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Abstract
Introduction: Microglia are tissue macrophages of the central nervous system that monitor brain homeostasis and
react upon neuronal damage and stress. Aging and neurodegeneration induce a hypersensitive, pro-inflammatory
phenotype, referred to as primed microglia. To determine the gene expression signature of priming, the transcriptomes
of microglia in aging, Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS) mouse models were compared
using Weighted Gene Co-expression Network Analysis (WGCNA).

Results: A highly consistent consensus transcriptional profile of up-regulated genes was identified, which
prominently differed from the acute inflammatory gene network induced by lipopolysaccharide (LPS). Where
the acute inflammatory network was significantly enriched for NF-κB signaling, the primed microglia profile
contained key features related to phagosome, lysosome, antigen presentation, and AD signaling. In addition,
specific signatures for aging, AD, and ALS were identified.

Conclusion: Microglia priming induces a highly conserved transcriptional signature with aging- and disease-specific
aspects.
Introduction
Neuroinflammation plays an important role in the progres-
sion of neurodegenerative diseases, with a prominent role
for microglia [1-5]. Microglia are the primary innate im-
mune cells of the brain and the first to respond to a variety
of stimuli, like neuronal damage and infections, initially to
restore homeostasis [6]. Upon activation, microglia release
increased amounts of inflammatory cytokines, phagocytose
cellular debris, and support tissue remodeling [6].
Microglia are versatile cells that, depending on environ-

mental cues, are able to adopt different phenotypes but
clear phenotypical identities have not been established.
Microglia, like other cultured macrophages, are often clas-
sified into inflammatory (M1) and alternatively activated
(M2) phenotypes [7,8], in which the M1 phenotype was
originally induced using LPS or IFNγ stimulation, and the
M2 phenotype using IL-4, IL-13 or IL-10.
* Correspondence: b.j.l.eggen@umcg.nl
1Department of Neuroscience, section Medical Physiology, University of
Groningen, University Medical Center Groningen, Groningen, The Netherlands
Full list of author information is available at the end of the article

© 2015 Holtman et al.; licensee BioMed Centr
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
In several neurodegenerative disorders and upon
aging, chronic activation of microglia has been reported
to induce a hypersensitive phenotype, often referred to
as primed [9-11]. Primed microglia do not secrete high
amounts of cytokines, but when triggered by pro-
inflammatory stimuli, they become hyper-reactive, se-
creting large amounts of cytokines, chemokines, and
other reactive molecules associated with neurotoxicity.
We recently reported that microglia priming in a mouse
model for accelerated aging was induced by an affected
neuronal environment and not by intrinsic aging [12].
Although microglia priming is becoming a generally ac-
cepted concept [9], at present priming primarily is a
functional definition and it is unclear whether microglia
priming is a homogeneous phenotype with a specific
transcriptional signature or a heterogenous phenotype
with model-system specific transcriptional profiles and
what the functional consequences of priming are.
In this study, these aspects were addressed by compar-

ing the gene expression networks in pure cell populations
of primed microglia that were isolated from mouse
models for neurodegenerative disease and aging. The
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mouse models included are: 1) aged mice; 2) acceler-
ated aging mice (Ercc1Δ/KO), a DNA repair-deficient
mouse model that displays features of accelerated aging
[10]; 3) APPswe/PS1dE9 (App-Ps1), a mouse model for
Alzheimer’s disease, carrying transgenes for mutated Amyl-
oid Precursor Protein and Presenilin-1 and 4) a mouse
model for Amyotrophic Lateral Sclerosis (Sod193A, abbre-
viated as Sod1), a line carrying a mutation in the Super-
Oxide Dismutase-1 gene, encoding an enzyme involved in
free radical degradation, resulting in motor neuron degen-
eration in the spinal cord [4].
In addition, the microglia priming network was also

analyzed using (unsorted) brain tissue expression data.
The mouse models included are: 1) aged mice; 2) App-Ps1
mice; 3) rTg4510, a mouse line expressing P301L mutant
human tau [13,14]; 4) an ME7 model of murine prion dis-
ease, associated with neuronal loss and microglial activa-
tion [15,16] (for an overview of mouse models and data
sets used, see Additional file 1: Table S1).
Transcriptional profiles of microglia isolated from four

mouse models of aging and disease and four brain tissue
expression data sets were analyzed in parallel and com-
pared using WGCNA [17]. In contrast to traditional dif-
ferential gene expression analysis, co-expression network
analysis does not regard genes as single entities, but in-
corporates the interrelation of genes to generate struc-
tures called modules. WGCNA has been reported to be
a useful approach to integrate immunology with bio-
informatics [18], and has been applied to evaluate com-
mon denominators in meta-analyses or disease models
[1,19-21]. By raising the network to a power function,
WGCNA results in a heterogeneous network dominated
by a few highly connected nodes (hubs), which link the rest
of the less connected nodes to the system [17]. These hub
genes are likely control points or key genes that modulate
the expression of the network-module and thereby are con-
sidered important for the observed phenotype [19,21,22].
In this paper, a WGCNA-based meta-analysis was applied
to determine the transcriptional signature and hub
genes of different microglia phenotypes: primed, age- and
neurodegeneration-associated, and acute inflammatory.

Materials and methods
Microglia and brain tissue expression profiling
Pure ex vivo microglia populations were obtained by
FACS sorting and RNA was isolated as recently de-
scribed in [10,23]. Three microglia expression datasets
were generated; 4 and 24 months old DBA/2 J and C57/
SJL mice (Harlan, The Netherlands) were used. For acute
LPS activated microglia, C57BL/6 mice (4 months, Harlan,
The Netherlands) were i.p. injected with LPS (10 mg/kg)
or PBS and microglia were isolated after 4 hr. RNA quan-
tity and quality of the RNA samples was checked using
the Experion RNA HighSense Analysis kit (BioRad,
Cat.no. 700-7105), samples with high integrity (RIN > 7)
were used for expression profiling. RNA was amplified
with Nugen Ovation PicoSL WTA system (Cat nr. 3310-
48), labeled with the Encore BiotinIL Module (Cat nr.
4210-48) and hybridized to Illumina MouseRef8 bead-
chip microarrays. Raw data were generated using Illumina
Genome studio.
rTg4510 mice carry a human P301L mutant tau trans-

gene downstream of the tetracycline operon-responsive
element (TRE), whose expression is driven by a second
transgene expressing the tetracycline-controlled transac-
tivator (tTA) under control of the Ca2+/calmodulin-
dependent protein kinase II α (CaMKIIα) promoter. tTA
constitutively induces tau expression via the TRE, but can
be inactivated with doxycycline administration. Transgenic
mice were bred at Taconic, Denmark. Mice expressing the
tTA activator transgenes were maintained on a 126S6
background strain (Taconic) and mutant tau responder
mice were maintained in the FVB/N background strain
[14]. rTg4510 mice were perfused and sacrificed at 2, 4 , 6
and 8 months of age. RNA was isolated from brain tissue
and hybridized to Illumina MouseWG6 bead-chip micro-
arrays. All experiments were approved by the animal ex-
perimentation committees of the University of Groningen
and the Royal Netherlands Academy for Arts and Sciences
and are in accordance with the European Communities
Council Directive #86/609 and the directives of the Danish
National Committee on Animal Research Ethics. Previ-
ously published transcriptomes from pure microglia,
brain tissue, and cultured and stimulated macrophages
were included in our analysis, for detailed platform and,
experimental design information see Additional file 1:
Table S1 [15,24-28].

