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Abstract

Ghrelin is a peptide hormone produced mainly in the gastrointestinal tract known to regulate

several physiological functions including gut motility, adipose tissue accumulation and hun-

ger sensation leading to increased bodyweight. Studies have found a correlation between

the plasma levels of thyroid hormones and ghrelin, but an effect of ghrelin on the human thy-

roid has never been investigated even though ghrelin receptors are present in the thyroid.

The present study shows a ghrelin-induced decrease in the thyroid-stimulating hormone

(TSH)-induced production of thyroglobulin and mRNA expression of thyroperoxidase in a

primary culture of human thyroid cells obtained from paranodular tissue. Accordingly, a

trend was noted for an inhibition of TSH-stimulated expression of the sodium-iodine sympor-

ter and the TSH-receptor. Thus, this study suggests an effect of ghrelin on human thyro-

cytes and thereby emphasizes the relevance of examining whether ghrelin also influences

the metabolic homeostasis through altered thyroid hormone production.

Introduction

Ghrelin is a 28 amino acid peptide hormone released mainly from the gastric oxyntic glands

that acts through a G-protein coupled receptor called the ghrelin receptor (GhrR) [1]. The

receptor is expressed in many regions of the brain including the hypothalamus [2], the anterior

pituitary gland [2] and the hippocampus [3]. Moreover, though to a much lesser extent than in

the pituitary, the receptor is also expressed in several peripheral tissues [4]. The most well-

studied area of ghrelin is its influence on metabolic homeostasis in an orexigenic and adipo-

genic direction due to its effect on the energy expenditure, appetite, adipocyte metabolism [5–

9] and gastrointestinal motility [10, 11]. All these effects of ghrelin, and maybe more, are likely

to play a role in body mass homeostasis. Thus the plasma ghrelin concentration correlates neg-

atively with the body mass [12, 13], weight loss correlates with an increase in plasma ghrelin

[14] and weight gain with a reduction [15]. The production of ghrelin is influenced by the calo-

ric load, ingested macronutrients [16] and external food cues [17].
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The thyroid gland plays a central role in regulation of metabolism, why it is important to

understand any interaction between ghrelin and thyroid function. Most studies have most

consistently found an inverse correlation in untreated hyper- and hypothyroid patients and in

the euthyroid state [18–29]. However, other studies found opposite correlations, especially

among patients with Hashimoto’s thyroiditis [28, 30–32] and subclinical hypothyroidism [33].

These association studies, however, do not reveal any causality between ghrelin and thyroid

hormones but suggest a possible interaction of ghrelin with the hypothalamus-pituitary-thy-

roid (HPT) axis. Several intervention studies have been performed [5, 34–40]. In vivo studies

in rats show that ghrelin injection causes a decline in thyrotropin releasing hormone (TRH)

and thyroid-stimulating hormone (TSH) [5, 34, 35] as well as a decline of triiodothyronine

(T3) and thyroxine (T4) [39, 40]. Similar studies in humans confirm the inhibiting impact of

ghrelin on the plasma concentration of TSH [36, 38]; one [36], in contrast to the aforemen-

tioned studies [39, 40], also showing an elevated T4 plasma concentration. However, other

studies in humans showed no effect [37]. A few studies have been performed to look further

into the effect of ghrelin on the HPT axis in vitro. These studies will be described below.

GhrR is present in the hypothalamus [2], where ghrelin stimulates the activity of neuropep-

tide Y (NPY) and agouti-related protein (AGRP)-synthesizing neurons [41]. Activation of

these two types of neurons has been shown to inhibit the activity of TRH neurons [42–44], but

direct inhibition of the activity of TRH neurons by ghrelin has not been examined. Further-

more, the opposite functioning hormone leptin reduced fasting-induced increases in NPY and

AGRP mRNA and prevented fasting-induced reduction in pro-TRH mRNA levels in the

hypothalamus leading to a decrease in circulating thyroid hormone levels [45]. A similar study

has not yet been performed for ghrelin. Less is known about the relationship between ghrelin

and the thyrotrophs of the pituitary. Ghrelin stimulates the somatotrophs to synthesize GH

[46] and studies also show the presence of GhrR in the thyrotrophs [47]. The percentage of

thyrotrophs expressing GhrR in the pituitary seems to increase when mice are calorie re-

stricted [47]. If this translates to humans, it might indicate that the pituitary could be causally

and directly involved in the correlation between ghrelin and thyroid hormones in plasma. The

potential function of ghrelin on the human thyroid isolated from the rest of the HPT axis is

unknown, whereas two studies have been performed in rat thyroid cell lines [48, 49]. These

studies showed an enhanced proliferation of the thyrocytes [48] and a potentiation of the

TSH-induced expression of thyroglobulin (Tg), thyroperoxidase (TPO) and the sodium iodide

symporter (NIS) by ghrelin [49].

