDL, Apo A1, Apo B

Ronda et al. (31) cohort 22 72.7% 9 (0.5–30)* 5 ± 5.8 58 ± 38.5 ADA 6, 26w - TC, TG, HDL, LDL

Chen et al. (32) cohort 32 87.5% 13.4 ± 6.6 5.46 ± 0.94 53.5 ± 12.6 ADA 24w F TC, TG, HDL, LDL, AI

Chen et al. (32) cohort 16 81.3% 13.6 ± 9.0 5.48 ± 0.98 54.4 ± 7.8 ETN 24w F TC, TG, HDL, LDL, AI

Rodriguez-Jimenez et al. (33) cohort 22 90.9% 12.3 ± 6.7 6.2 ± 0.8 47.4 ± 8.3 ETN 4, 24w - TC, TG, HDL, LDL

Cacciapaglia et al. (34) cohort 80 81.3% 7 ± 5 4.7 ± 1.6 53 ± 13 Mixed 24w, 52w - TC, TG, HDL, LDL, AI

Calvo Alen et al. (35) cohort 19 68% 10.4 ± 24.7 5.5 ± 1.2 60.7 ± 13.2 Mixed 26w - TC

Hjeltnes et al. (36) cohort 30 73% 8 ± 8 - 58 ± 8 Mixed 6w, 26w F TC, TG, HDL, LDL, Apo A1

Chen et al. (37) cohort 20 90% 6.6 ± 5.6 >5.1 53.8 ± 11.8 ETN 12, 52w F TC, TG, HDL, LDL

Sandoo et al. (38) cohort 23 65% 11 ± 11 - 54 ± 15 Mixed 12w F TC, TG, HDL

Sene et al. (39) cohort 16 81.3% 9 (2–39) 6.31 (5.28–7.94) 48 (27–69) ETN 26w F TC, TG, HDL, LDL

Tam et al. (40) RCT 20 95% 4.2 (3.1–8.6)* 5.1 ± 0.7 53 (47–61) IFX 26w F TC, TG, HDL, LDL, AI

Ajeganova et al. (41) cohort 60

72.2% 7 (4–14) 5.7 ± 1.0 56.2 ± 12.4

ETN 12, 26, 52w – Apo B, Apo A1, Apo B/A1

Ajeganova et al. (41) cohort 60 IFX

Ajeganova et al. (41) cohort 42 ADA

Kume et al. (42) RCT 21 85.7% 11 ± 5* 5.17 ± 1.5 61 ± 15 ETN 24w F TC

Kume et al. (42) RCT 21 85.7% 9 ± 5* 5.34 ± 1.4 63 ± 17 ADA 24w F TC

Jamnitski et al. (43) cohort 266 82% 8 (3–16) 5.21±1.32 52.8±12.7 ETN 16, 52w NF TC, TG, HDL, LDL, AI, Apo B, Apo A1, Apo B/A1

Engvall et al. (44) RCT 18 72% 4.9 ± 3.4* 4.8 (3.7–5.1) 56.0 (42.0–73.0) IFX 91w - Apo A1, Apo B, Apo B/A1

Derdemezis et al. (45) cohort 30 100% 12.2 ± 6.7 4.9 ± 1.3 51.8 ± 14.4 IFX 26w F TC, TG, HDL, LDL

Wijbrandts et al. (46) cohort 50 76% 4.9 (2.8–12.1) 5.6 ± 1.1 51 ± 13 ADA 16w, 52w F TC, TG, HDL, LDL, AI, Apo B/A1

(Continued)
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TABLE 1 | Continued

Study Design Patients Female RA durationa DAS28b Agec Drug Follow-upd Lipide Outcomes

Popa et al. (47) cohort 45 70% 7.9 ± 6.0 5.26 ± 1.24 56 ± 11 IFX 2, 26w F TC, TG, HDL, LDL, AI, LDL/HDL, Apo A1

Soubrier et al. (48) cohort 29 89.7% - 5.19 ± 0.90 57.4 ± 10.6 Mixed 14w F TC, TG, HDL, LDL, AI, Apo B, Apo A1, Apo B/A1

Nishida et al. (49) cohort 97 86.6% 8.5 ± 1.5 mean: 5.4 54.2 ± 12.6 IFX 52w - TC, HDL

Bosello et al. (50) cohort 10 90% 12.80 ± 9.04 6.66 ± 1.00 53.10 ± 7.79 IFX 6, 14w F TC, TG, HDL