Pre-processing of transcriptomes
Raw expression values were preprocessed using R and Bio-
conductor package Limma [29]. Samples with an average
inter-sample correlation three standard deviations below
the mean inter-sample correlation after normalization were
filtered out and this procedure was repeated until all sam-
ples met the inclusion criteria. Quantile normalization was
applied to the Illumina microarrays. To eliminate batch ef-
fects between both physiological aging datasets, the ComBat
function was applied [30]. For Agilent array preprocessing,
background correction was performed with an offset of 50
followed by Lowess within array normalization and Quan-
tile between array normalization. Relative intensities were
converted into expression values. The Affymetrix microar-
rays were preprocessed using the Expresso-function of R
package Affy [31]. The parameters were set to RMA back-
ground correction and quantile normalization, with pm
correct pmonly and a medianpolish. From the Sod1 RNA-
sequencing dataset [4] the published RPKM-values were
used, to which quantile normalization was applied to ensure



Holtman et al. Acta Neuropathologica Communications  (2015) 3:31 Page 3 of 18
that all samples have the same distribution in order to gen-
erate a more stable network.

Select representative probes
Datasets from different platforms were made comparable
at the level of gene symbols. The WGCNA collapseRows
function was applied to calculate the representative gene
expression for several probes, associated with a single
gene [30]. The default method ‘MaxMean’ was used to se-
lect the row with the highest mean value. Similarly for the
RNA-sequencing data several RefSeq accession numbers,
associated on the same gene, were collapsed on gene sym-
bols. Next, all gene symbols from the different platforms
were intersected and only those genes that were present
on all included platforms were used for further analysis.

Parallel and consensus network formation
In all pure microglia datasets, genes with low variation or
low connectivity were filtered out, resulting 7512 genes in
the 5 parallel networks for the individual datasets, as de-
scribed previously [17]. In the combined pure microglia
and brain tissue analysis, no further filtering was applied,
because less genes were present as more platforms were
included, resulting in 9936 genes that were taken into this
analysis. Subsequently, the topological overlap (TO) matri-
ces from all five models were scaled such that the 95th

quantiles matched. A consensus TO matrix was calculated
using the minimal value (pMin) for all gene pairs in any of
the scaled TO matrices. From each of these six TO matri-
ces, a dendrogram was generated by average linkage hier-
archical clustering. Using the tree cut function, branches of
highly co-expressed genes were grouped into modules.
Only modules of a minimum size of 100 genes were con-
sidered for further analysis. Modules from the five model
networks were defined using a hard-clustering approach,
meaning that only genes directly clustered in the module
were taken, and the module EigenGenes (ME) were calcu-
lated. For the consensus network, modules were defined
using a soft-clustering approach, in which meta-q values
and meta ME correlation thresholds were used to deter-
mine which genes were included (min correlation of 0.25
and min meta FDR-corrected q-value of 1E-8).
For each module, a Kruskall Wallis non parametric test,

was used to assess differential expression of the ME with
respect to aging or disease. Only modules with a p < 0.005
were considered to be differentially expressed, and were
used for further analysis. A Fisher’s exact test was used
to determine if the modules from the 5 datasets had
a significant number of overlapping genes and these re-
sults were depicted as an overlap Heatmap. Modules
were annotated by using WEB-based GEneSeT AnaLysis
Toolkit (WEBGESTALT) to perform KEGG pathway and
GO analysis [22,32]. The gene list that resulted from the
intersection of the Illumina and Agilent arrays and
Illumina Sequencing was used as the background list. To
compare our modules to other gene expression studies
WGCNA’s userListEnrichment function was used [33].

Hub gene classification to compare different WGCNA core
networks
The importance of a gene in a network module is deter-
mined by the strength of the correlation to the Modu-
leEigene, or module membership (kME) value [17]. The
35 genes with the highest (most significant) kME were
taken from the networks to be analyzed. Module mem-
bership correlation thresholds were used to determine
whether a gene is highly associated (i.e., a “hub” gene;
FDR-q < 1.0E-11 for primed and acute FDR-p < 1E-7),
moderately associated (below hub-gene association and
FDR-p < 1.0E-2) or not associated (FDR-p > 1.0E-2) with
a module. This strategy resulted in five clusters of genes:
2 clusters with hub genes significantly correlated with
one and not the other network, 2 clusters with hub
genes significantly correlated with one network and less
significantly with the other dataset and a cluster contain-
ing hub genes strongly correlated to both networks.

Gene set enrichment analysis: pre-ranked analysis
Systematic differences between two network modules
were determined with gene set enrichment pre-ranked list
analysis [33]. The 1000 most significantly module mem-
bership associated genes from either the acute and/or the
primed networks were taken into the analysis, negative
correlations were set to zero, and genes were ranked on
strength of module membership to both networks. The
difference in rank-values between consensus primed and
acute was used as input for the analysis. GSEA pre-ranked
list analysis was applied using a 1000 permutations.

Quantitative RT-PCR and immunohistochemistry
Quantitative RT-PCR and immunohistochemistry were
performed as described in [10]. See Additional file 2:
Table S2 for primer information.

Differential gene expression analysis
Differential gene expression was applied to the pure
microglia datasets (see Additional file 3: Table S3 for these
lists) as well as to datasets related to several in vitro stimu-
lation conditions like LPS, IL-4, and IFNγ [27,34] which
were used as genesets for UserListEnrichment. Differential
gene expression was done using Limma [29] for micro-
array data and EdgeR for RNA-seq data [35].

