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Abstract

A key question in decision-making is how people integrate amounts and probabilities to form
preferences between risky alternatives. Here we rely on the general principle of integration-
to-boundary to develop several biologically plausible process models of risky-choice, which
account for both choices and response-times. These models allowed us to contrast two
influential competing theories: i) within-alternative evaluations, based on multiplicative inter-
action between amounts and probabilities, ii) within-attribute comparisons across alterna-
tives. To constrain the preference formation process, we monitored eye-fixations during
decisions between pairs of simple lotteries, designed to systematically span the decision-
space. The behavioral results indicate that the participants’ eye-scanning patterns were
associated with risk-preferences and expected-value maximization. Crucially, model com-
parisons showed that within-alternative process models decisively outperformed within-attri-
bute ones, in accounting for choices and response-times. These findings elucidate the
psychological processes underlying preference formation when making risky-choices, and
suggest that compensatory, within-alternative integration is an adaptive mechanism
employed in human decision-making.

Author summary

Decision-making under risk requires a selection between alternatives, such as lotteries,
which offer a reward with a specified probability. Human decision between such alterna-
tives is at the center of the normative decision theory, which assumes that decisions are
rationally made by forming a value for each alternative and selecting the alternative with
the highest value. To this day, there is still a considerable debate on how such values are
computed. While the normative theory assumes that values of the alternatives reflect the
statistically expected rewards, more recent theories have argued that alternative-values are
not computed, and choices are only based on sequentially comparing the alternatives on
amounts or on probabilities. Here, we carried out an experimental investigation of risky
decision-making, in which participants chose between pairs of simple lottery alternatives
that systematically span a range of probabilities and amounts, while we tracked their eye
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positions during the decision-making process. We found that the participants are sensitive
to the expected-utility of the alternatives, as predicted by the normative decision theories,
but they also exhibit risk-biases that correlate with the eye-scanning patterns. We then
carry out computational modeling, comparing preference-formation models on their abil-
ity to account for both choices and their reaction-times. The results provide strong sup-
port for normative models, which assume that the values of the alternative are computed
via a multiplicative function of the amounts and probabilities. These results suggest that
humans are closer to normative principles than previously assumed, and motivate further
investigation into the neural mechanism that mediates these multiplicative computations.

Introduction

Decision-making under risk is ubiquitous in daily activities, such as deciding whether to take
an umbrella when the weather forecast predicts 50% chance for rain, or whether to purchase a
lottery ticket with a winning probability of 1%. Such decisions are difficult because the out-
comes of the alternatives are only known with some probability, and thus they are subject to
risk tradeoffs. For example, when deciding between a lottery that offers $100 with a probability
of 50% and an offer of $40 with certainty, one needs to balance between the appeal of the
attractive amount ($100) and the risk of getting nothing (rather than gaining $40 for certain).
Choices between such lotteries were the subject of intensive research in economics and experi-
mental psychology that investigated how humans make risky decisions, starting from the nor-
mative Expected-Utility (EU; [1]), followed by random utility models [2] and culminating with
Cumulative Prospect Theory (CPT; [3-6], see also Transfer of Attention eXchange [TAX], for
arelated type of model [7]). Yet despite the impressive success of CPT in accounting for risky
choice data (e.g., the dependence of risk-aversion on the magnitude of the outcomes’ probabil-
ities [8]), the theory has been criticized for making assumptions that are inconsistent with
capacity limitations of human online information processing, and for not explicating the pro-
cess by which the preferences are formed [9,10].

Several process theories were developed to account for risky choice. First, heuristic models,
such as Priority Heuristic (PH), suggest that preferences are not formed via a compensatory
process of averaging over all outcomes (like in EU and CPT), but rather via a sequential process
of comparing the alternatives over one specific attribute (probability or amount) at a time, in a
specified order, and stopping at the first instance in which a termination criterion is satisfied
[9]. Second, a number of models have relied on the sequential-sampling framework [11-14],
which successfully accounted for choices in perceptual tasks, in order to develop a process
model of risky choice. For example, in Decision Field Theory (DFT; [15]), as attention fluctu-
ates between the alternatives, the preference dynamically evolves by integrating amounts,
which are sampled with a frequency that is associated with their (subjective) probabilities [16].
In the Decision by Sampling model (DbS; [17-19]), like in PH, the sampling involves compari-
sons between the values of the alternatives on a specific attribute (i.e., amounts or probabilities,
but not both). However, unlike PH, DbS does not assume a fixed order of attribute sampling,
nor that the decision is settled at a single comparison, but rather a stochastic sampling, which
continues until the accumulated difference of favorable comparisons reaches a decision
boundary. Critically, as opposed to EU or CPT, in DbS the processing takes place within-attri-
butes (i.e., comparison between amounts or between probabilities). Finally, in the Parallel
Constraint Satisfaction model (PCS; [20]), a compensatory within-alternative process similar
to EU (i.e., multiplication of amounts and probabilities) is carried out in a parallel and
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automatic manner; this process is mediated by a connectionist network of bottom-up and top-
down connections. Although several qualitative predictions of the PCS model have been con-
firmed [20], this model has not been tested quantitatively in risky choice.

More recently, a number of studies have relied on eye-fixations during choice between
alternatives, to gain insight into the preference formation process. For example, Krajbich, Ran-
gel and colleagues have shown that an extension of the Drift Diffusion Model (DDM; [12,13]),
the attentional DDM (aDDM), accounts well for observed preferences between consumer
products, food items and 50-50 monetary gambles [21-24]. To do so, the aDDM assumes that
the value of the sampled alternative is modulated by eye-fixations, so that the values of the
non-fixated alternatives are attenuated compared with the fixated ones. In the domain of risky
choice, a number of studies have contrasted within-alternative and within-attribute models,
and reported partial support for both [20,24-28]. In particular, Glockner and Herbold [20]
analyzed risky choice while monitoring eye-movements, and provided evidence against the
PH model and in favor of the PCS and DFT models (see also [29] for similar results). Finally,
in a recent investigation of eye-movements during risky choice, Stewart, Hermens, & Mat-
thews [30] concluded that, while eye-movements contribute to choice preference, this contri-
bution is mostly independent of the values sampled. In other words, the more one looks at an
alternative the more likely s/he is to choose it, independently of the magnitude of amount or
probability.

