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Abstract
Lipids are essential to brain functions, yet they remain largely unexplored. Here we investigated the lipidome composition of
prefrontal cortex gray matter in 396 cognitively healthy individuals with ages spanning 100 years, as well as 67 adult
individuals diagnosed with autism (ASD), schizophrenia (SZ), and Down syndrome (DS). Of the 5024 detected lipids, 95%
showed significant age-dependent concentration differences clustering into four temporal stages, and resulting in a gradual
increase in membrane fluidity in individuals ranging from newborn to nonagenarian. Aging affects 14% of the brain
lipidome with late-life changes starting predominantly at 50–55 years of age—a period of general metabolic transition. All
three diseases alter the brain lipidome composition, leading—among other things—to a concentration decrease in
glycerophospholipid metabolism and endocannabinoid signaling pathways. Lipid concentration decreases in SZ were further
linked to genetic variants associated with disease, indicating the relevance of the lipidome changes to disease progression.

Introduction

Lipids take up over half of the brain’s dry weight and are
known to play important roles as the brain’s main structural
components, as well as energy and signaling molecules [1,
2]. While brain organization and function experience drastic

changes during development and aging [3–6], the extent
and nature of lipid concentration changes accompanying
these processes have not yet been well investigated. Pre-
vious studies, employing biochemical methods targeted to
specific lipid classes [7–16], as well as untargeted mass
spectrometry [17], have reported extensive age-dependent
changes in the lipid concentration in the human brain. These
studies, however, focused on specific lipid classes and had
limited sample and age representation. Alterations of lipid
compositions were reported to be associated with cognitive
disorders, including autism (ASD), schizophrenia (SZ), and
Down syndrome (DS), by studies examining lipid con-
centrations in the blood [18–25] and brain [26, 27].
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Here, we investigated lipid concentration levels in the
gray matter of the dorsolateral prefrontal cortex (PFC) in
396 cognitively healthy humans with ages spanning 100
years of the human lifespan. Furthermore, we compared
age-dependent lipidome changes with the lipidome altera-
tions in disorders that commonly affect cognition, by
measuring lipid concentrations in PFC samples of SZ, ASD,
and DS patients. Based on the concentration levels of more
than 5000 hydrophobic compounds (lipids), we were able to
characterize the main features of the lipidome changes
across the lifespan with unprecedented temporal resolution,
assess the extent of metabolic breakdown in aging and gain
insights into the role of lipidome alterations in the three
common cognitive disorders.

Materials and methods

Samples

Samples from cognitively unaffected human controls were
collected from the NICHD Brain and Tissue Bank for
Developmental Disorders and the Maryland Psychiatric
Research Center at the University of Maryland, the Mary-
land Brain Collection Center, the Netherlands Brain Bank,
and the Chinese Brain Bank Center (CBBC, http://cbbc.
scuec.edu.cn, Wuhan, China). Samples from patients with
DS were collected from the Netherlands Brain Bank.
Samples from patients with ASD or SZ were collected from
NICHD Brain and Tissue Bank for Developmental Dis-
orders at the University of Maryland, the Harvard Brain
Tissue Resource Center, and the Maryland Psychiatric
Research Center. Brain tissue from subjects with ASD was
obtained through the Autism Tissue Program [28]. Diag-
nosis of SZ is based on DSM IV-based criteria and was
provided by the participating brain banks. Written consents
for the use of human tissues for research were obtained
either from the donors or their next-of-kin. More detailed
information of human samples is provided in Table S1.
According to the protocol of the CBBC, specific permission
for brain autopsy and use of the brain tissue for research
purposes was given by the donors or their relatives. All
tissue samples were shipped by the brain banks without
accompanying personal identifier information.

All human samples in this project were extracted from
the PFC, which were dissected from the anterior part of the
superior frontal gyrus. The sample weights are 12.55 ± 1.65
mg. All samples were well-preserved postmortem samples
that had been stored at −80 °C before RNA or lipid
extraction. To provide sufficient temporal resolution, the
number of cognitively healthy individuals sampled in our
study was substantially larger than in previous studies [12,

17]. The numbers of ASD or SZ patients were comparable
to the ones sampled in previous studies [19, 22, 23].

MS sample preparation and measurements

Metabolites were extracted from 10–15 mg of frozen tissue,
which was homogenized by a ball mill to a fine powder, as
described elsewhere [29]. In brief, the frozen tissue was
transferred to cooled 2 ml round-bottom microcentrifuge
tubes and each sample was re-suspended in 1 ml of a −20 °
C methanol:methyl-tert butyl-ether (1:3 (v/v)) mixture,
containing 1.5 μg of 1,2-diheptadecanoyl-sn-glycero-3-
phosphocholine (Avanti Polar Lipids, 850360P). The sam-
ples were immediately vortexed before they were incubated
for 10 min at 4 °C on an orbital shaker. This step was fol-
lowed by ultra-sonication in an ice-cooled bath-type soni-
cator for additional 10 min. To separate the organic from the
aqueous phase 650 μl of a H2O:methanol mix (3:1(v/v)) was
added to the homogenate, which was shortly vortexed
before it was centrifuged for 5 min at 14,000×g. Finally,
500 μl of the upper MTBE phase, which contains the
hydrophobic compounds (lipids), was sampled to a fresh
1.5 ml microcentrifuge tube. This aliquot can either be
stored at −20 °C for some weeks or immediately con-
centrated to complete dryness in a speed vacuum con-
centrator at room temperature.

Prior to analysis, the dried pellets were re-suspended in
400 μl acetonitrile:isopropanol (7:3 (v:v)), ultra-sonicated
and centrifuged for 5 min at 14.000×g. The cleared super-
natant was transferred to fresh glass vials and 2 μl of each
sample was injected onto a C8 reverse-phase column (100
mm × 2.1 mm × 1.7 μm particles, Waters) using a UPLC
system (Acquity, Waters, Manchester, UK). In addition to
the individual samples, we prepared pooled samples,
namely 10 µl of each sample was mixed. These pooled
samples were measured after every 20th sample, providing
us information on system performance including informa-
tion on sensitivity, retention time consistency, sample
reproducibility, and compound stability.