Results
Aim and outline of the co-expression network analysis
Microglia are versatile cells that adopt different activa-
tion states and become primed during aging and neuro-
pathological conditions, but the transcriptional signature
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underlying the induction of this phenotype is yet un-
clear. To gain more insight in the microglia transcrip-
tome during aging and neuropathological conditions, a
WGCNA-based analysis workflow was set up consisting
of several phases (Figure 1). In the first phase, expression
profiles of pure populations of microglia from physio-
logical aging, accelerated aging (Ercc1), disease mouse
Figure 1 (See legend on next page.)
models for AD (App-Ps1) and ALS (Sod1) mice, and
acute immune activated (i.p. injection with LPS) microglia
were obtained and preprocessed in parallel (Figure 1,
phase 1). Only genes that could be detected by all plat-
forms were taken into account for further analysis. In the
second phase, for each gene expression dataset, a network
was created using WGCNA, resulting in modules that



(See figure on previous page.)
Figure 1 Outline of the WGCNA analysis. Phase 1) Obtaining pure microglia datasets. Transcriptome datasets were obtained from microglia of
aged, accelerated aged, App-Ps1 transgenic (Alzheimer’s Disease model), Sod1 transgenic (Amyotrophic Lateral Sclerosis model), and i.p. LPS
injected mice (acute activation). Each dataset contained its own control. Phase 2) Co-expression network formation. Co-expression networks were
generated for 7512 genes of the indicated transcriptome datasets. Average linkage hierarchical clustering was applied to the topological overlap
matrix and branches of highly correlating genes were formed, which were cut and assigned a color. Primed microglia networks were combined
into a consensus network that represents the commonalities in the gene expression profiles of the individual primed microglia networks.
Phase 3) Differential ME expression. For each module the Module Eigengene (ME) was calculated, which represents the expression profile
of the module. A Kruskall Wallis between group test was applied to determine if ME values were significantly different between conditions,
to find modules that were related to phenotype. The consensus primed microglia blue modules and acute red module are depicted as a
box-plot containing the distribution of the ME values across the samples of each particular condition. Phase 4) Overlap between modules.
The Fisher’s exact test was used to determine the significance of the overlap between modules from different model systems. Phase 5) Annotation
of the modules. Modules were annotated using WebGestalt for GO and KEGG analysis. Phase 6) Comparison of core profiles. The correlation of each
gene to the module EigenGene (kME) values was calculated for all genes in the analysis of the consensus blue priming module. These consensus
primed microglia derived hub genes were subsequently compared to the acute activation network to find genes generally associated with
activation, uniquely with primed microglia, or uniquely with acute LPS activation.
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consist of branches of highly correlating genes (Figure 1,
phase 2). In addition, the individual primed microglia net-
works were combined into a consensus network, which
contains the commonalities of all four networks. For the
primed microglia networks, module colors were initially
randomly assigned and subsequently matched based on
the number of overlapping genes. The aim of the third
phase is to find modules related to the aging or neurode-
generative phenotype. Therefore, the Module Eigengene
(ME) was calculated, which is the first principal compo-
nent and represents the expression profile of the module.
Differential ME expression was used to identify modules
that associated with aging or neurodegeneration. In the
fourth phase, the similarity between these response mod-
ules from different networks was determined with pair-
wise comparisons. In the fifth phase, the modules were
annotated using KEGG-pathway and Gene Ontology en-
richment analysis, in order to obtain a better understand-
ing of the implications of priming for microglia function.
In the sixth phase, ‘hub’ genes were determined of the
acute and primed microglia consensus networks by
module membership (or kME) and compared. When
microglia become primed, a strikingly similar transcrip-
tional network (the consensus blue module) is induced
which is distinct from the network induced by acute
activation (LPS).

Generation of co-expression networks and identification
of modules related to phenotype
Expression profiles of pure microglia populations from
different mouse models were used to generate co-
expression networks. In these co-expression networks,
we searched for WGCNA modules that were differentially
expressed between conditions (i.e. young vs. aged, control
vs. App-Ps1 etc.). Two classes of differentially expressed
modules were identified; either up-regulated or down-
regulated between conditions. The up-regulated modules
are the blue modules in aged, Ercc1, App-Ps1, and Sod1
microglia, the red module in LPS-stimulated microglia as
well as the Sod1-specific dark-turquoise module. The
down-regulated modules are the dark-green modules in
aged, Ercc1, App-Ps1, and Sod1 microglia, the magenta
module in Ercc1, and the green-yellow module in LPS-
stimulated microglia. For an overview of all modules and
their relation to different conditions with their associated
p-values see Additional file 4: Table S4.
To determine the (dis)similarities between these

modules, a pair-wise comparison of all differentially
expressed modules was performed. A highly significant
overlap was observed between the 4 up-regulated blue
modules (p-values ranging from 1.79E-79 to 1.62E-146)
(Figure 1, phase 4) and the overlap of these blue modules
with the acute LPS-induced red module was much less
(p-values ranging from 2.44E-8 to 1.13E-29. These data
indicate that aging and neurodegeneration induce a
very similar up-regulated gene expression profile in
microglia. For a pair-wise comparison between all
modules identified in all mouse models, see Additional
file 5: Figure S1.
The overlap between the down-regulated dark-green

modules in aged, Ercc1, App-Ps1, and Sod1 microglia, as
well as the overlap of these modules with the down-
regulated green-yellow module of LPS-activated microglia,
was less pronounced (p-values ranging from 1.67E-04 to
5.56E-65). No significant overlap of the Ercc1-specific ma-
genta module with any other differentially expressed mod-
ule was observed.
In order to address the observed overlap between the

blue and dark-green modules in aged, Ercc1, App-Ps1, and
Sod1 microglia, we generated a consensus network, con-
sisting of co-expressed genes shared between the four indi-
vidual datasets. This consensus network contained two
modules: a blue and a dark-green module. The consensus
blue module, consisting of 295 genes, is up-regulated and
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the consensus dark-green consensus module (205 genes) is
down-regulated in aged, Ercc1, App-Ps1, and Sod1 micro-
glia (these gene lists can be found in Additional file 6: Table
S5).

GO and KEGG annotation of modules related to
phenotype
The primed microglia blue modules (up-regulated in
aged, Ercc1, App-Ps1, and Sod1 microglia) and the acute
LPS-activated microglia red module (up-regulated in acute
LPS activated microglia) were most strongly enriched for
GOs “immune response” and “response to stress” and
KEGG pathways significantly enriched in the priming blue
modules were: “Alzheimer’s disease signaling”, “antigen-
presentation”, “lysosome” and “phagosome”. The acute red
module was most significantly enriched for the “ribosome”,
“Toll-Like Receptor (TLR) signaling” and “NOD-like re-
ceptor (NLR) signaling” pathways (Figure 2). The primed
microglia dark-green modules and the acute green-yellow
module were significantly down-regulated in primed
microglia mouse models and acute inflammation (LPS)
compared to control. In the App-Ps1, Sod1, and LPS
models, a significant enrichment for the “cellular meta-
bolic process” GO category was observed. The App-Ps1
dark-green module was enriched for “neurotrophin”
KEGG-pathway (p = 3.29E-5), suggesting reduced neur-
onal support by microglia in App-Ps1 mice (Figure 2).
The acute, down-regulated green-yellow module was
significantly enriched for the “lysosome” KEGG path-
way (Figure 2), a category that was increased in primed
microglia, further highlighting the fundamental differ-
ences between the acute classical M1-profile and the
priming profiles. In addition, some model-specific differ-
entially expressed modules were identified: the down-
regulated brown module in physiological aging, which is
enriched for “proteoglycan catabolic process” GO (p =
0.0023), the down-regulated magenta module in Ercc1,
enriched for “cellular macromolecule metabolic process”-
GO, and the dark-turquoise module which is up-regulated
in all Sod1 samples, is unrelated to age of the animals, and
is significantly associated with “cell-division” and “organelle
organization” – GO’s (Figure 2c; p = 2.14E-6, and p =
1.46E-5 respectively). A complete list of all significantly
enriched GOs and KEGGs is given in Additional file 7:
Table S6.