The aim of the current study is to develop and contrast process models of risky choice,
which are constrained by the eye movements of participants making decisions. In particular,
we adopt an integration-to-boundary framework, which allows to predict both choices and
their decision-time, and we extend the aDDM [21,22,31] approach to the domain of risky
choice (see also [24] for a recent extension to 50-50 monetary gambles). In this regard, a cen-
tral question is whether the preferences are formed by integrating global alternative-values,
based on multiplicative interactions between amounts and probabilities (within-alternative
processing), or by sampling and integrating attribute-comparisons (within-attribute process-
ing). Furthermore, using process models that include attentional modulation of fixated infor-
mation, we wish to account for individual differences in risk preference. While previous work
has highlighted the impact of task-complexity (e.g., number of alternatives and attributes) in
determining the decision strategy adopted by the participants (e.g., [32]), here we focus on the
simplest type of risky choice (between pairs of alternatives, each consisting of a probability p to
win amount x, see Fig 1A). Thus, our aim here is not to determine which of these two types of
processes prevail in any choice scenario (both can take place, subject to task-conditions and
individual differences). Rather, we wish to test if, at least for this simple case, the more norma-
tive (within-alternative and multiplicative) strategies are within the capacity of participants
resources. Towards this end, we carry out a systematic investigation of risky choice with simple
two-outcome lotteries, while eye-fixations are monitored. To anticipate our results, we provide
a clear demonstration that within-alternative and multiplicative evaluations are being used,
subject to individual differences that correlate with choice normativity.

Results

The participants were tested on choices between simple lotteries of the type (x; with p; and
otherwise 0, vs. x,, with p, and otherwise 0; where x; , are monetary amounts and p; , are the
corresponding probabilities of winning). The choice problems (94 trials) were selected by sys-
tematically sampling a two-dimensional grid of probabilities and amounts (Fig 1B). Domi-
nated choice problems (in which both the amount and probability of one option were higher
than in the other option) were excluded except for 10 catch-trials, which were used to assess
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Fig 1. Stimuli and study design. (A) Example of the stimuli used in the experiment. Amounts were represented by the lower
(brighter) parts of divided bar graphs, and probabilities by the lower (brighter) sectors of pie charts. Note that the figure is not to
scale, and the colored ellipses and labels are shown for illustration purposes only (they were not used in the actual experiment).
(B) Choices were drawn from a 5x5 two-dimensional grid with amounts along one dimension, and probabilities along the other.
The two stimuli from panel A are shown in this grid. Choice stimuli were presented without deadline until response.

https://doi.org/10.1371/journal.pcbi.1007201.9001

task engagement. To discourage numerical calculations, the choice alternatives were presented
in graphical format (Fig 1A). The experiment was incentive compatible: it was explained to the
participants that one of their choices will be randomly chosen and played out for real money at
the end of the experiment (see S1 Methods and S3 Fig for details on the stimuli and task
instructions).

Choice behavior

We began by examining the basic psychometric properties of our choice-data. Analysis of the
"catch-trials" showed that the participants chose the better option (higher in both amount and
probability) in 97% of these trials (SD = 6%). Next, we conducted a mixed-effect logistic regres-
sion on the choice data, with the Expected-Value (EV) differences (x;-p; —x»p,) as a predictor,
and with random intercepts and slopes at the participant level. The results indicated that the
participants were sensitive to EV differences, and preferred lotteries with higher EVs over lot-
teries with lower ones (8 = 0.40, p < .001; Fig 2A). Additionally, using a Pearson correlation
analysis, we showed that the reaction time (RT) of a decision decreased as the absolute EV dif-
ference between the lotteries increased (r = -0.8, p < .001; Fig 2B). This finding is consistent
with previous process models such as the PCS [20], the aDDM [21], and the DFT [16], indicat-
ing that the participants take longer to decide when the evidence (as measured by the EV-dif-
ference) is smaller.

Finally, we evaluated the risk-preferences of the participants. To this end, we focused on
choice problems with similar EVs (|AEV| < 1, Nunoice problems = 26), and examined the propor-
tion of trials in which high-payoff/low-probability lotteries (riskier options) were preferred
over low-payoff/high-probability lotteries (safer options). Following the CPT regularity of dif-
ferential risk-attitudes for low vs. medium/high probabilities (see S1 Text), we examined the
risk-preferences separately for these two probability domains: i) low-probability cases, in
which one of the lotteries has p < .25 (e.g., $24 with p = .1 vs. $6 with p = .5), and ii) high-prob-
ability cases, in which both lotteries have p > .25 (e.g., $30 with p = .5 vs. $15 with p = 1); the
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(against .5) indicated that the participants showed risk-aversion for medium/high probabilities
(#(30) = 4.49, p < .001); no risk-aversion, however, was obtained for low probabilities (#(30) =
-0.11,p=.9).

Eye-fixations and individual differences

On average, the participants made 9.05 fixations (SD = 3.56) per trial, with a mean duration of
407ms (SD = 244 ms) per fixation. Also, on average across participants, there was no signifi-
cant difference between the proportion of fixations towards amounts and probabilities (£(30) =
0.78, p = .44). There was, however, a remarkable difference between participants in this pro-
portion, which was correlated with participants’ risk preferences: the more a participant fix-
ated on amounts, the more likely he or she was to choose the riskier alternatives (r = .48, p =
.006; S1A Fig). To understand this relationship we examined individual differences in fixating
the higher of two amounts/probabilities, as this can explain risk-biases (looking more at higher
amounts or at lower probabilities leads to risk-seeking according to the aDDM [21,22,24]).
Importantly, we find that the more a participant tends to fixate on amounts the more s/he fix-
ates on the larger of them (r = .47; p = .007; S1B Fig), and similarly for probabilities (r = .46;

p =.007; S1C Fig). Finally, the frequency of fixations on the higher of the two amounts was
positively correlated with risk-seeking (r = .58; p < .001; Fig 2E), and the frequency of fixations
on the higher of the two probabilities was negatively correlated with risk-seeking (r = .45; p =
.01;S1D Fig) see also [24,33].

We also examined the eye-trajectories in relation to their transitions between the four attri-
butes (x;, p;, X2, p2). The transitions between decision attributes (amounts and probabilities)
were classified into three categories [20,25,30]: i) Within-alternative transitions-transitions
between attributes that belong to the same alternative. i) Within-attribute transitions—transi-
tions between different alternatives, within the same attribute. iii) “Diagonal” transitions—tran-
sitions between the amount of alternative A and the probability of alternative B and vice versa.
Fig 2C and 2D show one example each for within-alternative and within-attribute trials,
respectively. An Analysis of Variances (ANOVA) revealed significant differences of the transi-
tion probabilities between the three transitions types (F(2,60) = 431.1, p < .001). Post-hoc
comparisons showed that the participants made more within-alternative than within-attribute
transitions (p < .001), as well as more within-attribute than diagonal ones (p < .001). The pro-
portion of within-alternative transitions (out of all transitions) was subject to individual differ-
ences and was correlated with EV-choice performance (AEV), such that the higher the fraction
of within-alternative transitions the higher was the proportion of the alternative with the
higher EV to be chosen (r = .57, p < .001; Fig 2F).