The mobile phase for the chromatographic separation
consisted of 1% 1M NH4acetate and 0.1% acetic acid in
UPLC MS grade water (Buffer A, BioSolve, Valkenswaard,
Netherlands), while Buffer B contained 1% 1M NH4acetate
and 0.1% acetic acid in acetonitrile/isopropanol (7:3 (v:v),
BioSolve). The flow rate of the UPLC system was set to
400 μl/min. The gradient was 1 min isocratic flow at 45% A,
3 min linear gradient from 45 to 25% A, 8 min linear gra-
dient from 25 to 11% A, and 3 min linear gradient from 11
to 1% A. After cleaning the column for 4.5 min at 1% A, the
buffer was set back to 45% A, and the column was re-
equilibrated for 4.5 min, resulting in a final run-time of 24
min per sample.
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The mass spectra were acquired using an Orbitrap-type
mass spectrometer (Orbitrap-XL, Thermo-Fisher, Bremen,
Germany). The spectra were recorded using full-scan mode,
covering a mass range from 100 to 1500m/z. The resolution
was set to 60,000 with 2 scans per second, restricting the
maximum loading time to 100 ms. The samples were
injected using the heated electrospray ionization source
(HESI), and the capillary voltage was set to 3.5 kV in
positive and negative ionization mode. The sheath gas flow
value was set to 40, while the auxiliary gas flow was set to
20. The capillary temperature was set to 200 °C, while the
drying gas in the heated electrospray source was set to 350 °
C. The skimmer voltage was set to 20 V, while the tube lens
was set to a value of 140 V. The spectra were recorded from
0 to 20 min of the UPLC gradients. Sample randomization
was performed twice: before the lipid extraction and before
the mass spectrometry measurements. Persons performing
lipid extraction and lipidome measurement were unaware of
sample information, including age and diagnostic status.
The correlation between the measurement order and sample
age were not significant (positive ionization mode: ρ=
0.006, P > 0.8; negative ionization mode: ρ=−0.002, P >
0.9). Similarly, there was no significant relationship
between measurement order and health status or ethnicity
(Wilcoxon rank-sum test, nominal P > 0.3). The MS pre-
paration and measurement procedure for autistic samples in
DS2 has been described elsewhere [17].

Lipidome data preprocessing

MS lipids were extracted and aligned across samples using
Progenesis QI software (Version 2.3, Nonlinear Dynamics,
Newcastle upon Tyne, UK) according to the vendor
description. Only the reliably detected lipids satisfying the
following criteria were retained: (a) retention time (RT)
≥0.6 min; (b) detected in at least 90% of pooled samples and
at least 80% of non-pooled samples. Quantile normalization
was applied to the log10-transformed concentration of
reliably detected lipids. The batch effect correction was
done based on a linear regression model.

Data preprocessing procedure for lipid concentrations
measured in DS2 has been described elsewhere [17]. The
batch effect correction was done using the fitted support
vector regression model with a Gaussian kernel, considering
the concentration of each lipid as a function of the mea-
suring order of the samples. An upper quartile normal-
ization was used to normalize the lipid concentration
measurements.

RNA-seq dataset

72 postmortem PFC samples were selected from the 72
individuals used for lipidome measurements, with square-

root- transformed ages uniformly distributed along the
whole lifespan. Of them, 19 individuals were measured
previously [30]. Sample weights are 20–30 mg. RNA
integrity numbers (RIN) of 62 out of the 72 samples were
not lower than six. For the other ten samples, although their
RINs were lower than six or unmeasurable, their 28S/18S
rRNA ratios were around two, supporting that these samples
were suitable for RNA-seq measurement. More detailed
information of human samples is provided in Table S1. The
poly(A)+RNA enriched cDNA library was constructed
using the Illumina TruSeq® standard mRNA sample pre-
paration kit. The RNA fraction was sequenced on the Illu-
mina HiSeq 4000 platform in pair-ended mode, each mate
in length of 150 nt. The sample order was randomized prior
to RNA extraction and sequencing. The person performing
RNA extraction, cDNA library construction, and RNA
sequencing were unaware of sample information, including
age and ethnicity.

RNA-seq data preprocessing

The paired-ended RNA-seq reads were trimmed with Fastx
to remove adapter sequences. Only read pairs with lengths
of at least 75 nt for both mates after trimming were kept.
The trimmed reads were mapped to the human genome
hg38 with in-build SNPdb information using HISAT2 [31]
with default parameters. Read counting was done using
HTseq [32] for protein-coding and lincRNA genes anno-
tated in GENCODE version 24. DESeq2 [33] was used for
gene expression normalization and FPKM (fragments per
kilobase per million reads) was used to represent the gene
expression level of each gene in each sample. Genes with
FPKM > 1 in at least one sample (expressed genes) were
used for a downstream analysis.

Human lipidome stage classification and stage-
dependent lipid identification

To classify the stages in human lipidome compositions, we
used a sliding window-based procedure. At each step,
samples were selected using the sliding window across
samples in ascending order of ages. The window size was
set to be 10 samples, with step size set to be five samples.
For each lipid, a Wilcoxon rank-sum test was applied to
each lipid comparing its concentrations in the selected
samples with those in the other samples. Lipids with
nominal P < 0.01 in at least one window were defined as
window-dependent lipids. Numbers of window-dependent
lipids in all windows were summed up to get the window-
dependence identification frequency. Permutations of sam-
ple ages were performed 100 times. The P value of the
window-dependent lipid identification was calculated as a
proportion of cases in which frequencies in permutations are
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larger than or equal to those obtained from actual data. A
lipid concentration specificity matrix of all window-
dependent lipids with N rows and M columns, denoted as
D, was generated, where N was the number of lipids, and M
was the number of sliding windows. Dij was set to 1, 0, or
−1, each of which represented the specificity of the i-th
lipid in the j-th window (1 means significantly higher
concentrations in samples in the window, −1 means sig-
nificantly lower concentrations in samples in the window,
and 0 means no significant difference). Hierarchical clus-
tering was then applied to the sliding windows, with dis-
tance between each pair of windows calculated as 1−ρ,
where ρ is the Spearman’s correlation coefficient between
two columns in D representing two windows. A visual
inspection of the dendrogram structure was used to deter-
mine the number of stages. To classify stages in tran-
scriptome data and DS2 lipidome data, we used similar
approaches with the following modifications: window size
= 4 samples; step size= 2 samples; lipids/genes with
nominal P < 0.05 in at least one window were defined as
window-dependent lipids/genes.

To identify the stage-dependent lipids in DS1 and DS2
human data, we applied the Wilcoxon rank-sum test to each
window-dependent lipid for each stage, comparing its
concentrations in samples within the stage with the other
samples. Lipids with Benjamini and Hochberg (BH) cor-
rected P < 0.05 were defined as stage-dependent of the
stage. To link lipids in DS1 and DS2 human data, we
required lipids to have only one correspondence in the other
dataset with m/z difference <10 ppm and share at least one
LIPID MAPS annotation.

Each stage-dependent lipid was assigned to at least one
of the eight stage-dependent groups according to its sig-
nificance and changing direction at each stage. The igraph
package was used to visualize concentration correlations of
lipids within each group. For each of the three groups,
namely S1-L, S2-L, and S4-H, two sub-groups were iden-
tified with hierarchical clustering using 1−r as distance,
where r represents the pairwise Pearson’s correlation coef-
ficients of lipid concentrations across all cognitively healthy
samples in DS1.

Lipid annotation and enrichment analysis

Lipid annotations were performed using mass search with a
tolerance of 10 ppm against the LIPID MAPS database
annotation, using the list of adducts described elsewhere
[29]. Lipid classes were assigned to the annotated lipids
according to the LIPID MAPS database classification.
Pathways were assigned according to the KEGG database
annotation. Overrepresentations of lipid classes and path-
ways compared to random sampling from detected lipids
with annotations were tested using one-sided Fisher’s exact

tests and hypergeometric tests, respectively, followed by
BH corrections. Significant enrichment was defined as BH-
corrected P < 0.05 and P < 0.1.