The priming modules strongly overlap with an
independent age-induced microglia expression dataset
The effect of aging on microglia gene expression was re-
cently determined by direct RNA sequencing with a focus
on proteins for sensing endogenous ligands and microbes,
referred to as the microglia sensome [36]. Using this data-
set, genes significantly increased in expression during
aging were determined and compared to our up-regulated
primed and acute microglia modules. This microglia aging
profile significantly overlapped with the primed microglia
blue modules (ranging from p = 1.56E-25 to 6.39E-44; Fig-
ure 2a), and much less significant with the acute LPS-
stimulated red module (p = 8.33E-13). This observation
validates our observation that the up-regulated profiles of
primed microglia is very similar to the transcriptional pro-
file reported for aged microglia using an independent ex-
pression dataset.

M1- and M2-classifications in relation to the blue and red
modules
Microglia, in analogy to macrophage activation termin-
ology, are often classified as M1 or M2, with M1 consid-
ered as a classical pro-inflammatory activation state and
M2 as a tissue supportive, remodeling or anti-inflammatory
state [10]. Using the WGCNA function userListEnrich-
ment, the up-regulated primed blue and acute red modules
were compared to M1 and M2 macrophage datasets
(Figure 2). The acute red microglia module showed a highly
significant overlap with LPS-stimulated macrophages (p =
2.45E-45), and this was a much more significant overlap
than was observed with primed microglia (p = 1.22E-5 to
3.06E-16). Only the Sod1 up-regulated blue module had a
minor overlap with the M2 up-regulated profile (p = 6.92E-
5). These results suggested that the primed microglia phe-
notypes did not resemble a clear M1, M2 or intermediate
phenotype.

Microglia activation and priming is associated with a
decreased expression of the ‘microglia unique signature’
Recently, a ‘microglia unique’ gene expression signature
was reported [37], but the relationship between this signa-
ture and microglial activation is unknown. We compared
this profile to our differentially expressed microglia mod-
ules. Where no significant overlap with the up-regulated
blue module was detected, surprisingly all down-regulated
primed dark-green and acute green-yellow modules signifi-
cantly overlapped with this core microglial signature (Fig-
ure 2b; p-values ranging from p = 1.17E-5 to p = 8.11E-24).
Hub genes of the down-regulated dark-green and green-
yellow module were determined, and many of them were
present in the microglia-unique expression signature, in-
cluding Mertk, Tmem119, P2ry12, P2ry13, SPARC, and
Cx3cr1 (Additional file 8: Figure S2). This suggests that
upon activation or priming, microglia not only acquire an
activation signature, but also decrease their ‘surveilling’
state expression profile. The genes of down-regulated con-
sensus modules are listed in Additional file 6: Table S5.

Priming and acute LPS activation induce distinct
transcriptional programs
To determine the differences between acute activation
and priming, the blue and red modules were compared
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using two approaches: hub gene classifications and ranked
gene set enrichment analysis. First, WGCNA was used to
identify hub genes that have a strong interrelation (i.e., an
expression pattern highly similar to the module Eigengene
(kME)). Hub genes have been reported to function as im-
portant determinants of a phenotype, for example as
markers for cell types or intracellular biological processes
[16]. For both the acute red and the consensus primed
microglia blue modules, hub genes were determined. The
35 most ‘connective’ genes of both networks were catego-
rized based on correlation thresholds (see materials and
methods) in 5 groups according to the strength of the re-
spective association with the up-regulated acute red and
primed blue modules: “acute”, “mainly acute”, “general”,
“mainly primed” and “primed” hubs and depicted as heat-
maps (Figure 3a) and as a scatterplot (Figure 3b).
“Acute” hub genes mark processes specifically activated

in the acute microglia response, whereas “primed” hub
genes mark processes occurring in primed microglia.
“General” hubs mark processes common to both acute
and primed microglia and therefore relate to general
microglial activation. Genes that belong to the “acute” hub
category are not significantly associated with any of the
other datasets and examples of “acute”-unique hub genes
are Map3k8 and Socs3. The “general” hub category con-
tained genes that were up-regulated (and highly con-
nected) in all five mouse models. This hub included genes
like Tlr2, Il-1β, Cxcl10, and Spp1, representing a group of
genes consistently up-regulated in activated microglia. Im-
portantly, also a “primed” hub was identified containing
genes specifically increased in expression and highly con-
nected in primed microglia, including genes as Apoe, Axl,
Clec7a, Itgax (also known as CD11c), and Lgals3 (also
known as Galectin-3 and Mac2). Of these genes Lgals3
has been associated with microglia priming during accel-
erated aging [10] and microglia activation following axonal
injury [38]. Also two intermediate hub categories were de-
fined, containing genes that were primarily highly con-
nective in either primed microglia or acute LPS activation.
The “mainly primed” hub contained genes like Cybb and
Csf1 (also known as Mcsf) that were highly connected in
the priming datasets and were also significantly correlated
in the acute data set, but to a lesser extent. In the “mainly
acute” hub, genes were significantly but not very strongly
associated to any dataset other than the “acute” profile. It
contained genes like Nf-kb2 and Irf1 that were highly con-
nected in the acute dataset and were also significantly cor-
related in the primed data sets, although not in all mouse
models or to a lesser degree.
Ranked gene set enrichment analysis was applied to

determine potential functional differences between
primed and acute networks directly. Gene sets that were
significantly enriched in acute activation were NF-κB
factor p65 (RelA), toll like receptor, and NOD like
receptor signaling (Figure 2c). Gene sets significantly
enriched in primed microglia were: Alzheimer’s and Par-
kinson’s disease signaling, oxidative phosphorylation,
mitochondria, and lysosome (Figure 2d; for all annota-
tions see Additional file 7: Table S6). These data indicate
that the expression profiles of primed and acute activated
microglia differed in several ways, and the most promin-
ent changes were oxidative phosphorylation, and lysosome
in primed microglia and NF-κB signaling in acute activa-
tion. These results are in agreement with the findings of
the Webgestalt-KEGG-pathway analysis, further strength-
ening the notion that the primed microglia profile sub-
stantially differs from the M1 or M2-phenotype observed
in acute activated microglia.