Predicting choices using eye-fixations

Recent research has demonstrated that attentional mechanisms play a key role in the develop-
ment of preferences [24,34-38]. In particular, it was shown that the more an alternative is fix-
ated on, the more likely it is to be chosen [21,30,39]. We first estimated the benefit of looking
time (or of the number of fixations) on choice, using a measure that was developed in another
study ([40]). Specifically, using logistic regression we predicted the choices from the EU-differ-
ence between the two alternatives (with parameters fitted for each subject on all his/her
choices). Then, for each trial, we computed the deviation between the actual choices (coded as
0 or 1), and the probabilities predicted by the EU-difference. This residual was averaged sepa-
rately for trials in which the choice had a positive or a negative gaze-advantage (we did this
twice, for total gaze duration and for number of fixations). We then computed the difference
between these measures to obtain the average difference in choice probability for the items
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https://doi.org/10.1371/journal.pchi.1007201.g003

with a positive versus negative final gaze advantage, when corrected for the influence of their
(EU) values. As shown in Fig 3 (see also [40] for similar results on non-risky choices), there is
a marked gaze-advantage in predicting the choice. At the group level, this advantage has a
mean value of 0.29 (SD = 0.14) for the number of fixation (Fig 3, upper panel), and a mean
value of 0.24 (SD = 0.11) for the total gaze duration (Fig 3, middle panel). Finally, we found a
small, but significant prediction enhancement, for the number of fixation predictor (#(30) =
2.87, p = 0.008; Fig 3, lower panel).

Second, we have confirmed the impact of gaze on choice, using a multiplicative computa-
tion of the alternatives’ values based on EU (or CPT) values and a monotonic function of gaze-
time (or number of fixations; see S2 Text for details).

As illustrated in Fig 4A, we examined an EU X time regression model (similar conclusions
were obtained for CPT based models, see S2 Text), in which the EU value of each alternative
increases with its dwell time on the two alternatives (« is the risk-parameter of EU, 7 is a satu-
ration parameter, and f is a slope parameter). Additionally, we examined a similar regression
model, in which dwell-times were replaced with the number of fixations each alternative is
sampled (Fig 4B). Comparison of these models with the traditional EU (which does not take
eye-movements into account) showed that using eye-movements significantly improved pre-
diction accuracy and AIC comparted with the traditional EU (Fig 4C). Note also, that the pre-
diction accuracy and AIC which were obtained using the number of fixations, equal (for EU)
or surpass (for CPT), the prediction accuracy and AIC obtained using the measure of dwell-
time. In addition, in both gaze based regressions (number of fixations and dwell time), the fit-
ted values of saturation-parameter 7 were lower than 1, indicating that, for example, looking
twice as long at an alternative increases its value by a factor of less than 2. One way to under-
stand this non-linear saturation is in relation to a leak of the accumulated values [14,41,42]. In
such leaky integration models, the accumulated evidence saturates at an asymptotic value, and
remains constant even if more integration time is allowed. Accordingly, at each fixation one
samples and accumulates a value, however, as the trial proceeds the accumulated value leaks,
resulting in a type of recency. Indeed, the percentage of match between the fixated alternative
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and the final choice as a function of fixation number (backwards from the end) showed a clear
recency pattern (Fig 5; note that an aDDM model without leak can also generate a recency pat-
tern [43], therefore a quantitative model comparison is needed to determine if leak is required
to account for the actual pattern).

Towards a process model of risky choice based on eye-movements

The central aim of this study is to develop and contrast two classes of process models that differ
in the way attentional (or eye) transitions affect the integration of amounts and probabilities.
Both types of models assume that: a) fixated objects receive enhanced attention, b) attention
modulates the weight of value integration [21], and c) recently sampled values are weighted
more than earlier ones [14,41,42]. The models differ, however, on how the values are inte-
grated into preferences. Note that we do not aim to test specific models but rather distinguish
between broad classes of models based on certain principles, in particular, between within-
attribute vs. within-alternative models [20,25,32,44]. While the former is used in models such
as PH and DBS, the latter is used in models such as EU, CPT and PCS. We also examined a
more hybrid model, which still relies on multiplicative within-alternative computations, but
also allows some extent of competition between the attributes.

Within-attribute integration models. Models from this class assume that when decision-
makers attend to one attribute (e.g., amount or probability), they accumulate the value-difter-
ence (or categorical difference) of the two alternatives on that attribute, according to:

Y,(t4+1)=(1—-=21)-Y,(¢) + D,(¢)

Yy(t+1) = (1= 4) - Yu(t) + Dy(t)
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where Y; i€{A,B} is the accumulated preference for alternative i, 4 is an integration-leak factor
that emphasizes recent values, and D; is the value (or categorical) difference between the attri-
butes, which depends on eye-fixation and model variant (see S3 Text Within-attribute integra-
tion models for a detailed description of the models). This mechanism was implemented in
two model variants. In the first one, preferences were generated by accumulating the normal-
ized differences (min-max normalization, over the whole set of decision problems) of the
attended attribute values. For example, if the participant had to choose between A:($20, 0.2)
and B:($10, 0.5), then the difference between the normalized amount values (of $20 and $10,
respectively) is accumulated whenever the representations of amounts are fixated (see S3 Text
within-attribute integration models). Likewise, the difference between the normalized probabil-
ity values (of 0.2 and 0.5, respectively) is accumulated whenever the representations of probabil-
ities are fixated. The second model assumes integration of categorical differences; this follows
the DBS assumption that people have access to ordinal comparisons rather than values [18].
Therefore, in the above example, the accumulator associated with alternative A increases by one
unit at each fixation of an amount (since $20 is more than $10), and the accumulator of alterna-
tive B increases by one unit at each fixation of a probability (since 0.5 is larger than 0.2). This
means that the mechanism accumulates binary counts of comparison between the same attri-
bute in different alternatives [17,19]. To enhance these models’ performance we allowed an
additional parameter: attentional modulation, which enhances the weight of sampled attributes
([21,22]; see S3 Text within-attribute integration models). Note that since the values of both attri-
butes are used in the comparison, these models assume either the existence of some degree of
peripheral vision, or reliance on memory. Since memory cannot play a role during the first
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fixation of an attribute (and since peripheral vision is less sensitive to the low contrast of our sti-
muli in any fixation, including the first), we assumed that default values (mid-range of the
amounts and probabilities values used in the experiment) are used for the yet un-scanned attri-
butes. The default values were replaced with the actual attributes’ values at the first fixation to
each attribute. This treatment was implemented in all versions the process models (see S3
Table).