Lipid-interacting gene support

Expressed genes with direct interaction with reliably
detected lipids according to KEGG annotations were used
to calculate correlations between temporal profiles of lipids
and genes. A Spearman correlations coefficient (ρ) between
gene expression levels and lipid concentrations across
samples were calculated in age sorted and age permutated
data. Permutation of sample ages was performed 100 times.
P was defined as the proportion of cases in which median
absolute ρ in age-permuted data was larger than or equal to
that obtained in age sorted data. For stage-dependent lipids,
all 72 samples with RNA-seq data were used, while for
aging-related lipids, only samples in the adult stage were
used.

To quantitatively assess the proportion of the lipidome
variation along the lifespan explained by the expression
changes of the interacting genes, we conducted a LASSO-
constrained multivariate linear modeling based analysis.
This method is analogous to the methods previously used to
estimate the proportion of variations of gene expression
differences explained by the differential binding of tran-
scription factors (TFs) [34]. Specifically, we constructed a
model that predicts the concentration difference between
lipid concentration in a sample and the average concentra-
tion of this lipid over the lifespan (scaled lipid concentra-
tions) based on the scaled expression levels of lipid-
interacting genes. Scaled data was defined as

dij′ ¼ dij � μ

σ

where dij represents log10-transformed data of the ith lipid
or genes in the jth sample, μ and σ represents average and
standard deviation of the ith lipid or gene across all
72 samples, respectively.

For each of the 677 stage-dependent lipids linked to genes
in the KEGG annotation, we constructed an independent
model using the concentration of this lipid as a response
variable and expression levels of 936 lipid-interacting genes
annotated in KEGG, as potential explanatory variables. The
model was constructed based on scaled lipid concentration
and gene expression values in 71 samples and applied to
predict scaled lipid concentration (i.e. the difference between
the concentration of this lipid in the sample and the average
concentration of this lipid across the lifespan) in the
remaining sample. The explanatory power of the scaled gene
expression values was quantified as squared Pearson corre-
lation coefficients between the predicted scaled lipid con-
centrations within a sample and the actual concentrations.
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Quantification of effects of different factors on
lipidome concentration variation

To quantify the proportion of variance of lipidome
explained by age, we fit the following formula for each
lipid:

Yij ¼ β0i þ β1iAj þ β2iA
2
j þ β3iA

3
j þ εij;

where Yijis the lipid concentration for lipid i and sample j, Aj

is the age of the sample j in square-root scale and εij is the
error term. For each lipid, the age effect on its concentra-
tions was quantified as the ratio of the explained sum of
squares (ESS) relative to total sum of squares (TSS). To get
the average concentration variance explained by age, ESS
and TSS for all lipids were summarized, respectively, and
then their ratios were calculated. Permutations of ages 100
times were used to estimate the significance of variance
explained by age. A similar procedure was also applied to
quantify the variance explained by each of the other factors
including PMI, ethnicity, RIN, and sex, while linear models
instead of the cubic polynomial model was used.

Change magnitude quantification

To calculate the change magnitude of lipid concentration
along lifespan, we fit a natural spline interpolation model
(implemented as smooth.spline function in R) to each lipid,
with a variable degree of freedom from two to eight, using
lipid concentration as the response variable and the square-
rooted ages as the predictor variable. The degree of freedom
was determined for each lipid separately, based on the
adjusted r2 criterion. Based on the interpolation model of
each lipid, its concentration at 19 uniformly distributed age
points along the lifespan were interpolated. The absolute
concentration differences between neighboring age points
were then calculated and normalized to the median con-
centration of the lipid across all the interpolated age points.
The median of concentration differences across all the lipids
was then calculated as the average lipidome changing
magnitude for each of the 18 age intervals. The average
lipidome change magnitudes of all age intervals were
summed up to get the total change magnitude. Permutations
of sample ages were performed 1000 times to estimate the
random background. Permutation P was calculated as the
proportion of cases in which total change magnitude in a
permutation was larger than or equal to that in actual data.
For a quantification of change magnitude in adult stage, a
similar procedure was applied with some modifications:
only cognitively healthy samples not younger than 30 years
of age were used; and lipid concentrations at 15 evenly

distributed age points in the adult stage were interpolated;
age was in the linear scale.

Identification of lipids with aging-related
concentration profile in adult stage

To identify lipids with aging-related concentration profiles
in the adult stage, we tested the temporal dynamics of the
concentration profile of each lipid by using the polynomial
regression model with sample ages as the predictor variable
and employing the F-test [35]. Lipids with F-test P < 0.05
after BH correction were considered as with age-related
concentration profiles in adults (referred as aging-related
lipids).

Identification of transition points of concentration
profiles

To identify transition points of lipid concentration profiles
in the adult stage, we used a previously described procedure
[36]. Briefly, the concentrations of each aging-related lipid
were interpolated based on the natural spline interpolation
model (df= 5) at 27 uniformly distributed age points along
the adult stage. Using each of the 25 internal age points as
the potential transition point, F-test was employed to com-
pare the piecewise linear model and the non-piecewise
counterpart, with the most likely transition point determined
as the one resulted in the smallest F-test P value. The P
value threshold to identify the effective transition point for
each lipid was determined based on FDR and P value
estimated by permutations of ages 100 times, as the largest
P value cutoff resulted in FDR < 0.8 and P < 0.01 in per-
mutation test. We used similar procedure to identify tran-
sition points of aging-related lipids in C1 along the whole
lifespan with modifications as following: ages were in
square-root scale; the P value threshold was defined as the
largest P with FDR < 0.2 and P < 0.01 in permutation test.

Disorder-associated (DA) lipid identification

DA analyses were conducted for patient samples of each
neural disorder and matched control samples, respectively.
To eliminate the confounding effects of ages, only the
cognitively healthy samples with matched age ranges as the
patient samples, i.e. 18–65 years old, were used. The Han
Chinese cognitively healthy samples were also removed
from the analysis to avoid confounding the effect of eth-
nicities. Two latent batches in the dataset were detected by
hierarchical clustering, based on the pairwise distance
between each pair of samples defined as 1−r, where r is the
Pearson’s correlation coefficient between the two samples
across concentrations of all the detected lipids. The latent
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batch effect on the lipidome was corrected using the linear
model as that for the batch effect correction.

Based on the corrected lipid concentrations, the DA
lipids were identified using Wilcoxon rank-sum test to
compare the lipid concentrations in patient samples of each
disorder and the control samples, with nominal P < 0.01.
Permutation of diagnostic status 1000 times was used to
estimate test significance (P value).

For ASD DS2, we used feature selection based on
logistic regression with L1 regularization to identify lipids
with differential concentration between ASD and control.
Random division of test set and training set was performed
500 times. Top 600 lipids with the highest probability to be
chosen in the model were defined as ASD-associated lipids.
Pathway enrichment of these ASD-associated lipids was
conducted using hypergeometric test.

Quantification of disorder effect on lipid
concentration variance

To estimate the lipid concentration variance explained by
the diagnostic status, we fit a linear model for each lipid,
using lipid concentration as the response variable and
diagnostic status as the predictor variable. The disorder
effect was quantified as the ratio of the ESS relative to the
TSS. To perform estimations with age, sex, PMI distribu-
tions, and sample size equalized among disorders, we

performed bootstrapping 100 times (sample size= 5) and fit
two models to each detected lipid. The null model con-
sidered the effect of age, sex, and PMI on lipid concentra-
tion, while the full model further considered the effect of the
disorder. The proportion of variance explained by diag-
nostic status was calculated as the difference of the residual
of null model and that of the full model relative to the
residual in the null model.