Specific expression profiles for aged, Ercc1, App-Ps1, and
Sod1 microglia
As described above, a core consensus expression profile
was found that describes the commonality of the primed
microglia response in different mouse models. To deter-
mine mouse model-specific components, genes that sig-
nificantly associated to the blue module in any, but not
all of the mouse models were selected. These genes were
grouped according to specificity and association strength
1) to the individual mouse models, 2) to both aging
models (physiological aging + Ercc1 accelerated aging), or
3) to both neurodegenerative disease models (App-Ps1 +
Sod1; Figure 4a). To functionally annotate the differences
between conditions, ranked gene set enrichment analysis
was performed for aging models (aging + Ercc1) vs. disease
models (App-Ps1 + Sod1). Gene sets significantly enriched
in aging models were related to ribosome activity and
interferon alpha/beta signaling (Figure 3b). The aging spe-
cific ribosome activity was supported by ribosome-related
hub genes RPL3,9,28,39,41 and RPS15. No gene sets were
significantly enriched in the general neurodegeneration or
individual neurodegeneration disease modules. The genes
of these model-specific modules are listed in Additional
file 6: Table S5.

Validation of the primed blue module and model
system-specific gene profiles
Differential expression of several hub genes of the con-
sensus blue module as well as mouse model-specific
gene expression was validated using quantitative RT-
PCR analysis of Ercc1 and App-Ps1 microglia. Expres-
sion levels of primed microglia blue module hub-genes
Axl, Cybb, Apoe, Clec7a, and Cox6a were determined
(Figure 3b). All these genes were significantly increased
in Ercc1 and App-PsS1 microglia compared to controls,
confirming the validity of the consensus primed micro-
glia blue module. Lgals3 is a hub gene in the primed
microglia consensus module and identified as a marker
for primed microglia in accelerated aging Ercc1 mutant
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mice [39]. Brain sections of aged, Ercc1, and App-Ps1
mice were stained and Iba1/Lgals3 double positive cells
were only observed in aged, Ercc1, and App-Ps1 animals
Figure 2 (See legend on next page.)
and not in young or aged-matched controls (Additional
file 9: Figure S3). Mouse model-specific expression of
several hub genes was confirmed using quantitative RT-



(See figure on previous page.)
Figure 2 Annotation of the up- and down-regulated modules. a) The up-regulated priming and acute activation modules are distinct. The
main up-regulated modules (blue modules for priming datasets and red for the acute dataset) were annotated with Webgestalt to determine
significantly enriched KEGG-pathways and Gene Ontologies. These results are depicted with the multiple testing (FDR) corrected p-values. Using
the UserListEnrichment function, significance was calculated for the overlap between these modules and gene sets significantly up-regulated in
macrophages stimulated with IL-4, IFN? or LPS, and microglia-aging profile. For the UserlistEnrichment results Bonferroni multiple-testing p values
are shown. b) KEGG-GO and UserlistEnrichment annotation of the down-regulated modules. The main down-regulated modules (dark-green modules
for priming datasets and green-yellow for the acute dataset) were annotated with Webgestalt to determine significantly enriched KEGG-pathways and
Gene Ontologies. These results were depicted as a table with multiple testing (FDR) corrected p-values. Using the UserListEnrichment function,
significance was calculated for the overlap between these modules and the Butovsky microglia-signature [36]. For the UserlistEnrichment results Bonferroni
multiple-testing p values are shown. c) KEGG-GO annotation of mouse model specific modules The Ercc1 down-regulated magenta module and
ALS dark-turquoise up-regulated module were GO annotated, multi-testing (FDR) corrected p values are depicted.
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PCR analysis of Ercc1 and App-Ps1 microglia. CD14,
Gm1673, and Ldlr expression was restricted to the App-
Ps1 blue module and significantly induced in 15 months
old App-Ps1 microglia while their expression was not in-
creased in Ercc1 microglia (Figure 3d). The Ccl3 gene
was restricted to the general aging module and the Oas2
gene was most significantly associated with the Ercc1
blue module. Their expression level was significantly in-
creased in Ercc1, but not in App1-Ps1 microglia, con-
firming the specificity of the identified sub-modules.

Signatures of acute and primed microglia are preserved
in brain tissue samples
To determine, if the transcriptional profiles associated
with primed microglia are preserved in mouse brain tis-
sue, expression sets of App-Ps1, aged, rTg4510 and ME7
prion infected mice (-/+ LPS) were analyzed. rTg4510
mice overexpress the a mutant form of human tau that
causes fronto-temporal dementia and parkinsonism
linked to chromosome 17 (FTDP-17). rTg4510 mice pro-
vide a model for tauopathies, including Alzheimer’s dis-
ease. ME7 prion brain infection is a frequently used
model system to induce microglia priming. The overlap
between the up-regulated blue modules in pure micro-
glia and significantly up-regulated genes in brain tissue
expression data was determined as a measure of preser-
vation. Significant overlap was observed between pure
microglia up-regulated blue modules and the up-regulated
genes in App-Ps1 (p-values ranging from 7.35E-10 to
2.68E-32) and aging (p-values ranging from 9.24E-7 to
7.56E-20; Additional file 10: Table S7) brain tissue. No
significant overlap of the upregulated App-Ps1 and aging
genes was observed with the up-regulated acute red mod-
ule of microglia from LPS injected mice. Interestingly, the
ME7 response genes (main effect of ME7) significantly
overlapped with the primed blue modules (p-values ran-
ging from 7.31E-17 to 2.58E-50), but much less with the
acute red module (p = 3.5E-9). In contrast, a highly signifi-
cant overlap between the LPS response genes (main effect
of LPS) with the up-regulated acute red module was
observed (Additional file 10: Table S7, p = 8.7E-36) and
the overlap with the blue primed modules was less
pronounced (p-values ranging from 1.67E-4 to 1.74E-14).
Similar results were obtained with the rTg4510 dataset; a
highly significant overlap with the primed blue microglia
modules was found (p-values ranging from 5.95E-8 to
2.68E-30). These data suggest that signatures of primed,
but not acute activated, microglia are preserved in brain
tissue expression data from models of Alzheimer’s disease,
prion infection and, aging.