Tam et al. (51) cohort 19 100% 11 ± 7 5.31 ± 1.06 49 ± 10 IFX 6, 14w F TC, TG, HDL, LDL, AI, Apo B, LDL/HDL

Popa et al. (52) cohort 55 72.7% 9 ± 7 5.26 ± 1.25 56 ± 11 IFX 2, 26, 52w F TC, TG, HDL, LDL, AI, LDL/HDL, Apo B, Apo A1

Peters et al. (53) cohort 80 77.5% 10 (0–59) 5.7 56 ± 14 IFX 6, 22, 48w NF TC, TG, HDL, AI, Apo A1, Apo B, Apo B/A1

Oguz et al. (54) cohort 7 85.7% 6.8 5.8 ± 0.9 44.6 ± 12.3 IFX mean: 42w F TG, HDL, TG/HDL

Komai et al. (55) cohort 15 86.7% 10.0 ± 2.3 5.07 ± 0.77 50 ± 3 IFX 6, 26, 52w - TC, TG, HDL, LDL

Seriolo et al. (56) cohort 34 100% 14 ± 9 6.9 ± 2.1 51.6 ± 7.9 Mixed 16w, 24w F TC, TG, HDL, AI

Dahlqvist et al. (57) cohort 52 78.8% 14.1 ± 8.6 5.9 ± 0.72 54.6 ± 12.5 IFX 12, 26, 52w - TC, HDL, AI, LDL/HDL

Allanore et al. (58) cohort 56 91% 13 ± 7 - 52 ± 14 IFX 6w, 30w F TC, TG, HDL, LDL, AI, LDL/HDL

Gonzalez-Juanatey et al. (59) cohort 8 87.5% 20 (7–29) 5.5 ± 1.3 51 (24–74) ADA 12w F TC, HDL, AI

Spanakis et al. (60) cohort 24 70.8% 14.1 ± 7.2* 6.9 ± 1.3 62.7 ± 10.1 IFX 12, 26w F TC, HDL

Popa et al. (61) cohort 33 - - 5.24 ± 1.05 - ADA 2w F TC, TG, HDL, LDL, AI, LDL/HDL

Vis et al. (62) cohort 69 80% 12 (0–59) 5.9 ± 1.4 58 (24–80) IFX 6w NF TC, HDL, AI

Irace et al. (63) cohort 10 60% 7 ± 2 3.4 ± 1.3 46 ± 12 IFX 6w F TC, TG, HDL, Apo A1, Apo B

aData are mean ± SD, median [interquartile range (IQR)], range, median (range), or mean (range) in years, unless otherwise specified; *in months; # in days. bData are mean ± SD, mean, median, median (IQR), or median (range), unless

otherwise specified; if both Disease Activity Score-28-C-reactive protein (DAS28-CRP) and DAS-28-erythrocyte sedimentation rate (DAS28-ESR) are provided, DAS28-ESR is presented. cData are mean ± SD, median (IQR), or median

(range) in years unless otherwise specified. dWhen follow-up duration is not presented as weeks, convert it to weeks by using: 1 month = 4 weeks, 3 months = 12 weeks, 6 months = 26 weeks, and 1 year = 52 weeks; only time points

that are included in the meta-analysis are presented. eF = lipids measured by using the fasting blood samples; NF = lipids measured by using the non-fasting blood samples.
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TABLE 2 | Summary of the meta-analyses of changes in lipid profile.