The hypothesis of this study was that some of the adipogenic effect of ghrelin could be due

to an impact on the thyroid-influenced metabolic rate. Thus, the present study is the first to

investigate a direct effect of ghrelin on the TSH-induced human thyroid cell function ex vivo.

Material and methods

Primary thyroid cell cultures

Tissue samples from 9 patients were obtained from thyroidectomies due to non-toxic thyroid

adenomas performed at the Department of ENT-Head and Neck surgery, Rigshospitalet, Uni-

versity of Copenhagen. The study was performed with the participants’ written informed con-

sent and approval by the Danish Committees on Health Research Ethics, Capital region

(Protocol number: H-1-2012-110) which also represents the institutional review board in Den-

mark. Prior to the operation the patients had not received any drugs known to influence the

function of the thyroid. The paraadenomatous thyroid tissue was washed in a calcium and

magnesium free PBS (Gibco, Invitrogen Thermo Fischer Scientific, Waltham, MA, USA). The

tissue samples were sliced before incubation with collagenase I (1 mg/mL) (Sigma-Aldrich,
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St. Louis, MO) and dispase II (2.4 mU/L) (Roche, Basel, Schwitzerland) at 37˚C for 75 min.

The suspension was filtered through a 100 μm pore strainer (Falcon, BD bioscience, NJ) and

cultured in HAM’s F-12 medium supplemented with 1% L-glutamin (Panum Institute, Copen-

hagen University, Denmark), 1% non-essential amino acids (Gibco, Invitrogen, Carlsbad, CA,

USA), 5% fetal bovine serum (FBS) (Biological Industries, Beit HaEmek, Israel), 1% penicillin

and streptomycin (Invitrogen) which will be referred to as the medium mixture for the remain-

der of this article. It was then centrifuged at 1200 x G for 5 minutes and re-suspended in the

above mentioned medium mixture after addition of six nutritional factors: TSH (1 IU/L)

(Sigma-Aldrich, St. Louis, MO), insulin (10 mg/L) (Eli Lilly, Herlev, Denmark), transferrin (6

mg/L) and glycyl-histidyl-lysine acetat (10 μg/L) (Sigma-Aldrich, St. Louis, MO), somatostatin

(10 μg/L) (Calbiochem, EMD Millipore, Billerica, MA) and hydrocortisone (10−8 M) (Calbio-

chem, EMD Millipore, Billerica, MA). The cells were cultured under similar conditions to the

cell line of epithelium cells from rats (FRTL-5) [50]. The cells were cultured as monolayers in a

humidified atmosphere (5% CO2) at 37˚C until a confluent monolayer was visualized in the

wells for a maximum of 10 days. Afterwards, cells were starved from TSH for 72 hours and the

following measurements were carried out in the presence of ghrelin (10−7 M) (PolyPeptide,

Limhamn, Sweden), the above mentioned 6 nutritional factors including varying concentra-

tions of TSH (0.1; 0.5; or 1 IU/L) and in absence of FBS. In optimization experiments, ghrelin

at 6 different concentrations from 10−11 to 10−6 M gave almost similar responses and 10−7 M

was chosen arbitrarily in the remaining experiments. Cell cultures were exposed for 72 hours

after which supernatants and cells were harvested. Relevant controls without TSH and/or ghre-

lin were included. Cell supernatants were temporarily stored at -20˚C until used for cAMP

and Tg measurements described in section 2.1.2 and 2.1.3, respectively. For real-time quantita-

tive polymerase chain reaction (RT-qPCR) analysis, cell remnants from the cultures incubated

with 0.1 IU/L TSH were harvested using incubation with lysis buffer (Qiagen, Hilden, Ger-

many) followed by addition of 70% ethanol and the preparation was stored at -80˚C until anal-

ysis. Tissue samples from two more patients were amplified by RT-qPCR before culture and

after 1, 5, 12 days and 6, 9, 10, 13 days, respectively, to examine the stability of the expression

of the GhrR-1a (henceforth referred to as GhrR) in the thyroid cells compared to human brain

GhrR (Table 1). The amplification products were aligned with the glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) reference gene (Table 1).

cAMP. 3-Isobutyl-1-methylxanthine (IBMX) diluted in alcohol (final ethanol concentra-

tion 1%) was used for cAMP assessment and added to the cell cultures concurrently with ghre-

lin. The negative controls were added 1.1% ethanol. Cells were harvested as described above,

and the cAMP concentration was measured by a competitive protein binding method as

Table 1. Primer sequences for RT-qPCR.