Comparative WGCNA analysis of brain tissue and pure
microglia expression data
WGCNA has successfully been applied to brain tissue ex-
pression data to identify modules enriched for particular
cell types like microglia [1,17,36,40], but it is currently un-
clear to which degree these microglial modules resemble
the profile of pure microglia. We applied WGCNA to
brain tissue (App-Ps1, aged, Me7, and rTg4510) and pure
microglia (aged, App-Ps1 and Ercc1) datasets, to generate
two parallel consensus networks (Figure 5a). In brain tis-
sue expression data, a consensus green module was
found, that is significantly up-regulated with aging and
neurodegeneration (Figure 4b). The brain tissue con-
sensus green WGCNA module significantly overlapped
with microglia modules reported in other brain tissue
expression studies (p = 1.19E-57 to 8.41E-32; Additional
file 11: Table S8a).
The overlap between the consensus brain tissue green

module with the identified individual pure microglia
blue modules, the consensus blue module, and the acute
LPS red module was determined (Additional file 11:
Table S8b). A significant overlap was observed with all
primed microglia blue modules (p = 5.16E-48 to 4.95E-
18) but a less significant overlap was present with
the acute activation red module (1.61E-7). Next, this
consensus green microglia-enriched profile was com-
pared to the consensus blue primed microglia profile
(Figure 1a), hub genes were allocated, and five categories
were defined (see Methods): “brain tissue derived micro-
glia signature”, “mainly brain tissue derived microglia
signature”, “general microglia”, “mainly pure microglia”,
and “pure microglia”. The “general microglia”-hub con-
sists of highly connective genes that were found both in
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Figure 3 (Dis)similarities in primed and acutely activated pure microglia. a) Heatmaps of acute to chronic activation categories. Hub genes (or
genes that are centrally located in a module) were assigned by module membership. The 35 most correlated genes from the acute red and
primed microglia blue module were categorized in 5 categories and depicted using a sidebar. “Acute-unique” hubs (red sidebar), “Mainly Acute”
hubs with (lower) significant association in any of the primed models (dark-red sidebar), “General” hubs (black sidebar), “Mainly primed” hubs (dark
blue sidebar) and “Primed” unique hubs (blue sidebar). b) Scatterplot of priming blue and acutely activated red module membership values. For
each gene which was significantly associated to either the acute or the primed networks, module membership values for the acute red and
primed blue modules were plotted. Top 50 most connected hubs genes from acute and consensus primed microglia networks were assigned one
of the five colors as described under a (filled dots). c, d) Gene set enrichment analysis of primed and acutely activated microglia. c) Acute activated
microglia were significantly enriched for NF-?B, NOD, and TLR signaling, d) Primed microglia were enriched for KEGGs lysosome, oxidative
stress, and AD-signaling.
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the pure microglia and in the microglia-enriched brain
tissue modules and contains genes like: Spp1, Csf1, Axl,
B2m, Lgals3bp, and Tlr2. The “pure microglia” hub con-
tains, amongst others, the Clic4, Rap2B, and Gapdh
genes that are highly connective in microglia but not in the
microglia-enriched brain tissue module. The “brain tissue-
derived microglia signature” hub contains genes like C1QB,
C1QC, and Irf8. The intermediate “mainly pure microglia”
hub contains genes like Cybb and Igf1, and the “mainly
brain tissue microglia” hub contains previously reported
microglial hub genes Tyrobp and Trem2, as well as the
astrocyte marker Gfap (Figure 4c,d). The genes of these
pure microglia and brain tissue modules are listed in Add-
itional file 6: Table S5. Since these data indicate that
C1QB, C1QC, Tyrobp and Trem2 expression is not in-
creased in primed or acute activated microglia, the ex-
pression level of these genes was checked a recently
published database by Zhang and colleagues [41] and
we found that all these genes are very highly expressed
in microglia and therefore likely identified as hub genes
for microglia in brain tissue expression data.
These data show that the consensus profile of microglia

(-enriched) modules found in different pure microglia and
brain tissue expression datasets share similarities at the
hub gene level, but also are critically different. These dif-
ferences are likely caused by a combination of changes in
microglia cell numbers in the brain under neuropatho-
logical conditions and microglia-intrinsic changes in gene
expression. Several papers have shown that neuropathol-
ogy is associated with increased microglia cell proliferation
[10,24,42]. As a consequence, typical hub genes of
microglia modules identified using brain tissue expres-
sion data are not necessarily hub genes in pure micro-
glia expression data.

Discussion and conclusions
Primed microglia are characterized by hypersensitive re-
sponses to proinflammatory stimuli. It has been sug-
gested that priming of microglia is induced by chronic
exposure to low-grade inflammation, as observed in neu-
rodegenerative diseases and brain aging [9]. Microglia
priming has been described to occur during aging and in
a variety of CNS-diseases including AD, Parkinson’s
disease, Multiple Sclerosis, ALS, stroke, Wallerian de-
generation, and Me7 prion infection [43]. Furthermore,
it is hypothesized that this hyper exaggerated responsive-
ness of the primed microglia contributes to the observed
neurodegeneration [11]. The signaling pathways and
mechanisms involved in the induction of priming are
unknown. We therefore set out further to characterize
the mechanisms of microglia priming using gene expres-
sion profiling in mouse models for aging and neurode-
generative disease. Using WGCNA we have identified
specific gene expression networks associated with micro-
glia priming. A visual summary of the main findings of
this manuscript are depicted in Figure 6.
One of the main objectives of this study was to investi-

gate the hallmarks of gene expression profiles of primed
microglia isolated from mouse models for aging and
neurodegeneration. We show that in all mouse models
investigated, independent of the origin and platform
used, these primed microglia expressed a core gene ex-
pression profile, which substantially differed from the in-
flammatory gene network observed in acutely activated,
pro-inflammatory, microglia. The degree of preservation
of this core gene expression profile in physiological
aging, Ercc1, App-Ps1, Sod1, and Me7 mice made it very
likely that these microglia acquired a similarly primed
phenotype. In the current paper, we show that primed
microglia are clearly different from M1 and M2 macro-
phages or M1 ex-vivo isolated microglia. The observa-
tion that activated microglia in chronic brain disease/in
a neurodegenerative disease do not resemble an M1 or
M2 phenotype was already suggested by Chiu et al. [4],
whose Sod1-dataset was used in the current study. They
proposed that the pattern of regulation of a particular
set of genes, including Axl, can distinguish LPS stimu-
lated microglia from Sod1-associated microglia. Based
on the primed microglia gene expression network we
predict that that primed microglia are characterized by
expression of cell surface markers like Itgax, Lgals3, Axl,
Clec7a, MHC class 2, and Cxcr4.
The major functions of the primed microglia gene ex-