Number

of study

Number of

patients

WMD (95% CI) Heterogeneity

I2, p-value

Short-term

TC (mmol/l) 26 2530 0.14 (0.08, 0.19) 15.8%, 0.236

TG (mmol/l) 23 2390 0.03 (−0.00, 0.07) 0.0%, 0.979

HDL (mmol/l) 27 2542 0.11 (0.07, 0.15) 51.8%, 0.001

LDL (mmol/l) 18 2253 0.06 (0.01, 0.12) 4.3%, 0.404

AI 12 515 −0.12 (−0.35, 0.10) 54.3%, 0.012

Apo A1 (g/l) 11 600 0.07 (0.04, 0.10) 0.0%, 0.590

Apo B (g/l) 10 544 0.02 (−0.01, 0.05) 0.0%, 0.651

Apo B/Apo A1 5 256 −0.02 (−0.05, 0.02) 0.0%, 0.825

LDL/HDL 10 307 −0.14 (−0.30, 0.01) 43.1%, 0.071

mid-term

TC (mmol/l) 30 2918 0.23 (0.10, 0.36) 73.1%, 0.000

TG (mmol/l) 23 2536 0.01 (−0.03, 0.04) 14.0%, 0.270

HDL (mmol/l) 29 2906 0.12 (0.06, 0.19) 84.0%, 0.000

LDL (mmol/l) 23 2692 0.06 (−0.04, 0.15) 52.1%, 0.002

AI 16 766 −0.12 (−0.29, 0.06) 64.4%, 0.000

Apo A1 (g/l) 11 869 0.03 (−0.00, 0.06) 0.0%, 0.981

Apo B (g/l) 10 752 0.00 (−0.02, 0.02) 0.0%, 0.720

Apo B/Apo A1 7 587 −0.02 (−0.05, 0.00) 0.0%, 0.940

LDL/HDL 7 204 −0.28 (−0.67, 0.10) 78.4%, 0.000

long-term

TC (mmol/l) 14 2639 0.26 (0.02, 0.49) 86.9%, 0.000

TG (mmol/l) 11 2252 0.03 (−0.05, 0.11) 47.0%, 0.042

HDL (mmol/l) 17 2695 0.11 (0.04, 0.19) 85.4%, 0.000

LDL (mmol/l) 12 2445 0.10 (−0.05, 0.24) 69.2%, 0.000

AI 7 594 0.03 (−0.11, 0.17) 19.1%, 0.284

Apo A1 (g/l) 7 581 0.03 (−0.01, 0.07) 25.5%, 0.234

Apo B (g/l) 8 616 0.01 (−0.02, 0.03) 0.0%, 0.877

Apo B/Apo A1 7 576 −0.02 (−0.04, 0.01) 0.0%, 0.789

LDL/HDL 3 163 0.11 (−0.12, 0.34) 0.0%, 0.430

checked the characteristics of the TEAR1 study (28, 64), we
found a high dropout rate (31.1%) (Supplementary Table 3).
Again, sensitivity analysis of TG reveals that the ENTRACTE
trial significantly affects the variation, but not the pooled MD
results (Supplementary Figure 4B). Sensitivity analyses of HDL,
AI, ApoA1, ApoB, ApoB/ApoA1 ratio, and LDL/HDL ratio show
that these indexes are not affected by removing any of the
included studies (Supplementary Figures 4C,E–I).

The funnel plot, Begg’s test, and Egger’s test show that the
pooled MD of mid-term changes in blood TC, TG, HDL,
LDL, AI, ApoA1, and ApoB are at low risk of publication bias
(Supplementary Figures 6A–G).

Long-Term Changes in Lipid Profile
Long-term changes in lipid profile after anti-TNF treatments
are summarized in Table 2 and the forest plots are shown in
Figure 4. Long-term anti-TNF treatments are associated with
a significant increase in TC (Figure 4A) and HDL (Figure 4C)
with heterogeneity. TG (Figure 4B) and LDL (Figure 4D) do not
change after long-term anti-TNF therapies with heterogeneity.

Long-term anti-TNF therapies do not change AI, ApoA1, ApoB,
ApoB/ApoA1 ratio, and LDL/HDL ratio without heterogeneity
(Figures 4E–I). One study presented the ApoA1 and ApoB data
in mmol/l and was excluded from the meta-analyses (46).

Sensitivity analysis of TG indicates that the study
by Popa (Popa-2007) (52) obviously influences the
results of pooled MD (Supplementary Figure 7B) and
remove it from meta-analysis decreases the heterogeneity
(Supplementary Figure 8A). The heterogeneity of the Popa-
2007 studymay be due to a high dropout rate (43.6%) in the study
(Supplementary Table 3). Again, the TEAR1 study influences
the results of pooled MD for LDL (Supplementary Figure 7D)
and remove it from meta-analysis decreases the heterogeneity
(Supplementary Figure 8B). Sensitivity analyses of TC, HDL,
AI, ApoA1, ApoB, ApoB/ApoA1 ratio, and LDL/HDL ratio
show that these lipids are not affected by removing any included
studies (Supplementary Figures 7A–I).

The funnel plot, Begg’s test, and Egger’s test show
that the pooled MD of mid-term changes in blood TC,
TG, HDL, and LDL are at low risk of publication bias
(Supplementary Figures 9A–D).