Data availability

Primary RNA sequence data of this study has been deposited
in the National Omics Data Encyclopedia (NODE,
http://www.biosino.org/node/index) database with project
ID NODEP00371662. The processed gene expression data,
processed lipid concentration data for lipids in DS1 samples,
as well as DS2 control and ASD samples, and lipid anno-
tation information for lipids in DS1 and DS2 are available
at https://data.mendeley.com/datasets/m4dt3z68s5/draft?a=
85342504-8750-4703-88bc-83bf0c111935 with reserved
https://doi.org/10.17632/m4dt3z68s5.1.

Code availability

The source codes for the temporal stage classification and
transition point identification are available at https://data.
mendeley.com/datasets/m4dt3z68s5/draft?a=85342504-

Fig. 1 Lifespan stages of the human PFC lipidome. a Upper panel: age
distribution of the 396 cognitively healthy individuals used in the
study. The dissection area is marked in pink. Lower panel: total lipi-
dome variation among 403 samples from the 396 individuals visua-
lized using multi-dimensional scaling (MDS). The MDS plot shows
Euclidean distances calculated using concentrations of 5024 detected
lipids. Each dot represents a sample. The colors represent individuals’
ages with darker shades corresponding to older individuals. b Upper
panel: the dendrogram of the 79 sliding windows covering the life-
span. The branch length shows (1−ρ) distances, where ρ is the
Spearman correlation coefficient of lipid concentration specificity
measures for 4777 lipids with differential concentration in at least one

sliding window. The branch color shows lifespan stages: blue—infant;
light blue—child; orange—juvenile; pink—adult. The horizontal gray
bar indicates the median age in each window, with darker shades
corresponding to older age. Numbers show boundary ages (D—days,
Y—years). Lower panel: lifespan stage boundaries in the DS1 and
public human, chimpanzee, and macaque data (DS2). Silhouette
symbols indicate species and lifespan stages. Each dot represents a
sample. The x-axis shows square-root-transformed age of assessed
individuals. Age of non-human primates was corrected for differences
in species’ maximal longevity. The background color represents life-
span stages as in the dendrogram above, except that light brown
indicates the combined child and juvenile stage in the chimpanzee
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8750-4703-88bc-83bf0c111935 with reserved https://doi.
org/10.17632/m4dt3z68s5.1.

Results

PFC lipidome undergoes substantial changes
throughout the human lifespan

We measured concentrations of hydrophobic compounds
with molecular weights below 1500 Da (lipids) in 403
human postmortem PFC samples from 396 cognitively
healthy individuals aged between 18 weeks post conception
to 99 years (Table S1 and Figure S1). The untargeted
analysis conducted using liquid chromatography coupled
with mass spectrometry (LC-MS) in both positive and
negative ionization modes yielded concentration estimates
for a total of 5024 lipids, 2222 of them annotated using
LIPID MAPS database.

A visualization of lipid concentration variations among
samples revealed clear temporal differences (Fig. 1a).
Quantitatively, age explained by far the largest proportion
of the total lipidome variation (19.56%, permutations, P <

0.01), compared to the other factors, such as sex (0.27%,
permutations, P= 0.3), ethnicity (3.69%, permutations, P <
0.01), postmortem interval (PMI) (0.67%, permutations, P
= 0.06) and sample quality, estimated based on RNA pre-
servation (0.69%, permutations, P= 0.14).

The lifelong PFC lipidome changes group into four
stages

To characterize age-dependent lipidome changes, we iden-
tified lipids with concentration levels particular to a certain
age interval using a sliding window approach. Specifically,
we searched for lipids with concentrations in a given tem-
poral window different from the rest of lifespan (Wilcoxon
rank-sum test, nominal P < 0.01). Each window contains ten
samples in ascending age order. More than 95% (4777) of
all detected lipids satisfied this criterion in at least one
window (permutations, P < 0.1).

An unsupervised clustering of the concentration specifi-
city profiles revealed four temporal stages: (i) infant stage
ending at approximately 100 postnatal days (90% con-
fidence interval [CI]: 10–500 days); (ii) child stage ending
at approximately 6 years (90% CI: 4–14 years); (iii) juvenile

Fig. 2 Characteristics of stage-dependent lipids. a Average temporal
profiles and lipid class enrichment of eleven lipid groups. The lipid
groups represent network modules based on concentration profiles of
stage-dependent lipids across 403 samples from 396 individuals. Each
dot represents a lipid. Silhouette symbols indicate lifespan stages. The
panels show the average concentration patterns in each group, where
each dot represents one sample, and group names and lipid numbers
are shown on top. Dash lines show the median relative lipid con-
centration within a group. Colored areas and dots indicate lifespan

stages with differential lipid concentrations (red—higher concentra-
tion; blue—lower concentration). Abbreviations next to the panels
represent enriched lipid classes (FA fatty acids and conjugates, FAE
fatty esters, Fl-OH flavonoids, CL glycerophosphoglyceropho-
sphoglycerols (cardiolipins), PC glycerophosphocholines, Neutral-
[glycan]-Cer neutral glycosphingolipids, Oxidized-GP oxidized gly-
cerophospholipids, PSL phosphosphingolipids, TG triradylglycerols).
b KEGG pathways enriched in stage-dependent lipids. The heatmap
shows the BH-corrected P values of the hypergeometric tests
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stage ending at approximately 30 years (90% CI: 16.5–41.5
years); and (iv) adult stage extending from 30 years on
(Fig. 1b). The separation of the PFC lipidome into four
stages was not caused by confounding factors, such as sex,
ethnicity, PMI or sample preservation (Figure S1). Fur-
thermore, an independently generated human PFC lipidome
dataset [17] showed consistent lipidome stage separation
(Fig. 1b and Figure S2). Notably, chimpanzee and macaque
PFC lipidome data (number of individuals N= 40 for
chimpanzees and N= 40 for macaques) [17] also revealed
the same lipidome stages after correction for differences in
species’ maximal lifespan (Fig. 1b and Figure S2).

To assess the relationship between age-dependent lipi-
dome changes and changes in the expression of genes
encoding proteins directly interacting with lipids according
to KEGG annotation (lipid-interacting genes), we measured
transcriptomes in 72 of the 396 individuals used for the
lipidome measurements, retaining the lifespan coverage
(Table S1). Based on the generated RNA-seq data, we
detected the expression of 16,448 genes covered by a total

of 1,285,419,776 pair-end reads. The proportions of data
variation explained by individuals’ age, ethnicity, and sex,
as well as postmortem delay duration did not differ sub-
stantially between the transcriptome and the lipidome data
(Figure S1). The same analysis applied to the expression
levels of 646 lipid-interacting genes showed that a con-
cordant stage pattern also exists at the transcriptome level
(Figure S3).