pression network show that these cells are involved in
immune-, phagosome-, lysosome-, oxidative phosphoryl-
ation, and antigen presentation signaling pathways. These
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Figure 4 Model system-specific microglia transcriptional signatures. a) Heatmap of model system-specific hub genes. The top 100 most significantly
associated module membership-genes from the App-Ps1, Sod1, Aged, and Ercc1 blue modules. Genes belonging to the consensus network were
removed. The other genes were grouped according to significant association with both Aging models (green sidebar), both Disease models (dark-pink
sidebar), physiological aging (dark-green sidebar), Ercc1 (dark-olivegreen sidebar), App-Ps1 (purple sidebar), and Sod1 (orange sidebar). b) Quantitative
RT-PCR validation of consensus hub genes. RNA was isolated from App-Ps1 and Ercc1 FACS sorted microglia and mRNA expression levels were
determined. The fold expression, normalized to HMBS, compared to its control with the standard error is depicted. c) Quantitative RT-PCR validation of
model-specific hub genes. RNA was isolated from App-Ps1 and Ercc1 FACS sorted microglia and mRNA expression levels were determined. The fold
expression, normalized to HMBS, compared to its control with the standard error is depicted. d) General aging microglia are significantly enriched for
KEGG ribosome and IFNa-ß signaling. GSEA was used to determine differences between consensus chronic activation and acute activation. Primed
microglia are enriched for KEGGs ribosome and IFNa-ß signaling.
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functions fit the needs of chronically degenerating brain tis-
sue. In response to tissue damage, microglia migrate to the
site of injury and phagocytose tissue debris or damaged
cells [6], thereby potentially degrading healthy synapses
and contributing to the ongoing degenerative process [44].
In the used mouse models for neurodegeneration and
aging, the phagosome and closely related lysosome KEGG
pathways were indeed significantly enriched in the consen-
sus blue module, suggesting aging- or neuropathology-
induced phagocytic activity of primed microglia.
Using WGCNA, hub genes were identified that are

likely candidate genes that drive the observed phenotype
[1,19-21]. Interestingly, four hub genes unique to the
primed microglia gene expression network, Galactin-3,
Igf1, Csf1, and Axl were previously shown to be instru-
mental for microglia functions including proliferation,
activation, and phagocytosis. Igf1 signals through Galac-
tin-3 and inactivation of the Galactin-3 gene resulted in
Igf1 insensitivity, decreased microglia activity and a sig-
nificant increase in the ischemic lesion size [38,45]. Igf1
signaling is related to neuroplasticity and neuroprotec-
tion [46] and is shown to mediate motor neuron protec-
tion and prolonged survival in ALS animal models[4].
Csf-1-mediated microglia proliferation has been shown
to be important in chronic neurodegeneration [41] and
inhibition of Csf-r1 signaling in mice resulted in
complete ablation of microglia [47]. The tyrosine kinase
receptor Axl is up-regulated in microglia in various neu-
rodegenerative and demyelinating conditions, such as
cuprizone-induced demyelination, EAE and in MS lesions,
and is shown to play an important role in phagocytosis of
apoptotic cells and myelin [48-50]. Axl KO mice experi-
ence enhanced inflammation and delayed myelin removal
in EAE-mice [49], and fewer mature oligodendrocytes and
more axonal damage in cuprizone induced demyelination
[48]. Contrarily, a recent paper showed that Axl is an
inflammatory phagocytic receptor whose expression was
induced by pro-inflammatory mediators [51]. The up-
regulation of these hub-genes suggests that microglial
priming also has adaptive aspects, necessary to cope with
increased neurodegeneration and environmental stress.
In a recent study, microglia were compared to other

myeloid immune cells and a microglial signature, which
is dependent on TGFβ signaling, was reported [38]. This
list of genes was enriched in the down-regulated mod-
ules of both primed and acutely activated microglia.
Two genes that are particularly interesting in this re-
spect are SPARC and Cx3cr1, which are hub genes of
the down-regulated consensus module. SPARC regulates
the activity of growth factors and cytokines. Enhanced
microglia proliferation, microgliosis around stroke le-
sions, and enhanced recovery is observed in SPARC null
mice [52]. Cx3cr1 is ubiquitously expressed by microglia
and plays an important role in microglia-neuron commu-
nication [53]. It was shown that Cx3cr1 deficiency resulted
in microglia activation, and increased neurodegeneration
following LPS injections in PD and ALS-models [49].
Moreover, Cx3cr1 deficiency worsens the AD-related
neuronal deficits, associated with microglial activation and
elevated chemokines [50]. In contrast, others reported that
in two mouse models for AD, Cx3cr1-deficiency resulted
in increased beta amyloid clearance and prevented neuron
loss [54,55]. Furthermore, lack of Cx3cr1 was shown to
reduce infarct size, ischemic damage and inflammation
[56]. The notion is that constitutively expressed Cx3cl1
(the ligand for Cx3cr1) provides a tonic inhibitory signal
to microglia to remain quiescent, and that deficiency re-
sults in hyperactivated microglia [57,58]. This indicates
that upon activation, microglia partially lose their resting
signature and acquire a priming or acute signature.
Besides the aforementioned common primed micro-

glia gene expression network, additional, specific ele-
ments of the microglia gene expression networks were
found, exclusively for the aging, AD, or ALS mouse
models used in our study. Although it is impossible to
eliminate potential confounding factors like isolation
protocols, mouse strain, age, CNS regions used, and
different expression profiling methodologies, we could
confirm the model-specific differences in gene expres-
sion in App-Ps1 and Ercc1 mice with quantitative RT-
PCR. These model-specific changes in gene expression
were related to an increased interferon-type 1 signature
in both aging models, an altered cell-cycle GO in Sod1
and decreased neurotrophin signaling in App-Ps1. An
aging-associated type-1 interferon signature is recently
described in the choroid plexus of aging mice and
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Figure 6 Summary figure describing the main findings of the current paper. Surveilling microglia are activated either acutely by a ligand such as
LPS or by a neurodegenerative and aging brain environment.

(See figure on previous page.)
Figure 5 Comparison of pure-microglia and brain tissue-derived microglia-enriched modules. a) Consensus co-expression networks of brain tissue
transcriptomes. Co-expression networks were generated for the indicated brain tissue transcriptome datasets. b) brain tissue consensus module
expression boxplots. The ME of the green microglia-enriched module in the Me7, App-Ps1, Aging, and rTg4510 datasets was significantly up-regulated
in all model systems. ME expression across all datasets and conditions is depicted as box-and-whisker plots. c) Scatterplot of the hub genes of the
consensus pure microglia module and the brain tissue microglia-enriched module. For each gene, which was significantly associated to the pure
microglia or the brain tissue microglia-enriched networks, module membership values for the brain tissue green and microglia modules were plotted.
Top-50 most connected hubs genes from brain tissue to pure microglia were assigned one of five colors (filled dots). “Pure microglia” (blue), “Mainly
pure microglia“ (dark-blue), “General microglia” (black), “Mainly brain tissue-derived microglia signature” (dark-green) and “brain tissue-derived microglia
signature” (green). d) Heatmaps of pure microglia to brain tissue microglia-enriched categories. Heatmaps of the consensus profiles of pure microglia
and brain tissue datasets as indicated are depicted. Hub genes were assigned by module membership, the top-35 most correlated genes from the
pure microglia and brain tissue microglia-enriched consensus modules were categorized in 5 categories as described in c).
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humans [59]. This interferon signature had a negative
effect on brain function, and was induced by brain-
derived signals derived from the CSF. In addition, it
was suggested that interferon type 1 plays a role in
microglial priming [42].
Microglia isolated from App-Ps1 mice were hall-