Subgroup Analyses and Meta-Regression
Subgroup analyses of changes in all the lipid profiles
in the short-, mid, and long-term are summarized in
Supplementary Tables 4–12, where meta-regression was
also presented for the lipids with more than 10 studies available
for analysis.

We found that RA duration may contribute to the
heterogeneity of various changes of the lipids. Subgroup analyses
show that meta-analysis of lipid changes in the patients with RA
duration ≥ 6 months is usually with decreased heterogeneity
compared to the total population. For the patients with disease
duration for more than 6 months, mid-term and long-term
TNF inhibition are associated with increased HDL (MD:
+0.03 mmol/l for mid-term; MD: +0.08 mmol/l for long-
term) without heterogeneity (Supplementary Table 6); mid-
term and long-term TNF inhibition is not associated with
LDL change without heterogeneity (Supplementary Table 7);
short-term and mid-term TNF inhibition is not associated
with AI change without heterogeneity (Supplementary Table 8).
Meta-regression also shows that RA duration may significantly
contribute to the heterogeneity (p < 0.05 for HDL short and
mid-term changes in Supplementary Table 6, for LDL mid-term
change in Supplementary Table 7, and AI short and mid-term
changes in Supplementary Table 8).

Subgroup analysis and meta-regression imply that IFX
may be associated with a more short-term increase in TC
(Supplementary Table 4). Meta-regression also indicates
that baseline lipid levels may contribute to the heterogeneity
for long-term TC change (Supplementary Table 4) and
quality score may be a possible source of heterogeneity
for long-term LDL change (Supplementary Table 7).
Baseline DAS28, age of the patient, and different TNF
inhibitors do not likely contribute to the heterogeneity in the
current meta-analyses.
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FIGURE 2 | Forest plots of meta-analyses of the short-term changes in (A) total cholesterol (TC), (B) triglyceride (TG), (C) high-density lipoprotein (HDL), (D)

low-density lipoprotein (LDL), (E) atherogenic index (AI), (F) ApoA1, (G) ApoB, (H) ApoB/ApoA1 ratio, and (I) LDL/HDL ratio.

DISCUSSION

The current meta-analysis investigates the changes in blood lipid
profile after short-term (0–12 weeks), mid-term (13–26 weeks),
and long-term (>26 weeks) anti-TNF therapies in patients with
RA. This study is important for some reasons. First, it adds
meta-analysis of the lipid changes following long-term anti-TNF
treatments based on sufficient studies, which provides evidence
to evaluate the possible roles of lipid alterations in the favorable
CVDs effects of TNF blockade in RA. Second, this study is a state-
of-art meta-analysis that systematically analyzes apolipoproteins
and several atherogenic lipid ratios including AI, ApoB/ApoA1,
and LDL/HDL, which gives an overall view of the lipid changes,
since previous studies have shown simultaneous elevations
in both “proatherogenic” and “antiatherogenic” lipids. Third,
the comprehensive subgroup analysis in this study provides

insights into factors that may impact lipid profile after anti-
TNF therapies, which are not provided by previous studies.
Finally, we observed consistent increases in TC and HDL as
the previous meta-analysis (10), but we also come to the new
conclusion of TG and LDL, the changes of which varied in
previous studies (65).

The mid and long-term increase in TC after TNF blockade
(MD: +0.23, +0.26 mmol/l in the mid and long-term,
respectively) is primarily possible due to an increase in the
antiatherogenic HDL (MD:+0.12,+0.11 mmol/l in the mid and
long-term, respectively), as we found no significant changes in
TG, atherogenic lipids (LDL and ApoB), and atherogenic indexes
(TC/HDL, ApoB/ApoA1, and LDL/HDL) after mid and long-
term TNF inhibition. In general, lipid profile changes toward an
atheroprotective direction. A previous meta-analysis showed a
similar increase in TC and HDL in the short- and mid-term after
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FIGURE 3 | Forest plots of meta-analyses of the mid-term changes in (A) TC, (B) TG, (C) HDL, (D) LDL, (E) AI, (F) ApoA1, (G) ApoB, (H) ApoB/ApoA1 ratio, and (I)

LDL/HDL ratio.