Gene Forward primer (5’-3’ Sequence) Reverse primer (5’-3’ Sequence)

Tg GGGCGGGCAGTCAGCAGAGAGTG ACCATAGTGGGCAGCCTCGGGTGAG

TSH-R GAATGCTTTTCAGGGACTATGCAAT ACAGCAGTGGCTTGGGTAAGAA

TPO GGAGAGTGCTGGGATGGAAG GGATTTGCCTGTGTTTGGAA

NIS CCTTAGCTGACAGCTTCTATGCCA CCCCAAGAAAAACAGACGATCC

IL-6 AGAGTAACATGTGTGAAAGCAGCAA CCTCAAACTCCAAAAGACCAGTGA

GhrR-1a ACCAGAACCACAAGCAAACC CAGGCTCAAAGGATTTGGAA

GAPDH CATGAGAAGTATGACAACAGCCT AGTCCTTCCACGATACCAAAGT

Tg, Thyroglobulin; TSH-R, thyroid-stimulating hormone receptor; TPO, thyroperoxidase; NIS, sodium iodide symporter; IL-6, interleukin 6; GhrR-1a, growth

hormone secretagogue receptor 1a; and GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

https://doi.org/10.1371/journal.pone.0184992.t001
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described elsewhere [51] in which paper controls stimulating cells with forskolin were per-

formed. The detection limit of the assay was 0.004 μM [52]. The calibration range was 0.05 to

2.0 μM. The intra-assay variation at the concentration of 0.4 μM was 4.7% and 7.2% at the con-

centration of 1.4 μM (n = 8 duplicates for each control level). For the low control, the inter-

assay variation was 13.5% (range 0.29–0.45 μM) and 9.7% for the high control (range 1.10–

1.71 μM) (n = 5 samples in duplicates for each control) [52].

Thyroglobulin. The Tg levels were assessed in supernatants by enzyme-linked immuno-

sorbent assay (ELISA). Wells of polystyrene microtiter plates were coated with mouse anti-

human Tg-antibody (Tg-Ab) (TF33, 3.1 g/L, AbD Serotec, Oxford, UK) and blocked with

200 μL TBS/0.5% bovine serum albumin (BSA) for 20–24 hours at 4˚C. The plates were

washed and incubated with supernatants for 60 minutes at 37˚C and with rabbit anti-human

Tg-Ab (K14, diluted 1:2 x 105) for another 60 minutes at 37˚C. After washing, peroxidase-con-

jugated polyclonal porcine anti-rabbit immunoglobulin (P399, Dako, Glostrup, Denmark,

diluted 1:2 x 103) and murine serum (Dako) were added and incubated for 60 minutes. Plates

were washed again and a chromogenic substrate was added (TMB One, KEM EN TEC diag-

nostics, Taastrup, Denmark). Sulphuric acid (0.18 M) was added to stop the reaction and the

results were measured by an ELISA reader (BioTek Synergy 2) at 450 nm. The calibration

range was 10 to 500 μg/L [52]. When ELISA was performed, the samples were diluted until Tg

levels measured were in compliance with the detection range. Afterwards, the results were

adjusted in accordance with the dilution series. The intra-assay variation at the concentration

of 52 μg/L was 9.5% and 8% at 101 μg/L (n = 7 and 6 duplicates for the low and high control

level, respectively). For the low control, the inter-assay variation was 22.3% (range 32–65 μg/L)

and 17.5% for the high control (65–121 μg/L) (n = 5 samples in duplicates for each control)

[52].

RT-qPCR. RT-qPCR was used for measuring the mRNA encoding Tg, NIS, TPO, TSH

receptor (TSH-R) and interleukin-6 (IL-6), the latter used for controlling the specificity of the

ghrelin-induced effect. Total RNA was extracted from cultured, primary human thyroid cells

from 7 patients with Qiagen Rneasy mini kit according to the manufacturer’s protocol. Nano-

Drop spectrophotometer was used for quantification of isolated RNA. For each sample, cDNA

was synthetized (Superscript VILO synthesis kit, Invitrogen) by mixing 4 μl of the VILO reac-

tion mix, 2 μl of the Superscript enzyme mix, the RNA (same amount from each sample)

and RNAase free water to a total volume of 20 μl. Samples were incubated for 10 minutes at

25˚C, 60 minutes at 50˚C and 5 minutes at 85˚C, whereupon 80 μl of 0.5X Tris-EDTA-buffer

(Sigma-Aldrich) were added. The RT-qPCR analysis was performed with SYBR1 Green

JumpStart Taq Ready Mix (Sigma-Aldrich). A pool of undiluted cDNA was used for standards.