marked by a decreased expression of neurotrophin re-
lated genes. In App-Ps1 mice, amyloid plaque load
increases with age and is associated with a strong im-
mune signaling profile to which microglia contribute
[60]. Interestingly, two App-Ps1 model system-specific
hub-genes, LDL-receptor and CD14, are associated
with Amyloid Beta (Aβ) clearance. Microglia surround
amyloid fibril deposits and have been suggested to be
involved in their phagocytosis [61]. Increased LDL re-
ceptor expression prevented amyloid deposition and
led to an increased Aβ clearance [62]. CD14 is required
for Aβ stimulation of microglia and inhibition of CD14
prevents initiation of Aβ phagocytosis [62]. This indi-
cates that using WGCNA, we could identify disease-
specific module components with known biological
relevance in AD.
WGCNA is often used to generate microglia specific

profiles in brain tissue expression data [1,19,21]. Simi-
larly, we identified a microglia-enriched consensus mod-
ule in brain datasets, indicating that primed microglia in
Me7, aging, rTg4510, and App-Ps1 mice had a similar
gene expression profile. However, comparison of this
brain tissue microglia-enriched module to the pure
microglia expression profiles, showed substantial differ-
ences in hub genes. In the brain tissue data, Trem2 and
Tyrobp are identified as hub genes, where in pure micro-
glia they are only weakly associated with the consensus
priming module, suggesting that these genes might not
play a critical role in microglia priming. Tyrobp and
Trem2 are highly expressed in microglia, and therefore
often identified as hub genes of microglial modules in
brain tissue datasets. Changes caused by altered relative
cell numbers in brain tissue expression data are readily
detected using WGCNA, resulting in cell type-specific
modules. However, it is very difficult to discriminate be-
tween cell intrinsic alterations in gene expression levels
and changes in cell numbers in cell type-specific mod-
ules. In addition, other cell types, such as astrocytes,
possibly contaminate these modules. Summarizing, our
data indicate that a complementary WGCNA analysis of
both pure cell populations and brain tissue expression
data is required in order to fully unveil regulatory gene
networks.
In this study, we analyzed primed microglia from dif-

ferent neurodegenerative conditions. Microglia priming
is often regarded as a confounding factor, resulting in
exacerbation of neurodegeneration in a wide range of
conditions [11]. The core microglia priming module
described in this study supports the notion of a generic
microglia response in different neuropathologies, but
this module mostly contains genes related to phagocyt-
osis and cell proliferation, with tissue protective ele-
ments. This indicates that primed microglia adopt an
altered inflammatory profile predominantly adapted for
phagocytic clearance and in a state of immune readiness,
possibly necessary to cope with inflammatory and neu-
rodegenerative conditions.
Additional files

Additional file 1: Table S1. Overview datasets and references included
in the meta-analysis. Listed datasets were obtained via GEO or Arrayexpress
or generated by either of the authors from the current manuscript and used
in this manuscript.

Additional file 2: Table S2. Primer list of qPCR primers used for validation
of hub-genes.

Additional file 3: Table S3. Differential gene expression analysis. In
addition to the WGCNA analysis the genes included in the analysis
differential gene expression analysis was performed and the results are
depicted.

Additional file 4: Table S4. Differential Module Eigengene (ME) expression
for all modules of all pure microglia datasets. Kruskall Wallis between group
test was applied to determine whether a module was differentially expressed
or not. In addition the direction of differential expression is described
as up- or down regulated with genotype or phenotype.

Additional file 5: Figure S1. Overlap heatmap. Differentially expressed
modules were compared using a Fisher’s exact test and depicted as a
heatmap in which the intensity of the red color corresponds to p-value.
A p-value cut-off of 1E-100 was used.

Additional file 6: Table S5. Genes module assignments, module
membership and mouse model specific elements. WGCNA was applied
to the expression datasets and genes were assigned to modules using a
hard-clustering approach as well as with Module Membership values with
corresponding FDR multiple testing corrected p-values.

Additional file 7: Table S6. Annotations - Results of WEBGESTALT and
GSEA enrichment analyses. WEBGESTALT GOs, KEGGs and Benjamini
Hochberg Multiple Testing corrected p-values for all significantly differentially
expressed modules.

Additional file 8: Figure S2. (Dis)similarities in the down-regulated
primed microglia and acute activated microglia modules. a) Heatmaps of
acute to primed categories. Hub genes were assigned by module
membership. The top-35 most correlated genes from the acute green-
yellow and primed dark-green module were categorized in 5 categories
and depicted using a sidebar. Acute-unique hubs (green-yellow sidebar),
Mainly Acute hubs with (lower) significant association in any of the
chronic models (yellow sidebar), General hubs (grey sidebar), Mainly
primed hubs (green sidebar) and Primed unique hubs (dark-green sidebar).
b) Scatterplot of consensus primed microglia dark-green and acute
green-yellow module memberships- values. Module membership values
of the consensus priming dark-green and acute green-yellow down-
regulated modules were depicted as a scatterplot. In addition, highlighted
genes are present in the recently reported microglia core signature [38],
which is enriched in the down-regulated profiles.

Additional file 9: Figure S3. Primed microglia in aged, Ercc1 and
App-Psn1 mice. Staining of primed microglia in i.p. PBS or LPS injected,
aged, Ercc1, and App-Ps1 mice. Coronal (App-Ps1) and sagittal (rest)
sections were co-stained with Iba1 (microglia, green) and Lgals3 (or
Mac2) (primed microglia, red). Representative images of the cortex and
brain stem are depicted. No Mac2 expression was detected in LPS
injected mice, primed microglia were detected in both cortex and brain
stem in aged mice (indicated by arrows). As previously reported [10], in
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Ercc1 mutant mice, microglia priming was most pronounced in the brain
stem (arrow). In App-Ps1 animals, plaque-associated microglia also expressed
Mac2 (arrow), the brain stem was present in the sections analyzed.

Additional file 10: Table S7. Preservation of the chronic microglia
module brain tissue datasets. Differentially expressed gene lists from
brain tissue datasets: App-Ps1 and control frontal cortex, rTg4510 and
control brain tissue, aging brain tissue, ME7 inoculation hippocampus
with and without LPS and ME7 and mock inoculation on different time
points were used as input for userlistenrichment function. Significance of
the overlap between the significantly differentially expressed gene lists
and the blue and red (up-regulated) modules is depicted.

Additional file 11: Table S8. Overlap between brain tissue and pure
microglia priming microglia modules. a) The significance of the overlap
between the green consensus brain tissue microglia module and other
microglia modules identified in brain tissue datasets is depicted. b) The
significance of the overlap between the green consensus brain tissue
microglia module and the pure microglia priming blue modules and
acute activated red module is depicted.
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