TNF inhibition, but it did not evaluate long-term changes of the
lipids (9). According to the study by Daien et al. (10), they also
indicated an association between TNF inhibition and elevated
HDL, elevated TC, unchanged LDL, and unchanged AI in the
long-term, but it mostly included studies that using IFX, which
was the prior choice of TNF inhibition at that time. We have
included more studies with ADA and ETN published in recent
years. Different from our results, Daien et al. found that TG level
increased and ApoB/ApoA decreased after long-term inhibition,
but their results were based on a very small population.

The mechanisms behind the increase of TC and HDL upon
TNF inhibition are unclear. Basic researches have revealed
a complex regulation between TNF and lipid metabolism,
involving regulations in both hepatocytes, macrophages, and
adipocytes, which need further verification in human (66).
Previous evidence indicates that reduced lipid catabolism after

inflammation inhibition may result in elevations in lipid
levels (67).

In the current meta-analysis, to detect the possible
confounding effects from the use of corticosteroids, cDMARDs,
and lipid-lowering drugs (e.g., statins) that may affect the
blood lipids, we included six items toward the use of these
drugs in quality assessment (Supplementary Table 3), where we
evaluated whether those treatments were listed at the baseline
and controlled during the treatment periods. Those studies
with descriptions such as “corticosteroids/MTX/statins use
was stable during the study period” were considered with
low risk. We also listed the baseline use of those drugs for
each study in Supplementary Table 1. In this way, we try to
control the confounding risk of corticosteroids/MTX/statins use
within studies. However, we still cannot completely control the
“interstudy” confounding risk from corticosteroids/MTX/statins
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FIGURE 4 | Forest plots of meta-analyses of the long-term changes in (A) TC, (B) TG, (C) HDL, (D) LDL, (E) AI, (F) ApoA1, (G) ApoB, (H) ApoB/ApoA1 ratio, and (I)

LDL/HDL ratio.

use. As shown in Table 2, althoughMTX was the most frequently
used cDMARDs, prednisolone and prednisone were the most
frequently used steroids, and statins were the most frequently
used lipid-lowering therapies, the dosage and the percentage
of drug use among different studies varied slightly, which may
cause heterogeneity among studies. In this study, we do not
include unpublished data, which are usually with smaller sample
sizes and uncontrolled bias due to lack of peer view (68).

We found that the meta-analyses for lipid changes in the
mid and long-term are usually with heterogeneity, which may
come from different RA duration as indicated by subgroup
analysis and meta-regression. When checking the concomitant
uses of corticosteroids, cDMARDs, and lipid-lowering drugs
(Supplementary Table 1) in studies, we found that a smaller
portion of the patients was treated with those drugs or treated
with lower dosages in the RA duration < 6 months subgroup.
This may be because that the patients with early RA suffer
from less severe diseases. We also observed that the information
of statin use during the TNF inhibition treatment period was
usually unavailable for the studies that included the patients with

early RA (see Supplementary Table 3, the “representativeness
of study population” item, where the “1” superscript indicates
early RA), which may be because that most of these studies
were not focused on investigating the lipid changes (see the
“designed to evaluate lipid levels” item). Only a small portion
of studies and patients are with disease duration < 6 months
possibly because that treatment-naïve patients have more choices
other than TNF inhibition. Hence, it should be very cautious to
interpret the results for early RA, and more studies in the future
are needed.

For both HDL changes in the mid-term and long-term,
we observed that meta-regression indicated marginal p values
(p = 0.054 and p = 0.071, respectively) for baseline HDL
(Supplementary Table 6). When checking baseline HDL levels
for each included study, we found a very broad distribution of
baseline HDL levels from 0.86 to 1.91 mmol/L (even baseline TC
levels among the included studies only vary between around 4.3
and 6.4 mmol/L). We consider this huge difference (more than
double) in baseline HDL levels that may account partially for
the heterogeneity for changes in HDL, no matter in the short-,
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mid-, or long-term. Hence, caution is needed when interpreting
these results.

Besides the quantitative changes in HDL after TNF inhibition,
the functional changes of HDL add more complexity to the
issue. By promoting cholesterol efflux, reducing inflammation,
ameliorating oxidation, and improving endothelial function,
HDL protects against atherosclerosis. As shown in this meta-
analysis, the consistent increase in HDL in all the periods may
partially account for the reduced CVDs risk in the patients with
RA accepting anti-TNF treatments. However, improvements in
the functions of the HDL followed by a relief of inflammation
may also contribute to the CVD benefits of TNF inhibitors.