Within-alternative integration models. The second class of models assumes that the val-
ues that are integrated are associated with the alternatives and are multiplicatively formed
from the attributes (as in expected utility). This mechanism was also implemented in two mod-
els. The first model has single-layer architecture and involves two accumulator units, one for
each alternative (A or B). On each fixation, the accumulators are updated with the integrated
subjective utilities of the fixated alternative (which is based on multiplication of the subjective-
amounts and subjective-probabilities; see S3 Text Within-alternative selection/One-layer leaky
accumulators), according to:

Y,(t+1)=(1-2)-Y,(t) +SU,(¢)

Y,(t+1)=(1—=2) Y(t) + SUL»¥)

where Y; i€{A,B} is the accumulated preference of alternative-i, 4 is an integration-leak, and
SU; is the subjective expected utility of alternative-i (similar to CPT), subject to attentional
modulation that depends on eye-fixation. As in the aDMM model [21], this model assumes
that the inputs are modulated by gaze direction (i.e., higher weight is assigned to the fixated
alternative than to the non-fixated one). Note that in this model the update does not depend
on whether the current fixation is on amount or probability, but only which alternative is fix-
ated, with the non-fixated alternative being attenuated. For example, when one looks at either
the amount or the probability of alternative A, the corresponding accumulator is updated with
the integrated subjective utility of that alternative, while the other accumulator is updated with
an attenuated value (which can be zero) of the subjective utility of alternative B.

The second within-alternative model contains two-layers of leaky-accumulators in cascade
(Fig 6A); as we will show, this model allows to apply attentional modulations to specific attri-
butes and not only to the whole alternative. The first layer of the model consists of four leaky-
accumulators associated with the four different attributes (x;, p;; x5, p,). Unlike in the previous
(single layer) version, these units are updated with the attentionally modulated subjective val-
ues of each attribute. For example, when a participant looks at the amount of alternative A
(i-e., x;), the accumulator of that attribute is updated with the subjective value associated with
it (x,% where o is a free parameter), while the other accumulators (of p;, x, and p,) are updated
with attenuated subjective values of their attributes. The second layer of the model consists of
two leaky-accumulators corresponding to the integrated preference of the two alternatives. At
each fixation, each second layer (alternative) accumulator is fed with the activations of the first
layer units associated with it, by accumulating the product of their values (see Fig 6B for illus-
tration of the model dynamics and S3 Text Within-alternative selection/Two-layer leaky accu-
mulators for details). In one version of the two-layer model, we also introduced mutual
inhibition between the amount units (competition between x; and x,) and the probability
units (competition between p; and p,). One can think of such a model as implementing a
hybrid between within-attribute and within-alternative processes: while the alternatives units
still receive multiplicative input from both their attributes units, the mutual inhibition
(depending on its strength) can polarize the difference in activation, subject to attentional
modulation based on the current fixation.
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Fig 6. Illustration of the two-layer leaky accumulator model and its dynamics. (A) The first layer consists of four leaky-
accumulators associated with the different attributes, and the second consists of two leaky accumulators associated with the
alternatives’ values. The units in the first layer are updated with the attentionally modulated subjective values of each attribute
(the red arrow indicates the input from the attended attribute, whereas the black arrows indicate the attenuated inputs from the
unattended attributes). The units in the second layer are fed with the first layer units’ activations, and accumulate their product.
(B) Simulated run of the two-layer leaky accumulators model using the average best fitted parameters (see S2 Table), in a choice
between: A($6, .8) and B($24, .2); A-wins. Blue circles (x-axis) correspond to fixation toward A, and red circles correspond to
fixation toward B. Values on the y-axis correspond to the activations of the second-layer accumulators.

https://doi.org/10.1371/journal.pcbi.1007201.9006

The models were fitted to the data in two steps. In the first, we fitted the models to choice
data, based on the values of the alternatives and the eye-fixations made for that decision, using
maximum likelihood estimations to obtain the best model parameters (see S1 Methods). In the
second step, we used the models with their fitted parameters from step 1, to make predictions
for decision-time, under an integration-to-boundary framework (in which we included a new
set of parameters that correspond to the response boundary). At this stage we also compared
the models on their ability to predict both choices and decision-times. We wish to note that
the level of activation-leakage (in all models) is a free-parameter, so that the case in which A =
0, corresponds to the more standard Drift-Diffusion models, and is thus explicitly tested as
part of our model fit procedures.

In addition to the process models, we also fitted a number of benchmark non-integration
to boundary models. Specifically we examined traditional compensatory models, such as EV,
EU and CPT, as well as non-compensatory heuristic models such as Maximax [45], Least-
Likely [46] and PH ([9]; see S3 Text Heuristics for detailed description of these models).

To evaluate the models’ capabilities to fit the data, we used several selection criteria: predic-
tion-accuracy, AIC and cross-validation measures (see S1 Methods Model Selection). For the
heuristic models, whose choices are deterministic, we only examined their accuracy measures
[8]. Because it can be argued that the prediction-accuracy of models with fixed (or no) parame-
ter values (such as the heuristic models) cannot be compared to the prediction-accuracy of
models with fitted parameter values [47], we compare them using the Cross-Validation/Accu-
racy measure.

Step-1: Choice data

The most complex of the models (in terms of number of parameters) is the within-alternative
process model, which has four free parameters. The first two, @ and y correspond to the CPT
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parameters for risk aversion and probability weighting [3], respectively, 8 corresponds to the
aDDM attentional modulation parameter, and A is the activation-leak. As we show in S5 Fig,
we carried out a recovery exercise, showing that our fitting procedure is able to provide a good
recovery for all those parameters over a wide range of values that correspond to those found in
the actual data. This non-trivial result is helped by the fact that our 94 choice problems system-
atically span the choice space.