4 μl of SYBR Green JumpStart Taq ReadyMix, 10 μl of H2O and 1 μL of primers (1μM final

concentration of each primer) were added to each reaction. RT-qPCR was performed on

Lightcycler 480 II (Roche, Basel, Switzerland) with an initial denaturation at 94˚C for 2 min-

utes, 45 cycles consisting of 30 seconds at 94˚C, 45 seconds at 59˚C, 1.30 minutes at 72˚C. The

analysis was followed by a melting curve analysis. The cycle threshold (Ct) values obtained

from the RT-qPCR were normalized to the reference gene beta-2-microglobulin (Table 1).

Statistics

Results were analyzed in GraphPad Prism 7 (2016 GraphPad Software, Inc.) and represented

as means + or ± SEM. P-values lower than 0.05 were considered statistically significant. All

experiments were carried out in triplicate. When cell cultures with and without ghrelin with

the same concentration of added TSH were compared, the paired, the non-parametric Wil-

coxon signed-rank test was used (i.e. in all statistics performed) [53, 54]. In the Tg and cAMP
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assays, the basal levels, i.e. the values in the absence of TSH, were subtracted, before the groups

were compared. Absolute values for the basal levels of Tg and cAMP are shown in the Support-
ing information section.

Results

Ghrelin receptors are expressed in thyroid cells

To ensure that the culturing procedure of the thyroid tissue did not affect the expression level

of GhrR we tested the expression of the receptor in two human thyroid tissue samples before

culture and after 12–13 days of culture. We found that the concentration of GhrR in the thy-

roid was about the same as in human brain tissue before and after 12–13 days (Fig 1).

Role of ghrelin as an inhibitor of TSH-induced thyroglobulin production

To test whether ghrelin affected the TSH-induced Tg production, we treated cells with TSH

alone and in combination with ghrelin, respectively. TSH stimulated an equal increase in Tg

production at all three concentrations used, in accordance with a former study [53] in which

the TSH effect on Tg production was the same at 0.1 to 10 IU/L TSH. After addition of ghrelin,

a significant decrease in the 0.1 IU/L TSH-induced production of Tg was observed (n = 8,

p = 0.039) (Fig 2A). Although not significant, the same tendency was seen for concentrations

of TSH of 0.5 and 1 IU/L in which a decrease was found (n = 6, p = 0.16 for both). Importantly,

ghrelin only decreased the TSH-induced Tg production, whereas the production of Tg without

TSH stimulation was unaffected by ghrelin treatment (S2A Fig).

Ghrelin did not influence the TSH-stimulated cAMP generation

To see which part of the TSH receptor signaling pathway that ghrelin inhibits, we examined if

ghrelin treatment affected TSH-induced cAMP expression. No effect of ghrelin on the TSH-

Fig 1. Ghrelin receptor (GhrR) mRNA expression level. GhrR mRNA expression level in relation to the

reference gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA expression level in human

brain, thyroid tissue and cell cultures measured by real-time quantitative polymerase chain reaction (RT-

qPCR). n = 2.

https://doi.org/10.1371/journal.pone.0184992.g001
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induced production of cAMP was observed which indicates that the inhibiting effect on the

ghrelin-induced Tg secretion is at least not involving the steps upstream of the adenylate

cyclase in the Gαs coupled pathway of TSH (Fig 2B). It should be noted that some of the cAMP

values measured are below calibration range, though above the detection limit. However, this

does not change the conclusion that no effect of ghrelin on the TSH-induced production of

cAMP was found.

Ghrelin decreased the TSH-induced expression of TPO

To analyze changes in key thyroid components upon the addition of ghrelin, we performed

RT-qPCR analysis of the expression levels of Tg, NIS, TPO and TSH-R. All cell cultures

responded to the addition of TSH (0.1 IU/L) by multi-fold increases above the basal levels

(Fig 3). Combined addition of ghrelin and TSH inhibited TPO upregulation significantly

(p = 0.031). Tg, NIS and TSH-R decreased as well, though not obtaining statistical significance.