In the inflammatory state, proinflammatory cytokines such
as TNF and interleukin-6 (IL-6) significantly induce the hepatic
expression of apolipoprotein serum amyloid A (SAA), which
replaces ApoA1 on HDL and results in SAA-rich HDL. SAA-
rich HDL was eliminated from plasma more rapidly than Apo
A1-HDL (69) and showed decreased ability to induce endothelial
nitric oxide (NO) production, inhibit endothelial reactive oxygen
species (ROS) production, decrease inflammation, and induce
cholesterol efflux (70, 71). When SAA is high, HDL cholesterol
(HDL-C) inversely correlates with all-cause and cardiovascular
mortality (70). In RA, HDL-associated SAA was upregulated (72)
and TNF inhibition was correlated with reduced HDL-associated
SAA level (27), especially in those responders. The most recent
study shows that a 22% increase in anti-inflammation of HDL
in the endothelial cells is associated with a 23% reduction
in 10-year cardiovascular event risk. The beneficial effect is
independent of the HDL level or cholesterol efflux capacity
(CEC) of HDL (73). Since SAA-rich HDL exhibits impaired anti-
inflammation capacity, anti-TNF therapies may decrease CVDs
risk by correcting the impaired anti-inflammation function of
HDL in RA.

Inflammation also impairs the expression and activity of
paraoxonase 1 (PON1), the major component that accounts for
the antioxidative capacity of HDL. PON1 hydrolyzes a wide
range of substrates including atherogenic lipid peroxides, thus
exerting atheroprotective roles. The PON1 single nucleotide
polymorphism (SNP) Q192R greatly influences PON1 activity.
Individuals carrying the RR allele, which associates with higher
PON1 activity, had lower systemic oxidative stress and CVDs
risk (74). In the patients with RA, the RR genotype correlated
with decreased risk of carotid plaque (75). With respect to the
general population, PON1 activity was significantly decreased,
while oxidative metabolites were increased in the patients
with RA, especially in patients with high disease activity
(76). In mouse inflammatory arthritis models, overexpression
of human PON1 decreased bioactive lipid mediators and
ameliorates arthritis (77). TNF and ROS interact reciprocally
in a positive feedback loop, exaggerating the inflammatory
and oxidative stress in inflammatory diseases. Besides, TNF
decreased PON1 expression in HepG2 cells, a hepatoma cell
line (78), implying a therapeutic potential to inhibit oxidative
stress by TNF inhibition. Indeed, Popa et al. proved that a
6-month TNF blockade by IFX increased PON1 activity and
antioxidative capacity of HDL in the patients with RA, which
correlated with a decrease in erythrocyte sedimentation rate

(ESR) (47). A genome-wide association scan also identified
that an SNP locus that includes the PON1 gene correlates
with response to anti-TNF therapies in the patients with RA,
indicating a role of PON1 in disease amelioration following TNF
inhibition (79).

In contrast to PON1, myeloperoxidase (MPO), a peroxidase
enzyme, facilitates ROS production and oxidizes ApoA1 on
HDL, leading to dysfunctional HDL and contributing to
atherosclerosis. Induced by oxidative stress and inflammation,
MPO promoted the development of arthritis in an experimental
mouse model (80). In the patients with RA, MPO/PON1 ratio
was elevated, positively correlated with DAS28, and higher in
the patients with a history of CVDs compared to the patients
without a history of CVDs (81). Higher plasma MPO activity
and increasedMPO-oxidized HDL in RA are also associated with
decreased antioxidant and cholesterol efflux capacity of HDL
(82, 83). All these results imply that amelioration of inflammation
in RA may decrease MPO and improve the functions of HDL.

Cholesterol efflux capacity inversely correlates with CVDs risk
in the general population, independent of HDL level. HDL from
the patients with RA exhibited impaired CEC (83) and a higher
CEC was correlated with a lower presence of carotid plaque
in the patients with RA (84). Moreover, CEC was negatively
related to disease activity in RA and TNF inhibition partially
restored CEC (85). TNF attenuated CEC via suppressing the
expression of ABCA1, the primary molecule that mediates
cholesterol efflux to ApoA1 (86). Furthermore, TNF reduced
the expression of lecithin–cholesterol acyltransferase (LCAT) and
cholesteryl ester transfer protein (CETP) (87, 88), two enzymes
in HDL that facilitate cholesterol efflux and were decreased in
RA (67, 89). The above evidence illuminates the potential of
TNF inhibition to restore the CEC of HDL in RA, either by
directly blocking TNF signaling or by ameliorating systemic
inflammation. Indeed, reduction in high-sensitivity C-reactive
protein (hs-CRP) correlates with improved CEC in RA (85). In
this study, we found a significant increase in ApoAI, which may
also promote cholesterol efflux. However, in a small cohort of the
patients with RA, 1-year treatment of IFX failed to improve CEC
in HDL significantly (26). Another small cohort study also found
a non-significant increase in CEC in the patients with CEC after
a 6-month treatment of ADA (31). Further studies including a
larger number of patients are still needed to evaluate the effect of
anti-TNF therapies on CEC in HDL.