As shown in Table 1, the within-alternative process models with attention modulation and
leak gave the best fit and showed the highest cross-validation prediction accuracy. They out-
performed both the within-attribute process models, as well as the traditional, non-integration
to boundary models (compensatory and non-compensatory heuristics). These results speak
against the hypothesis that the participants accumulate only the differences of the attended
attributes. We also found that the within-attribute models with perfect (rather than leaky) inte-
gration (Normalized and Binary differences), resulted in much worse AIC, prediction accu-
racy, and cross-validation (therefore in Table 1 we report only the within-attribute models
which include leak as a free parameter). We note that the within-alternative choice models
required a significant degree of information leak (Agroup = 0.58). As shown in S3 Table, we
explicitly tested four versions of within-alternative models that include an attentional modula-
tion but no activation-leak, all of which resulted in much poorer prediction-accuracy and AIC
fit values. By contrast, the leaky within-alternative process models outperformed (on predic-
tion accuracy, AIC and cross-validation) the regression models that include either EU or CPT
together with the number of fixations (see S2 Text and Table 2). This suggests that considering
dynamic processes, such as attentional shifts and leak of activation improves prediction accu-
racy and fit measures beyond what is achievable by using only the number of fixations. Note
that the within-alternative two-layer leaky accumulators model outperforms the single-layer
accumulator model. This result suggests that the perception of the attributes is dynamic and is

Table 1. Model comparison.

Model AIC Prediction Cross-Validation Cross-Validation (Accuracy)
Accuracy (-2-LogLikelihood)
Traditional Models
EV 2789 75.1% 567 75.1%
EU 2617 76.5% 527 76.0%
CPT 2364 81.2% 484 79.6%
Heuristics
MaxiMax - 44.8% - 44.8%
Least-Likely - 55.2% - 55.2%
Priority Heuristic - 58.3% - 58.3%
Fixation based regression models
EUFixations 2447 79.9% 506 78.7%
CPTFixations 2173 83.9% 453 81.7%
Within-attribute Integration
Normalized differences 2716 76.8% 551 75.4%
Categorical differences 2724 76.4% 576 74.4%
Within-alternative Integration
one-layer leaky accumulators 1980 86.1% 445 83.8%
two-layer leaky accumulators 1877 87.2% 436 84.1%

AIC values are rounded to the nearest integers. Bold entry indicates the best fitting models. Note that AIC differences exceeding 10 are considered very strong evidence

in favor of the model with the lower numerical values.

https://doi.org/10.1371/journal.pcbi.1007201.t001
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Table 2. Models of risky-choice.

Traditional Models
Expected Value (EV)
« Participants choose the alternative with the higher Expected-Value:
EV = x-p.
Expected Utility (EU)
« Participants choose the alternative with the higher Expected-Utility:
EU = u(x)-p; u(x) = x*.
Cumulative Prospect Theory (CPT)
« Participants choose the alternative with the higher Subjective-Utility:

i .

SU =u(x) - n(p); n(p) =————
(x) - n(p); n(p) T

Fixation based regression models

EUF!’xatians
 Usiternative = U(x)-p-n", where n is the number of fixations to the alternative, and 7 is a saturation parameter.

CPTFixations
« Defined analogously to Multiplicative EUgiyationss but with p replaced with 7(p) according to CPT.

Heuristics

MaxiMax
« Choose the alternative with the highest maximum amount.

Least-Likely
« Choose the alternative with the lowest probability of its worst outcome.

Priority Heuristic
» Compare sequentially the following attributes: minimum amounts, probability of minimum amounts, maximum amount.
« Stop when difference between the attributes reaches a termination criterion.

Within-attribute Integration

Normalized differences
« Normalize the amounts and probabilities using min-max normalization:

;o Y= mm(y)
r = max(y) — min(y)

« On each fixation, the normalized differences of the attended attribute are accumulated. Unattended attribute are underweighted.
« Example: if one fixates on x,, accumulator A increases by: x,'~6-x,’, and accumulator B by: 6-x,'—x,’. € [0,1] represents attentional modulation.

Categorical differences

« This model was implemented as the normalized differences model, except that instead of accumulating normalized differences, the model accumulates counts
based on categorical comparisons.

« Example: if one fixate on x; and x;>0-x,, accumulator A increases by one unit, and B remains the same. € [0,1] represents attentional modulation.

Within-alternative Integration

One-layer leaky accumulators
« On each fixation, this model accumulates the SU of the two alternatives, defined as in CPT.
« At fixation toward alternative A, the input of alternative B is attenuated (and vice versa).
« Example: if one fixates on x;, accumulator A increases by: SU,, whereas the accumulator B increases by: 6-SUj.
« The activations of the alternatives’ accumulators are subject to leak.

Two-layer leaky accumulators
« Two layers of leaky accumulators, the first estimates subjective amounts and probabilities (defined as in CPT), and the second estimates integrated SU.
« On each fixation, the first-layer units are updated with the subjective amounts and probabilities, with the inputs of the unattended attributes attenuated.
«Example, if one fixates on x; the inputs of p;, x, and p, are 0-n(p,), 6-u(x,) and 0-7(p,), respectively. The second-layer units are fed with the activations of the first
layer units, and accumulate the product of their values.
« The units of both layers (first and second) are subject to leak.

https://doi.org/10.1371/journal.pcbi.1007201.t002
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Fig 7. Predictive accuracy of the EU, CPT and the two-layer within-alternative integration models as a function of
AEV quantile. The two-layer model outperformed all other models especially in difficult decisions (low EV-
differences). Bars denote S.E., clustered by subjects.

https://doi.org/10.1371/journal.pcbi.1007201.g007

subject to modulation by attentional processes. Finally, the hybrid model resulted in fits (AIC
and prediction accuracy) that did not exceed those of the within-alternative model (see S3
Table), and with a moderate mutual inhibition value (.13) which does not trigger a full all-or-
none dynamics. Due to its complexity, we leave a full investigation of this model to future
research.

Finally, we carried out a comparison of the predictive accuracy of our best performance
model-the two-layer leaky accumulators—with that of the traditional EU and CPT models
across all decisions as a function of EV-differences. The comparison demonstrates that the dif-
ference in prediction accuracy is especially large for difficult choices (low EV-differences, 1-3
Quantiles; Fig 7), suggesting that attentional modulations are particularly significant in diffi-
cult decisions [48].

Step-2: Accounting for both choice and decision-time

We contrasted the within-alternative and the within-attribute models, in accounting simulta-
neously for choices and decision-times. To this end, we adopt an integration-to-boundary
framework, which assumes that preferences are accumulated until they cross a decision crite-
rion [49,50]; this introduced a few more parameters (for the boundary) into the model (see S1
Methods Model Fitting). The models are now set to estimate the probability of a subject’s
choice conditioned on its decision time and fixations. This probability is accumulated for all
choice trials of the participant to a total likelihood, which is used to optimize the boundary
parameters. Two families of decision boundaries were tested, for each of the models: i) the
standard fixed (time-invariant) boundary, which introduces a single new boundary parameter,
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https://doi.org/10.1371/journal.pcbi.1007201.9008

and ii) a collapsing (time-variant) boundary model, which introduces three new parameters
(see S1 Methods Optimization procedure: choices and decision-times, for further details regard-
ing the implementations of these two types of models). The collapsing boundary model has
been the focus of recent investigations in decision neuroscience [41, 42], and appears to be
favored in experimental tasks that span over longer time intervals (more than 2-3 sec [51-53],
but see [54] for an alternative explanation based on across-trial variability parameters).