Distinct properties of stage-dependent lipid groups

As many as 4031, 3620, 1166, and 3939 lipids displayed
distinct concentration levels at the infant, child, juvenile,
and adult stages, respectively (stage-dependent lipids,
Fig. 2, Wilcoxon rank-sum test, BH-corrected P < 0.05).
Stage-dependent concentration differences agreed well
between the current and the published datasets [17] based
on the analysis of 219 unambiguously linked lipids defined
as stage-dependent in both datasets (random sampling, P <
0.01; Figure S2). Furthermore, the concentrations of stage-

Fig. 3 Complexity and variability of the PFC lipidome. a Left panel:
number of lipids detected in each sample across the lifespan, with four
stages indicated by colors and silhouette symbols. Lines represent
spline curves built with three degrees of freedom. Right panel: stan-
dard deviation distributions of log10-transformed concentrations of
5024 lipids within a sliding window (window size= 10 samples, step
size= 5 samples). Boxes show the first and third quartiles of the
distribution. Error bars show the maximum and minimum standard
deviation values. b Number of detected lipids and standard deviations
of the lipid concentrations at the adult stage (window size= 6 samples,

step size= 3 samples). c Median magnitude of concentration differ-
ences of 5024 detected lipids within 18 age intervals evenly spaced
across the lifespan (red bars, top) and 14 intervals evenly spaced across
the adult stage (red bars, bottom). The magnitude of concentration
differences for each lipid was calculated as the ratio of lipid con-
centration difference within an age interval and the median lipid
concentration across intervals. The gray bars show the median mag-
nitude of lipidome differences expected by chance based on permu-
tations of the age labels 1000 times. The x-axis labels show the median
age of each interval
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dependent lipids correlated significantly with the expression
of the corresponding lipid-interacting genes (median abso-
lute Spearman correlation coefficient ρ= 0.12; permuta-
tions, P < 0.01; Figure S3).

Considering that lipid concentration might be influenced
by multiple genes, we quantified the proportion of the
temporal lipidome variation explained by the expression of
multiple lipid-interacting genes using LASSO-constrained
multivariate linear modeling. This approach is analogous to
the methods previously used to estimate the proportion of
variation of gene expression differences explained by the
differential binding of transcription factors (TFs) [34].
Specifically, we constructed a model that predicts the con-
centration difference between lipid concentration in a

sample and the average concentration of this lipid over the
lifespan (scaled lipid concentrations) based on the scaled
expression levels of lipid-interacting genes. The results
demonstrate that for samples in the infant and child stages,
where lipid concentrations differ substantially from the
average lifespan concentrations, gene expression difference-
based predictions explained on average 49% and 14% of the
lipid concentration differences, respectively (median
values). By contrast, for samples in the juvenile and adult
stages, which showed fewer lipid concentration differences
compared to the average concentration across the lifespan,
the predictive accuracy was expectedly lower, explaining on
average 3.5% and 5.5% of the lipid concentration differ-
ences, respectively. Notably, the proportion of variation of

Fig. 4 Characteristics of aging-related lipidome changes. a Correlation
between concentrations of aging-related lipids and expression of their
interacting genes during the adult stage. The red dot shows the median
absolute Spearman correlation coefficients (ρ). The gray box shows the
background distribution of absolute ρ medians calculated by permu-
tations of age labels 100 times. b Age distribution of transition points
of the lipid concentration profiles during the adult stage. The y-axis
shows the number of transition within a given age interval minus the
background calculated by permutations of age labels 100 times. Light
yellow dash lines show the age of transition points for fat mass (FM),
fat-free mass (FFM), physical activity level (PAL), daily (DEE), basal
(BEE) and activity energy expenditure (AEE) measurements from 529
individuals [58]. c The heatmap based on (1−ρ) distances among 682
aging-related lipids calculated using their concentrations across

178 samples from 174 adult individuals. Black boxes and labels show
five clusters. d Temporal patterns of lipid concentrations in the five
clusters. Cluster names and lipid numbers are shown on top. Each dot
represents the average relative lipid concentration within a sample. The
lines represent spline curves built with five degrees of freedom. The
vertical dash lines show the modes of the transition point distribution.
e Lipid classes enriched in the five clusters. Each dot represents the
enrichment of a lipid class, with the size proportional to the number of
overlapping lipids (red—significant enrichment; gray—not sig-
nificant). The vertical dash lines indicate OR= 1. The horizontal dash
lines indicate BH-corrected P= 0.05 of one-sided Fisher’s exact test.
IPR isoprenoids, PPR polyprenols, PG glycerophosphoglycerols, PA
glycerophosphates. f KEGG pathways enriched in the five clusters.
Colors show the BH-corrected P values of hypergeometric tests
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lipid concentration differences explained by the differential
expression of lipid-interacting genes in infant samples was
comparable to the reported proportions of variation of gene
expression differences explained by differential TF binding
estimated using a similar approach: r2= 53% [34].

The separation of stage-dependent lipids according to the
direction of the concentration change, followed by cluster-
ing based on Pearson’s correlations between concentration
profiles across the lifespan, revealed 11 lipid groups
(Fig. 2a). Among them, 10 were enriched in nine specific

Fig. 5 Disorder-associated (DA) lipidome changes in the human PFC.
a Age distribution of patients with autism (ASD, green), schizophrenia
(SZ, purple), Down syndrome (DS, pink), and matched controls (blue).
Each symbol represents an individual (circle—males, triangle—
females). Numbers in brackets show numbers of individuals in each
group. b Numbers of DA lipids for each disorder (red—higher con-
centration in disease, blue—lower concentration in disease). c Lipid
classes (left) and KEGG pathways (right) enriched in DA lipids.
Colors show P values of hypergeometric tests. FAG fatty acyl gly-
cosides, MLPK macrolides and lactone polyketides, Cer ceramides,
OtherSL other sphingolipids, PI glycerophosphoinositols, PE

glycerophosphoethanolamines. d Schematic representation of DA
genetic, gene expression and lipid concentration changes in retrograde
endocannabinoid signaling pathway based on the KEGG annotation.
Stars mark genes containing genetic variants linked to corresponding
disease. Genes with SZ and ASD related genetic variants were
retrieved from GRASP (P < 0.05) and SFARI respectively. Gene
expression level changes were calculated using public data retrieved
from GEO (ASD: GSE28521, SZ: GSE53978, DS: GSE5390). e
Enrichment of DA genetic variants in genes linked to DA lipids. The
y-axis shows the –log10-transformed P value of the hypergeometric
test
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lipid classes (one-sided Fisher’s exact test, BH-corrected P
< 0.05; Fig. 2a and Table S2), and 12 functional pathways
(hypergeometric test, BH-corrected P < 0.05; Fig. 2b and
Table S2). The pathways included “retrograde endocanna-
binoid signaling” (also known as endocannabinoid (eCB)
signaling) overrepresented in lipid groups with low con-
centrations at infant and child stages, and elevated at
juvenile and adult stages, as well as “phosphatidylinositol
(PI) signaling system” characterized by the elevated lipid
concentrations at the infant stage.

PFC lipidome alterations at advanced age

Some of the proposed mechanisms of aging predict
increases in numbers of detected compounds at advanced
age due to metabolic dysfunction and other age-related
deregulation [37–39]. We detected 10,185 ± 791, 11,203 ±
794, 11,637 ± 909, and 11,912 ± 662 lipids at infant, child,
juvenile, and adult stages, indicating a progressive increase
in the lipidome complexity of human PFC from infants to
adults (ANOVA, P < 0.0001; Fig. 3a). There was, however,
no significant increase of detected lipid numbers at the adult
stage from age 30 onwards to 99 years, strongly implicating
that complexity plateaus upon completion of the extended
period of PFC development (ANOVA, P= 0.6467;
Fig. 3b). Furthermore, variance of the lipid concentration
levels did not increase at advanced age (Fig. 3b).