Cardiovascular disease development in RA is partially due
to endothelial dysfunction caused by multiple factors including
the elevated proinflammatory cytokines (such as TNF). A
meta-analysis including 20 studies demonstrates that anti-TNF
treatment improves endothelial function in RA (90). HDL
ameliorates endothelium injury in atherosclerosis by promoting
nitric oxide (NO) production, inhibiting inflammation,
apoptosis, and thrombosis, and facilitating endothelial repair.
The beneficial effects of anti-TNF therapies at least partially
come from improved HDL function. O’Neill et al. revealed an
elevated endothelial NO bioavailability and reduced superoxide
production by HDL isolated from the patients with RA who
received a 2-year IFX treatment compared to HDL from those
receiving placebo (26). Still, more evidence is needed.
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Following TNF inhibition, the increase in HDL and ApoA1
is usually more significant in those responsive to TNF blockade
(24, 52, 60, 62), corresponding to the fact that those responders
gain more prominent CVDs benefits (8), suggesting a role of
decreased systemic inflammation following anti-TNF therapies
in the observed CVDs benefits. Currently, we cannot analyze
the association between treatment response and lipid changes
due to insufficient data. In this meta-analysis, the increase in
HDL in the long-term (+0.11 mmol/l) seems too minor to exert
beneficial cardiovascular effects. However, based on four large
prospective cohorts, a 0.026 mmol/l (1 mg/dl) increment in HDL
correlated with a 2–3% reduction in the risk of coronary heart
disease (91). Together with improved HDL functions after anti-
TNF treatments (27, 47, 85), we propose that improvements in
both “quantity” and “quality” of HDL contribute to the observed
cardiovascular benefits of TNF inhibition in the patients with RA.
However, further evidence is needed to support that improved
HDL functions after TNF inhibition promotes the reduced CVDs
risk in the RA population. Alterations in LDL subgroups and
modifications may also help to lower CVDs risk (92).

This study encompasses some limitations. The effects of
golimumab or certolizumab on lipids are not investigated in
our meta-analysis due to insufficient data. We did not include
lipoprotein(a) [Lp(a)] data into the meta-analysis because few
studies reported Lp(a) and a mixed presentation of Lp(a) in
either mmol/l or mg/dl or logarithmic or original form in
the different studies. The DAS28, we collected, is a mixture
of results based on either CRP or erythrocyte sedimentation
rate (ESR). However, we used a threshold of 5.1 (which
is generally considered for DAS28-ESR) to differentiate the
patients with high disease activity. We cannot explain the
heterogeneity for long-term change in TC after TNF inhibition
(though meta-regression indicated a marginal p = 0.063 for
quality score, see Supplementary Table 4). One possibility is that
other confounding factors may come up during the long-term
treatment (e.g., drug use for complications of RA). Thus, caution
is needed when interpreting the results.

In conclusion, the current meta-analysis shows that although
anti-TNF therapies were associated with a significant increase

in blood TC in the long-term in RA, atherogenic lipids (LDL
and ApoB) and atherogenic indexes (AI, ApoB/ApoA1, and
LDL/HDL) do not increase after long-term TNF blockade. HDL
mostly contributes to the increased TC. Together with evidence
that inflammation impairs HDL functions and inflammation
reduction is associated with improved HDL functions, it
is likely that improvements in HDL quantity and quality
at least partially contribute to the reduced CVDs risk by
TNF inhibition. Our findings add to evidence that systemic
inflammation inhibition may exert a favorable alteration in
lipid profile and HDL function in the patients with a highly
inflammatory state, thus potentiating to reduce the CVD risk
in those patients. However, direct evidence is still required in
the future.
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