The results show that, with both decision boundary families, the two-layer leaky accumula-
tor model outperformed all the other models. Among the two types of boundary families, the
best fits were obtained for the collapsing boundary models (AIC and cross-validation), despite
the cost of the two extra parameters. For this reason, we only report below the results for this
type of boundary (see S4 Table for comparison of all within-attribute and within-alternative
models using fixed and collapsing boundaries). We find that the within-alternative/two-layer
leaky accumulator model (AIC = 14,492) decisively outperformed the within-attribute/nor-
malized differences model (AIC = 15,815; AAIC = 823), in accounting for decision-times (con-
ditioned on the actual fixation patterns). Finally, we used these models to predict the
distribution of decision times (measured in number of fixations), for novel but statistically
matched patterns of fixations. To this end, for each trial we simulated a fixation sequence that
is based on a statistical model of the participant’s fixations towards the four attributes as a
function of their values [21,30]. The results indicate that for the two-layer leaky accumulator
model, the predicted and actual decision-time distributions show a good match, however for
the normalized differences model, the tail of the predicted decision-time distribution deviates
from that of the actual decision-time distribution (Fig 8).

Accounting for individual differences in risk-bias and in normative choice

Our best within-alternative integration model accounts also for the empirical correlation we
reported between the proportion of fixations a participant makes to the higher of the two
amounts and his or her risk-preference bias (Fig 2E; see also [24]). To show this, we simulated
choices for each participant, based on his or her fitted model-parameters and the participant’s
actual fixation sequence. The correlation between the model’s risk-preference prediction and
the proportion of fixations to the higher amount (r = .58, p < .001), was exactly equal to the
empirical correlation obtained in the data (Fig 2E). Next, we sought to demonstrate that this

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007201  August 29, 2019 15/25


https://doi.org/10.1371/journal.pcbi.1007201.g008
https://doi.org/10.1371/journal.pcbi.1007201

O PLOS

COMPUTATIONAL

BIOLOGY

The formation of preference in risky choice

relation is associated with the fixation pattern and not merely with differences in model
parameters. To this end, we simulated choices for each participant, by using his or her actual
fixation sequences, however, this time we used model parameters that correspond to the group
mean (rather than the individually fitted parameters). This resulted in a significant correlation
(r =.52; p = .002; Fig 9A) between the risk-preference and the proportion of fixating on the
higher amount. This correlation between risk-biases and fixation-pattern relies upon the mod-
el’s attentional component, which gives higher weights to the attributes on which the partici-
pant fixates. For example, assume that a participant is asked to choose between A:($20, 0.5)
and B:($10, 1). If s/he fixates more the amount of alternative A than the amount of alternative
B, higher weights would be given to the former, and thus the riskier alternative (A) would be
preferred by the model over the safer one (B).

Finally, we address an important question: which preference-formation mechanism
(within-alternative or within-attribute) results in better normative performance, and thus can
be regarded as more adaptive? To answer this, we simulated the two types of models based on
the participants’ best fitted parameters and actual fixation sequences, and we examined two
measures of normative choice predicted by each model: i) the fraction of EV-choices (for sim-
plification we discuss normativity in terms of EV, but the same would hold in terms of EU),
and ii) the fraction of transitivity violations-a direct measure of choice irrationality ([55,56];
see 54 Text). As seen in Fig 9B, the normative performance is higher for the within-alternative
model than for the within-attribute model, for both measures: EV-choices: £(30) = 6.27, p <
.001 and transitivity violations: #(30) = 5.15, p < .001. This is expected because our within-
alternative model, like CPT, assumes a multiplication between subjectively transformed
amounts and probabilities, which also maintains choice-consistency. Although the normative
model requires a multiplication of objective values whereas our model requires a multiplica-
tion of subjective values, this discrepancy is relatively minor compared with non-multiplicative
strategies (i.e., within-attribute integration or heuristics). Moreover, we have found that the
more within-alternative transitions a person makes, the higher is his or her fraction of EV
choices (Fig 2F; see also [28]). This correlation can be naturally understood, since the partici-
pants rely on a within-alternative multiplicative mechanism, and this operation is likely to be
more precise following an actual transition between amounts and probabilities (i.e., a fixation
on one attribute of an alternative followed immediately by a fixation to the other attribute of
the same alternative), than following a non-direct transition (where one of the to-be-
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Fig 9. Model predictions and individual differences. (A) The proportion of fixations toward the higher amount was
correlated with the risk-seeking preference predicted by the two-layer within-alternative integration model with
parameters fixed at the group-mean, but with actual fixations. (B) The within-alternative model is closer to the data
and predicts a higher fraction of EV-choices (left panel) and a lower fraction of (irrational) transitivity violations (right
panel), compared with the within-attribute model. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1007201.g009
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multiplied attributes is based on memory or defaults). Consistent with this, we found a correla-
tion across participants between the prediction accuracy of the within-alternative model and
the proportion of within-alternative transitions (r = 0.39, p = .03).

Discussion

The main aim of our study was to elucidate the mechanisms by which different attributes
(amounts and probabilities) are integrated to generate an overall subjective value of choice
alternative. To this end, we focused on choices between simple lotteries and developed process
models of risky choice, which are constrained by eye-fixations and we assumed a fixation-
based attentional modulation. In addition, we introduced activation-leak and examined two
types of decision-boundaries, in order to account for decision times. Within these models we
specifically contrasted within-alternative multiplicative models and within-attribute type mod-
els, and carried out a systematic parametric investigation of choices between simple lotteries
(x; with p; vs. x, with p,), while tracking participants’ eye-fixations.