Yet, even at the adult stage lipidome continues to change
quantitatively (permutations, P < 0.001; Fig. 3c), with a
total of 682 lipids showing significant concentration dif-
ferences between 30 and 99 years of age (aging-related
lipids) (ANCOVA, BH-corrected P < 0.05). Supporting the
authenticity of this observation, the concentration levels of
the aging-related lipids correlated significantly with the
expression of their interacting genes within the adult stage
interval (permutations, P= 0.01; Fig. 4a).

To further assess when lipidome changes characteristic
of the last decades of life start, we determined the transition
points of the lipid concentration profiles within the adult
stage. Of the 682 lipids, 523 (77%) had a detectable con-
centration profile transition point (permutations, P < 0.01).
The transition point locations formed a bimodal distribution
with the major peak located at 50–55 years, and the minor
peak at 65–70 years of age (Fig. 4b).

A hierarchical clustering of aging-related lipids resulted
in five clusters (Fig. 4c). The 50–55-year transition point
was apparent in clusters C2, C4, and C5, and the 65–70
transition point in cluster C3 (Fig. 4d). The profile of the
largest cluster C1 (N= 275, 40.3% of all aging-related
lipids) represented a steady concentration decrease over the
entire span of the adult stage. An extending analysis of C1
concentration profiles to earlier life stages identified the
presence of earlier additional transition points at 2 and 31

years of age (Figure S4). Lipids in clusters C1, C3, C4, and
C5 were enriched in specific lipid classes and functional
pathways (Fisher’s exact test, BH-corrected P < 0.05;
Fig. 4e, f, Table S3), such as biosynthesis of unsaturated
fatty acid in C3, glycerolipid metabolism in C4, as well as
retrograde eCB signaling in C4 and C5, suggesting the non-
random character of aging-related changes. Notably, a
transition point analysis conducted separately for male (N
= 115) and female (N= 63) adult individuals revealed
differences in transition point distribution between sexes
(Figure S5).

The PFC lipidome composition is altered in common
cognitive disorders

To further assess potential functionality of lipidome com-
position differences among the lifespan stages, we analyzed
lipidome changes in common cognitive disorders: ASD, SZ,
and DS. Specifically, we measured the lipidome composi-
tion in PFC samples from 26 SZ, 16 ASD and five DS
patients aged 18 to 65 (Fig. 5a and Table S1). The disorder
samples were measured together with 403 samples from
396 cognitively healthy individuals in a random order
(Table S1).

For the 18–65 age interval, the diagnostic status
explained the largest proportion of the total lipid con-
centration variation (6%, permutations, P < 0.01), compared
to age (4%, permutations, P < 0.01) and PMI (1.7%, per-
mutations, P < 0.01). Other factors, i.e. ethnicity, sample
quality, and sex did not affect lipidome composition sig-
nificantly (permutations, P > 0.15). The effect of the diag-
nostic status was robust to correction for sample size, age,
sex, and PMI for all the three disorders (Wilcoxon rank-sum
test, Bonferroni-corrected P < 0.0001; Figure S6). Statisti-
cally, 10.8%, 10.4%, and 2.6% of detected lipids altered
their concentrations significantly in DS, SZ and ASD,
respectively (DA lipids; Wilcoxon rank-sum test, nominal
P < 0.01; N= 542 for DS, N= 525 for SZ, N= 131 for
ASD; permutations, P < 0.01 for SZ and DS, P= 0.06 for
ASD; Fig. 5b).

Of the six DA lipid groups, sorted by disorders and
concentration change directions, five were enriched in
specific lipid classes and all six were enriched in functional
pathways (one-sided Fisher’s exact test, BH-corrected P <
0.1; Fig. 5c and Table S4). Notably, general lipid con-
centration decrease in retrograde eCB signaling and
“gycerophospholipid (GP) metabolism” pathways was
shared among all three disorders. By contrast, pathways
enriched in lipids showing increased concentrations in dis-
orders were particular to each disease (Fig. 5c, d).

To assess the validity of these results, we designed a
replication experiment and generated an independently
measured lipidome dataset containing 33 PFC samples of
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ASD patients used in [40] and 40 matched controls included
in DS2 processed in randomized order (ASD DS2,
Table S1). The analysis, based on 9,058 lipids detected in
this dataset, yielded consistent pathway enrichment results
obtained using all 600 independently identified ASD-
associated lipids (one-sided Fisher’s exact test, P= 0.02),
as well as 319 lipids with decreased concentrations in ASD
samples (Pearson correlation coefficient= 0.96, P < 0.0001,
Figure S7).

An analysis of genetic variants linked to each of the three
disorders by genetic and genome-wide association studies
and collected in the corresponding databases (GRASP,
SZDB, SFARI) revealed strong enrichment in genes linked
to lipids with decreased concentrations in SZ (hypergeo-
metric test, P= 0.0004; Fig. 5e). This enrichment was

robust to the choice of SZ-associated genetic variants from
GRASP [41] and SZDB [42] databases (Fig. 5e and
Table S5). A functional analysis of these genes yielded 19
pathways containing excesses of SZ-linked genetic variants
(hypergeometric test, BH-corrected P < 0.01; Table S5).
These pathways included PI signaling, which was also
identified in lipid class analysis (Fig. 5c), as well as “long-
term depression” and “glutamatergic synapse” (Table S5).

The relationship between age- and disorder-
associated lipidome differences

A comparison of DA lipid concentration differences to age-
dependent lipidome differences revealed similarity between
lipidome alterations in ASD and DS patients with lipidome

Fig. 6 Correlation between disorder-associated (DA) and temporal
changes in the human PFC lipidome. a Schematic representation of
DA and temporal lipidome changes observed in our study. b The
relationship of DA and temporal lipidome differences among lifespan
stages. For each disorder, the left five columns show the relative
concentrations of the corresponding DA lipids across lifespan stages
(red—higher concentration compared to the lifespan median, blue—
lower concentration). The right column shows concentration difference
of the corresponding DA lipids between disorder and age-matched
control samples (red—higher concentration in disease, blue—lower
concentration). The darker shade indicates larger differences. The adult

stage is represented by two columns corresponding to 30–65 and
65–99-year intervals. c The relationship of DA and temporal lipidome
differences among 79 sliding windows covering the lifespan. Dots
represent the Pearson correlation coefficient (r) values for each win-
dow. Curves represent spline curves built with three degrees of free-
dom. The two windows with the highest PCC values are highlighted in
dark red, with red vertical dash lines showing their median age. Yel-
low shaded areas show patients’ age ranges, with gray vertical dash
lines showing the median age. Horizontal gray dash lines and gray
shaded areas indicate r= 0 and the corresponding 99.8% confidence
interval estimated using Rahman r distribution [84]
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alterations characteristic for child and infant stages,
respectively. By contrast, lipidome alterations in SZ were
the closest to the lipidome state at ages greater than 65 years
(Fig. 6a, b).