Importantly, the reference gene IL-6 was unaffected by TSH and the combination with

ghrelin.

Discussion

The present study is the first to investigate whether ghrelin acts directly on human thyrocytes,

that have previously been described to express the GhrR [4, 55, 56], and accordingly the ability

to modulate the secretion of several key components that are important to the production of

thyroid hormones.

We confirmed the presence of GhrR on the thyroid tissue as well as on the cultured thyro-

cytes. The expression levels were lower in the cultured thyrocytes compared to the tissue sam-

ples but the expression levels were stable from day 5–6 to day 10–13 of culture (Fig 1). We

showed that ghrelin decreased the TSH-induced protein level of Tg significantly for the lowest

Fig 2. The influence of ghrelin on the thyroid-stimulating hormone (TSH)-induced increase in thyroglobulin (Tg) and cAMP production. The

influence of ghrelin on the TSH-induced increase in Tg and cAMP production at three different concentrations of TSH (0.1 IU/L, 0.5 IU/L and 1 IU/L). The basal

levels, i.e. the values in the absence of TSH, were subtracted, before the groups were compared. Grey = vehicle, pattern = ghrelin (100 nM). Means (+SEM).

*P < 0.05 compared to the control (vehicle). A) Ghrelin inhibited the TSH-induced increase in Tg production measured by enzyme-linked immunosorbent

assay (ELISA) in primary cultures of human thyroid cells for the TSH concentration of 0.1 IU/L. n = 8 (0.1 IU/L) and n = 6 (0.5 and 1 IU/L) in triplets. Two patient

samples were excluded due to lack of basal TSH-induced Tg production. B) No influence of ghrelin on the TSH-induced increase in cAMP production at three

different concentrations of TSH (0.1 IU/L, 0.5 IU/L and 1 IU/L) measured by a competitive protein binding method in primary cultures of human thyroid cells.

n = 8 (0.1 IU/L and 1 IU/L) and n = 6 (0.5 IU/L) in triplets.

https://doi.org/10.1371/journal.pone.0184992.g002
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concentration of TSH and only a trend was observed for the two higher concentrations. The

non-significance for these two concentrations might have been due to a large inter-culture var-

iation of 19.9% [53] combined with the lower number of cultures at these two concentrations.

Additionally, the mRNA expression of TPO was decreased and a tendency of inhibition of

NIS, Tg and TSH-R was observed in thyrocytes from paranodular thyroid tissue, indicating a

suppressive role of ghrelin on the thyrocytes (Figs 2 and 3). The production of Tg is influenced

by the amount of TPO and NIS, hence ghrelin may mediate its inhibitory effect on Tg through

NIS and/or TPO. Importantly, ghrelin did not affect the basal level of Tg and cAMP (S2 Fig),

NIS, TPO or TSH-R in the absence of TSH. To explore where in the TSH signaling pathway

ghrelin could cause its influence, we measured the concentration of cAMP in the cultures with

or without ghrelin. This particular component is relevant because the TSH receptor is Gαs cou-

pled [57] and therefore induces cAMP expression when activated in contrast to the GhrR

which is Gαq coupled [58, 59]. We found no change in cAMP production when ghrelin was

added along with TSH, suggesting that ghrelin influences the TSH pathway downstream of the

adenylate cyclase (Fig 2B).

Therefore, our results indicate that there could be an antagonizing function of ghrelin on

the TSH-induced function of human thyrocytes; although a direct translation from our ex vivo
experiments to the real situation should be made with caution. Importantly, a limit of our

study is that it does not take into account the feed-back mechanisms which occur in a whole

organism.

Similar studies in rats

An effect of ghrelin downstream of the adenylate cyclase is apparently supported by an in vitro
study of a rat cell line (FRTL-5) which found evidence of crosstalk occurring downstream of

cAMP through ghrelin-induced intracellular calcium signaling which changed the TSH-

induced proliferation of the thyrocytes, possibly mediated by the p66Shc pathway [48]. This

led to an enhanced proliferation of the thyrocytes, whereas the function of the cells remained

Fig 3. The influence of ghrelin on the thyroid-stimulating hormone (TSH)-induced (0.1 IU/L) mRNA

expression of four thyroid components. The expression of the TSH receptor (TSH-R), thyroperoxidase

(TPO), thyroglobulin (Tg) and sodium iodide symporter (NIS) measured by real-time quantitative polymerase

chain reaction (RT-qPCR) in a primary culture of human thyroid cells in presence and absence of ghrelin.