First, we replicated previous findings indicating that participants prefer lotteries with higher
EVs. In particular, the choice probability of the alternative with the higher EV increases (and
choice-RT decreases) with the EV-difference between the lotteries. Nevertheless, participants
also exhibited risk biases that are probability-dependent, being risk-averse at high/medium
probabilities, but not at low probabilities. Second, we found that, on average, the eye-scan pat-
terns were dominated by within-alternative as compared to within-attribute or diagonal tran-
sitions (Fig 2C-2D, respectively), and that individual differences on this eye-scan pattern
correlate with EV-choice (see also [28], for a similar result). Third, we used eye-fixations to
constrain a number of process models that accumulate preference across fixations, using an
aDDM approach with two attributes [21,57]. Here we contrasted two types of integration-to-
boundary process models: i) within-attribute models, and ii) within-alternative models. As
shown in Table 1, the latter resulted in the best predictive accuracy and measures of fit. Impor-
tantly, the two-layer model also accounted well for decision times (Fig 8) and for individual
differences in risk biases (Fig 9). Finally, the worst performance in our task was obtained for
the non-compensatory heuristic models. For example, the best of the heuristics (the PH)
resulted in a worse fit than even the simple EV model (see cross-validation measure in
Table 1).

The conclusions favoring the within-alternative multiplicative models may need to be quali-
fied for the task conditions we used here. First, we used simple lotteries with single non-zero
outcomes (x with p, 0 with 1-p). It is possible that the amount of within-attribute (non-com-
pensatory) processing would increase when more complex choices are used [25,32]. While we
cannot rule out this possibility, recent research in the domain of probabilistic inferences [58-
60] and risky choice [20,61], indicates that when decision processes are monitored via eye-
tracking (which does not slow down the decision process) rather than via mouse pressing tech-
niques (e.g., [10]), participants are able to use compensatory strategies for relatively high com-
plexity levels (see also [62] for a multi-attribute choice task). Second, our results need to be
qualified to the use of analog (graphic rather than symbolic) representation of the data. We
used this format of representation to reduce the possibility that our participants (who are stu-
dents that may be familiar with EV-principles, and are required to do 104 choice problems),
adopt an explicit EV calculation strategy. We believe that such a strategy is less likely with ana-
log information, and thus our results favoring an implicit multiplicative mechanism are even
more remarkable. Third, the alternatives in our experiment were aligned only vertically (one
lottery was placed over the other, with the amounts and probabilities placed left/right, see Fig
1A). It is possible to argue that this layout favors within-alternative processing (left to right or
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right to left transitions). Note, however, that a horizontal layout (left/right alternatives) triggers
a strong bias favoring within-attribute processing, in particular, comparing the horizontally
aligned amount bars. Nevertheless, we report in S4 Fig data from a pilot Experiment (N = 13)
using a horizontal alternative layout, which shows that even under such within-attribute favor-
able conditions, we still find dominance for within-alternative transitions. Here we only wish
to support the following conclusion: humans possess the capacity to spontaneously deploy an
‘economic’ (multiplicative across-dimension) type computation (which is analog rather than
symbolic; [63]), supporting the idea that humans are closer to normative principles than previ-
ously thought (see also [60,64]). Future research will be needed to further quantify to what
extent the use of this mechanism (or strategy) is contingent upon task complexity and stimuli
type.

There are several important properties of our winning process model that we want to high-
light. First, it assumes two layers of leaky accumulators, one for the estimation of subjective
amounts and of subjective probabilities, and the one for the evaluation of the integrated sub-
jective values (the combination of subjective amounts and probabilities). Second, it assumes
that the units in the second layer are updated via a multiplication of the activation of the corre-
sponding, first layer units (Fig 6A). This is similar to how the CPT model generates subjective
utilities. In fact, we find a high correlation between the utility function’s curvature parameter
(o) of the classical CPT and the corresponding parameter of our process model (r = .91, p <
.001), with higher « -values for the classical CPT (see S2 Fig). This suggests that the classical
CPT-parameters reflect a combination of several processes, such as attention allocation and
subjective-value transformation [65]. Note also, that the model assumes an activation-leak, a
feature that allows it to account for recency effects in the data (see Fig 5), and prevents a dou-
ble-integration that would occur in the two-layer model in its absence. Third, in addition to
predicting choices, the model also predicts decision times, describing the preference formation
dynamics under the integration to boundary framework with inputs that correspond to a mul-
tiplicative transformation of subjective amounts and probabilities. In particular, we found sup-
port for a collapsing boundary, consistent with a recent normative analysis of value based
decisions [66], and with choice studies that span longer intervals [51-53].

Other process models of risky choice, such as DFT [15,16] also assume an implicit multipli-
cative interaction between amounts and probabilities. In DFT, however, this is not due to the
multiplication of amounts and probabilities but rather to the sampling frequency of the
amounts, which changes with the corresponding probabilities. This implies that observers look
(or attend) more to a given amount if the corresponding probability is higher. In our data,
while we find that the relative number of fixations to an amount increases with its probability,
this increase was quite minor (about 1%), and therefore cannot explain the multiplicative
interaction [20]. However, it is possible that eye-fixations under-estimate the differential of
covert attention modulation.

Future research is also needed to better understand the neural mechanisms underlying
these computations [67-69]. While the computation of subjective amounts and probabilities
can be understood to involve simple psychophysical transformations over amounts (un-
bounded scale; [70]) and probabilities (bounded scales; [71]), the nature of the multiplicative
interaction between neural activations requires future investigations. Note that a multiplicative
interaction is also assumed in the PCS risk model [20]. To do so, PCS had to assume different
neural substrates for amounts (neural activations) and for probabilities (synaptic weights). The
latter assumption, however, may be difficult to justify for one-shot decisions, which allow little
opportunity for learning synaptic weights. We thus suggest that the multiplicative interactions
involve neural activations. While less standard than linear interactions [72], a number of neu-
ral mechanisms have been proposed to mediate multiplication of neural activity in neural
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systems [73,74]. Future research is also needed to extend the scope of this investigation from
simple lotteries to more complex ones (with multiple outcomes) and from binary to multiple
choices.

Methods
Ethics statement

The experiment was approved by the ethics committee at Tel-Aviv University (1321253), con-
sent was given by a written form.

Experiment

Participants. 35 Tel-Aviv University undergraduate students (24 females; ages range
from 19 to 26, Median age = 23) were recruited to the experiment. All of them reported having
normal or corrected-to-normal vision. Four of the participants were not able to carry out the
eye tracker calibration task, and thus did not take part in the main experiment, leaving 31 par-
ticipants. The participants received course credit in exchange for participating, as well as a
bonus fee ranging from 0 to 30 Israeli Shekels (ILS), which was contingent upon their choices.

Apparatus. Eye-movements were recorded using a Tobii TX300 desk-mounted eye-
tracker (23" monitor with 1920 x 1080 pixels resolution, sampling rate: 300Hz, spatial accu-
racy: 0.5°), attached to an Intel i7 personal computer. Displays were presented using
Psychtoolbox for MATLAB [75]. Viewing distance was approximately 60 cm. Responses were
collected via the computer keyboard. A chin rest was not used.