A direct comparison between DA differences and con-
centration differences particular to a certain age interval
identified using a sliding window approach yielded con-
sistent results: lipidome alterations in ASD correlated best
with lipidome features particular to 2–4-year-old control
individuals, in DS—with lipidome features at the first
50 days of life, and in SZ—with lipidome features of 65–72-
year-old control individuals (Fig. 6c). These results were
robust with respect to the individual variation (bootstrapping,
P < 0.001 for ASD, P= 0.03 for DS, and P= 0.097 for SZ).

Membrane fluidity alterations inferred based on
lipidome composition

The extent of membrane fluidity, an important biological
parameter characterizing membrane biochemical and phy-
siological properties, could be inferred from the membrane
lipidome composition [2, 43, 44]. We assessed temporal
and DA membrane fluidity changes and membrane fluidity
alterations in ASD, SZ, and DS, using the following lipi-
dome features: (i) the total cholesterol concentration, (ii) the

cholesterol to phospholipids ratio, the proportion of (iii)
saturated phospholipids, (iv) glycerophosphocholines (PC),
and (v) glycerophosphoethanolamines (PE), which nega-
tively correlating with membrane fluidity, as well as the
relative unsaturation state of fatty acyl chains of (vi) GP,
(vii) PCs, and (viii) PEs, which positively correlating with
membrane fluidity [2, 43, 44].

Remarkably, all eight features showed clear increases in
membrane fluidity with increased age for all four stages
(ANOVA, Bonferroni-corrected P < 0.0001), including a
further membrane fluidity increase trend at advanced age
(65–99 years, Wilcoxon rank-sum test, BH-corrected P <
0.1) (Fig. 7a). In disorders, SZ samples demonstrated
increased membrane fluidity compared to age-matched
controls, while ASD and DS samples had decreased mem-
brane fluidity (Fig. 7b). Notably, these predicted membrane
fluidity changes matched well the age effects of the dis-
orders: “older” lipidome state in SZ and “younger” lipidome
state in ASD and DS.

Expanding the number of lipidome features associated
with membrane fluidity to 26 revealed a more complex
picture. Of the 26 features, 24 corresponded to fluidity
increase with age. Yet, two features, the length of fatty acyl
chain residues in both non-lyso-PCs and non-lyso-PEs,
showed the opposite trend (Figure S8).

Fig. 7 Predicted membrane fluidity levels at lifespan stages and in
disorders. a Relative membrane fluidity estimates at lifespan stages
predicted using the following features (from top to bottom): (i) total
cholesterol concentration, (ii) ratio of cholesterol to phospholipid
concentration, proportion of saturated (iii) phospholipids, (iv) PC, (v)
PE and relative unsaturation degree of fatty acyl of (vi) GP, (vii) PC,
and (viii) PE, respectively. Each cell shows relative levels of the
features across lifespan stages, with each column representing one

stage. The adult stage is shown by two columns representing 30–65-
year and 65–99-year intervals. Inverted relative levels are shown for
features i–v, which negatively correlate with membrane fluidity. b
Relative membrane fluidity estimates in three disorders. The features
are the same as in panel a. Each cell shows log2-transformed fold
change in disorder compared to age-matched controls. Gray cells
represent the absence of significant changes (Wilcoxon rank-sum test,
BH-corrected P > 0.1)
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Discussion

Our study represents a nearly comprehensive assessment of
lipid concentration changes in the gray matter of the human
PFC over the entire lifespan, as well as a limited evaluation
of lipid concentration changes in three cognitive disorders:
SZ, ASD, and DS. Our results reconcile with previous
observations, based on substantially smaller numbers of
samples, that showed substantial concentration changes in
human brain cortex during development [17], as well as
aging [8]. Further, our results indicate that lipids identified
to correlate with the maximal lifespan duration in mammals
[45] experience more temporal concentration changes dur-
ing the human lifespan (Figure S2). Furthermore, con-
centration changes along the lifespan detected in our study
correlate significantly with expressions of genes interacting
with the lipids (Figure S3).

Our analysis, which is based on concentrations of 5024
lipids in a total of 452 human PFC samples, resulted in the
following observations:

1. Temporal changes of the cortical brain lipidome form
four lifespan stages with boundaries at approximately
100 days, 6 years and 30 years of age. These stages
are conserved in chimpanzees and macaques and are
traceable at the level of the lipid-interacting gene
expression.

2. Cortical aging is not accompanied by an increase in
individual variation and numbers of detected com-
pounds, arguing against metabolic damage hypoth-
esis.

3. Cortical aging is characterized by substantial lipidome
changes affecting no less than 14% of detected lipids.
The majority of these changes (51%) commence
during the 50–55-year interval, with differences
existing between females and males.

4. Predicted membrane fluidity shows a clear increase
over the lifespan.

5. All three cognitive disorders are accompanied by
significant lipid concentration changes, which include
shared and disease-specific pathway alterations.

6. Genes connected to lipids with decreased concentra-
tions in SZ are significantly overrepresented in genetic
variants linked to the disease, indicating the potential
role of lipidome changes in SZ etiology.

7. Disease-associated and age-dependent lipidome
changes overlap, indicating an older lipidome state
in SZ and a younger state in ASD and DS.

Temporal lipidome stages

Our results indicate that four lipidome lifespan stages are
conserved among primates and characterized by differential

enrichment in specific lipid classes and pathways, sug-
gesting their relevance to functional changes in PFC orga-
nization. The underlying processes might include
synaptogenesis and synaptic pruning, as they include a
rapid increase of synaptic density in layer II–IV at three
months after birth [46], followed by a gradual increase
peaking between 5 and 8 years of age [47], followed by
synaptic pruning and cortical maturation persisting till
30–40 years of age [47]. The myelination process might
also contribute to the temporal lipidome stages, as age-
dependent changes of the myelination rate were shown in
humans and chimpanzees [48]. At the same time, timing of
synaptic maturation and myelination might differ between
human and other primate species, even after correction for
lifespan differences [46, 48–50]. Thus, further work
including determination of lipidome composition markers
characteristic of specific cell types and cellular compart-
ments is needed to assess the physiological significance of
lipidome lifespan stages.

One noticeable feature characterizing PFC lipidome at
different lifespan stages is membrane fluidity. Changes of
membrane fluidity are considered to affect functions by
influencing cellular material and signaling transmission
rates, as well as properties of membrane proteins [2, 51, 52].
Our analysis of the lipidome stages revealed a noticeable
stepwise increase in predicted membrane fluidity from the
infant to adult stages. While the mechanisms underlying this
process are unclear, they might relate to neuron develop-
ment and differentiation as increased membrane fluidity was
reported for human primary neuron cultures [53].

Lipidome changes in aging

Our study includes 77 samples with ages between 60 and 99
years, 19 of them older than 90, thus providing substantial
coverage of the advanced age interval. Yet, we detect no
significant increase in numbers of detected lipids and indi-
vidual variation with increased age, which was predicted by
the metabolic damage accumulation hypothesis of aging
[37–39, 54]. At the same time, increases in metabolite
numbers at advanced age were reported in Drosophila [37].
Damage accumulation during aging process at the other
molecular levels, including increases in genome instability
[55] and transcription variation [56], were reported. Thus,
aging-associated heterogeneity increase might be species-
and molecular level-dependent.