Indicated as fold change of mRNA expression compared to basal level (dashed line). IL-6 was used as a

negative control. Grey = vehicle, pattern = ghrelin (100 nM). Means (±SEM), n = 6. *P < 0.05 compared to the

control (vehicle). Two patients were excluded due to unknown sample material.

https://doi.org/10.1371/journal.pone.0184992.g003
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unexamined. Another study in rat tumor thyroid cells (PC-CI3) found a potentiation of the

TSH-induced expression of Tg, TPO and NIS by ghrelin [49]. However, cell lines are known

to lose properties by passaging and therefore are not necessarily good markers of human phys-

iology [60, 61]. Furthermore, studies have shown that thyroid cell lines, as a result of dediffer-

entiation during passaging, become highly proliferative, but often lack their primary function

e.g. producing Tg, wherefore proliferation rate and function do not consistently correlate posi-

tively [61]. Our study is the only one investigating the effect of ghrelin on human thyroid tissue

and moreover in primary cell cultures.

New contributions to understand the role of ghrelin on the hypothalamus-

pituitary-thyroid-axis

Thus, our findings are new contributions to understanding the complex effects of ghrelin on

the HPT axis and thereby on the levels of thyroid hormones in health and disease. It may

therefore contribute to our understanding of the correlation between the plasma levels of ghre-

lin and thyroid hormones. The inhibiting effect of ghrelin on the thyroid components found

in this study could be due to an energy saving strategy in which the orexigenic effect of ghrelin

together with the decreased metabolism leads to a less catabolic state. This is in accordance

with the inverse relationship between thyroid hormones and ghrelin found in patients with

especially hyperthyroidism [18–29] as well as the inhibiting effect of ghrelin on the HPT axis

shown in several in vivo studies [5, 34–40]. The adipogenic effect of ghrelin has until now

mostly been attributed to increased food intake and increased fat accumulation but with this

study we propose a new mechanism, though, more studies need to be done to clarify

mechanisms.

Conclusions

This study demonstrates for the first time a direct effect of ghrelin on human thyrocytes ex
vivo and thereby suggests a new possible role for ghrelin in regulating the production of thy-

roid hormones in humans. The shown suppressive impact of ghrelin on the thyrocytes is one

more minor step towards understanding the role of ghrelin in human energy homeostasis and

may in the long run contribute to the development of new therapeutic strategies in thyroid

and metabolic disorders.

Supporting information

S1 Fig. The influence of ghrelin on the thyroid-stimulating hormone (TSH)-induced

increase in thyroglobulin (Tg) and cAMP production for each patient. The influence of

ghrelin on the TSH-induced increase in thyroglobulin Tg and cAMP production at three dif-

ferent concentrations of TSH (0.1 IU/L, 0.5 IU/L and 1 IU/L). The basal levels, i.e. the values

in the absence of TSH, were subtracted, before the groups were compared. Grey = vehicle,

pattern = ghrelin (100 nM). Means (+SEM). �P< 0.05 compared to the control (vehicle). A)

Ghrelin inhibited the TSH-induced increase in Tg production measured by enzyme-linked

immunosorbent assay (ELISA) in primary cultures of human thyroid cells for the TSH con-

centration of 0.1 IU/L. n = 8 (0.1 IU/L) and n = 6 (0.5 and 1 IU/L) in triplets. Two patient sam-

ples were excluded due to lack of basal TSH-induced Tg production. B) No influence of

ghrelin on the TSH-induced increase in cAMP production at three different concentrations of

TSH (0.1 IU/L, 0.5 IU/L and 1 IU/L) measured by a competitive protein binding method in

primary cultures of human thyroid cells. n = 8 (0.1 IU/L and 1 IU/L) and n = 6 (0.5 IU/L) in

triplets.

(TIF)
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S2 Fig. The influence of ghrelin on the level of thyroglobulin (Tg) and cAMP in the absence

of TSH. Grey = vehicle (without ghrelin), pattern = ghrelin (100 nM). Means (+SEM).
�P < 0.05 compared to the control (vehicle). n = 8 in triplets. A) Ghrelin did not influence the

basal level of Tg (μg/L) in the absence of TSH measured by enzyme-linked immunosorbent

assay (ELISA) in primary cultures of human thyroid cells. B) No influence of ghrelin on the

basal level of cAMP (μmol/L) was observed in the absence of TSH, when measured using a

competitive protein binding method in primary cultures of human thyroid cells.

(TIF)
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