Stimuli. Each choice consisted of two simple lotteries in the form of p; chance to get x;
ILS (otherwise nothing) vs. p, chance to get x, ILS (otherwise nothing). An example of the dis-
play is presented in Fig 1A. Amounts were represented by the lower parts of divided bar
graphs, and probabilities were represented by the lower sectors of pie charts. These attributes
appeared at the vertices of an imaginary square subtending 14.5° (15.25 cm), and located in
the center of a black screen. The height of each bar graph subtended 2.07° (2.17 cm) and its
width subtended 0.67° (0.69 cm); the radius of each pie chart subtended 0.67° (0.69 cm). Thus,
the bar graphs and pie charts had exactly the same surface. The alternatives were aligned verti-
cally (i.e., one lottery was placed over the other, with the amounts and probabilities placed left/
right, Fig 1A); but see the Discussion and the results of a pilot study reported in S4 Fig, in
which we used horizontal alignment. On each trial, the left/right positions of the amounts and
probabilities were randomly determined.

Choices. Choice problems were constructed in the following way: we generated a
2-dimensional grid with amounts (3, 6, 15, 24 and 30 ILS) along one dimension, and probabili-
ties (0.1, 0.2, 0.5, 0.8 and 1) along the other dimension. The resulting grid contained 25 lotter-
ies (Fig 1B), each of which was paired with all other possible lotteries. Stochastically
dominated choices (in which both the amount and probability of one alternative were higher
than those of the other) were excluded, except for 10 choice problems which served as "catch-
trials". Overall, the experiment consisted of 104 separate choices: 94 non-dominated trials and
10 "catch-trials" (all the choice problems are given in S1 Table).

Procedure. The participants signed an informed consent form prior to the experiment.
Then, a calibration of the eye-tracker took place. In case the calibration was successful, the
experiment started, otherwise recalibration was performed. At the beginning of the experi-
ment, instructions were given to the participants (see S3 Fig). The experimenter emphasized
that choices should be made in accordance with subjective preferences and that there is no
"correct” choice. The experiment consisted of two blocks of 52 choice trials each. A short break
was allowed between blocks, and a recalibration procedure was performed before the second
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block. Each trial began with a fixation display which consisted of a red 0.2° x 0.2° fixation
cross (+) that remained on screen until a continuous fixation of 500 ms duration was made.
Then, the two lotteries were presented until response. Choice was made using the up and
down arrow keys. Participants were told that after completing the experiment, one of the
choices will be randomly chosen and payed out. The whole experiment took approximately 30
min per participant. Choice order as well as the horizontal position (left/right) of the amounts
and probabilities were randomized for each participant; the vertical position of each lottery
(up/down) was randomized between subjects.

Eye-movements. Fixations were classified as being directed to a certain attribute, if they
were within 100 pixels of the center of that attribute and lasted at least 50 ms. Two consecutive
fixations to the same attribute were joined and considered as one fixation. Trials longer than
10 sec or shorter than 500 ms (4% of all trials), as well as trials in which the participants did
not look at all of the attributes (4% of all trials), were excluded from further analysis.

Models of risky-choice

Here we briefly describe the key features of the models applied (for a full description see S3
Text). In all of the models (except for the Heuristics models), the probability of choosing each
alternative is calculated using an exponential version of Luce’s choice rule [76,77]:
) 1
Px;, py5 %y, p5) = A

where U; and U, are the utilities of the alternatives, and § is a free parameter indicating the
sensitivity of the model to their difference.

Supporting information

S1 Table. Choice problem used in the experiment.
(PDF)

S2 Table. Best fitting parameters of the risky choice models.
(PDF)

S3 Table. Additional model variations.
(PDF)

$4 Table. Process model comparison.
(PDF)

S1 Text. Cumulative Prospect Theory (CPT) risk attitudes predictions.
(PDF)

S2 Text. Predicting choices using eye-fixations.
(PDF)

$3 Text. Models of risky choice.
(PDF)

$4 Text. Transitivity Violations.
(PDF)

S1 Methods. Supplementary experimental methods.
(PDF)
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S1 Fig. Eye-fixations and individual differences. Correlations between the proportion of fixa-
tions toward amounts/probabilities and risk-attitudes. (A) The proportion of fixations toward
amounts was positively correlated with preference for the riskier alternative. (B) The propor-
tion of fixations toward amounts was positively correlated with the tendency to fixate on the
larger amount. (C) The proportion of fixations toward probabilities was positively correlated
with the tendency to fixate on the larger probability. (D) The difference in proportion of fixa-
tions to higher and lower probabilities was negatively correlated with risk-seeking preference.
(TIF)

S2 Fig. Relationship between the models’ utility parameters. The utility curvature parame-
ters (o) of our process model and of the CPT model were highly correlated across participants.
However, the CPT parameters have higher values (the solid black line corresponds to the iden-
tity line). This may suggest that the CPT parameters reflect a combination of different compo-
nents, such as selective allocation of attention and subjective value transformation [65].

(TIF)

S3 Fig. Experimental instructions. At the beginning of the experiment the above instructions
were presented to the participants. The experimenter read them out loud and verified that the
participants fully understand the task. The text translates from Hebrew as follows: "Hello! In
the following experiment you will be asked to choose between different lotteries. Each lottery
holds a different amount of prize money and different chances of winning. You will be asked
to choose which of two lotteries you prefer. At the end of the experiment, one of the lotteries
would be randomly chosen, and you will get the chance to play and win real money. Yellow
arrow towards the upper bar: the amount of money when the bar is full is 30 Israeli shekels.
Yellow arrow towards the lower pie chart: the chance of winning the prize when the entire pie
is full is 100%. Use the T and | arrows to choose which lottery you prefer".

(TIF)

$4 Fig. Pilot study. In a pilot study conducted before the main experiment, the lotteries were
displayed side by side (i.e., horizontal alignment) with the bars presented always on top and
the pie-charts presented always underneath. In this study, the participants made more within-
alternative than within-attribute transitions (as in the experiment reported in the main text).
(TIF)

S5 Fig. Parameters recovery. The ability of the fitting procedure to accurately identify the
parameters of our best-fitting model (within-alternative/two-layer leaky accumulators) was
tested by simulating the model using the participants’ estimated parameters. For each parame-
ter, we simulated the model for the 94 non-dominated experimental trials. The figure shows
the generative parameters of the model plotted against the recovered parameters, for (A) o-
risk aversion (B) y-probability weighting (C) 0-attentional modulation and (D) A-activation
leak for simulated data.

(TIF)

S1 References.
(PDF)
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