In contrast to aging, we detected an obvious increase in
detected lipid numbers early in life, from newborns to
adults, resulting in a 15–20% increase of the PFC lipidome
repertoire. Based on the relationship between the lipid white
matter enrichment and detection at each stage, we estimate
that the contribution of cortical myelination progression to
this lipidome repertoire increase is <5%. Yet, in agreement
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with anatomical data [57], we detect a gradual rise in
numbers of lipids preferentially present in white matter with
increased age (Table S6).

Overall, 682 lipids showed significant concentration
changes in aging. For 51% of them, these changes com-
mence at 50–55 years of age, for 9%—at 65–70 years of
age, and for 40%—at 3 months–4 years of age. Notably,
the major lipidome transition at 50–55 years matches the
transition point of body fat, fat-free mass, and basal energy
expenditure trajectories at 52 years [58]. Furthermore, the
difference in body composition and energy expenditure
trajectories between males and females, with later turning
point in males [58], was also observed in our data and
grouped specifically in C4 cluster representing aging-
related concentration changes of glycerophosphates, gly-
cerophosphoglycerols, glycerophosphoethanolamines,
phosphosphingolipids, fatty acyl glycosides, and poly-
prenols (Fig. 4e and S5). While changes in body compo-
sition, metabolic and mitochondrial decline represent well-
known hallmarks of aging [59–61], our results indicate
that this decline is not uniform and the 50–55-year
interval might represent an important global metabolic turn
point.

Lipidome changes in cognitive disorders

Lipid concentration changes were reported for specific lipid
classes in many cognitive disorders, including SZ [21–27,
62], ASD [19, 20], DS [18], bipolar disorder [26, 63], and
Alzheimer’s disease [64]. In our study, 27 SZ, 17 ASD and
five DS patients samples were measured together with the
control group in a random order. Overall, despite limited
sample numbers, our results confirm the existence of sub-
stantial changes in the PFC lipidome composition in all
three disorders. Notably, we demonstrate that SZ-associated
genetic variants are robustly enriched in genes linked to
lipids showing decreased concentrations in SZ in our study.
Thus, at least in SZ, lipid concentration changes might be
linked to disease causes.

A correction for sample number differences showed a
two-fold greater effect of DS on the PFC lipidome com-
pared to SZ and ASD (Figure S6). Still, despite a difference
in the overall effect, all three diseases show parallel lipid
concentration alterations in two pathways: retrograde eCB
signaling and GP metabolism.

Retrograde eCB signaling was shown to play an impor-
tant role in the control of emotional responses, contextual
behavior reactions, and social interactions [65, 66]. Changes
in concentrations of eCBs and cannabinoid receptors were
reported in SZ [67, 68], ASD [69], and Huntington’s dis-
ease [70]. In our analysis, lipids with decreased con-
centrations in ASD samples in DS1 and DS2 are both
enriched in eCB signaling pathway (Figure S7). Of the two

well-characterized eCB compounds involved in eCB, ara-
chidonylethanolamide (AEA) shows a concentration
decrease in ASD DS2 (Figure S7), consistent with results
obtained in model organisms [65, 66]. The second eCB, 2-
arachydonoil glycerol (2-AG), shows increased concentra-
tion in ASD in both DS1 and DS2, as well as in SZ.
Consistently, a 2-AG concentration increase was reported in
the PFC of SZ patients [68]. Concentrations of other lipid
components of eCB signaling pathway, eCB biosynthesis
and degradation products, were not assessed previously.
Our results indicate that eCB biosynthesis intermediates, i.e.
glycerophosphocholines (PC), glyceropho-
sphoethanolamines (PE), and diacylglycerol (DAG) are
mainly decreased in all three disorders, although DAG
concentration increases in DS2—the only contradictory
result between datasets among seven detected metabolites.
The degradation products, i.e. prostaglandin H2 (PG-G) and
arachidonate (AA) are decreased and increased respectively
(Fig. 5d, Figure S7).

Our results add DS to the list of cognitive disorders
characterized by lipid concentration changes in eCB sig-
naling, further supporting the role of this pathway in cog-
nitive dysfunctions. Notably, in aging, we see changes
contrasting the DA alterations. Specifically, individuals
with no diagnosed cognitive dysfunction show decreased
levels of 2-AG and increased concentrations of eCB bio-
synthesis intermediates starting at ∼51 years of age (Fig. 4d,
f). Thus, it is appealing to speculate that these changes
might represent a compensatory mechanism counter-
balancing the deleterious effects of aging in cognitively
healthy individuals.

For the other pathway showing an overall lipid con-
centration decrease in the three disorders, GP metabolism,
lipid concentration decreases and increases were both
reported in SZ [21, 23, 25–27, 62]. Our results indicate that,
similar to eCB signaling, the disruption of GP metabolism
might be a common feature of cognitive dysfunctions.
Furthermore, GP metabolism includes metabolism of PCs,
PEs, and DAGs participating in eBC biosynthesis.
Decreased levels of PCs and PEs were reported in SZ [71,
72]. Thus, the two pathways showing an overall lipid
concentration decrease in the disorders are linked.

Among lipidome changes particular to each disease,
some could be linked to the reported changes. For instance,
a lower concentration of cardiolipin, the critical component
of the inner mitochondrial membrane, in SZ (Fig. 5c)
matches elevated anti-cardiolipin antibody levels reported
in SZ patients [73, 74]. Similarly, elevated levels of trir-
adylglycerols (TG) in DS match the reported over-
expression of genes involved in energy consumption and
oxidative stress in DS patients [75], as TGs represent one of
the major energy sources [76], and were linked to an
increase of lipid peroxidation markers [77].
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All three of the examined cognitive disorders have an
ontogenetic component [78–81]. We observed higher
similarities between the lipidome states in ASD/DS patients
and cognitively healthy individuals of much younger ages
both in terms of content and predicted membrane fluidity
properties. Oppositely, the lipidomes of SZ patients were
more similar to cognitively healthy individuals of older ages
than to age-matched ones. Notably, this observation is
consistent with the notion that SZ represents an accelerated
aging syndrome, a hypothesis based on higher mortality of
SZ patients after correction for psychiatric quality and
medical care levels, aging-dependent cognitive decline
rates, and increased risk of aging-related diseases, such as
diabetes [82]. Accelerated brain aging in SZ patients was
also reported based on longitudinal study of MRI-based
gray matter density maps [83].

Conclusions

While lipids represent both the main structural components
and important signaling molecules of the human brain, our
understanding of their actual involvement in brain functions
and dysfunctions is only beginning to emerge. Our study
shows that the lipidome composition of the human PFC is
highly dynamic, with multiple changes observed in both
development and aging, as well as in all three examined
cognitive disorders. In the absence of the mature annotation
of lipid functionality, analogous to gene-based annotation,
interpretation of these changes remains a challenge. Some
of the changes, such as the disruption of endocannabinoid
signaling in diseases and the presence of opposite changes
in aging, the existence of a lipid concentration trajectory
breakpoint at ∼55 years of age, the “older” lipidome sate of
SZ patients, as well as the connection between a lipid
concentration decrease in SZ and genome variants asso-
ciated with disease, could be connected to previous obser-
vations. Other findings, such as the existence of four
temporal lipidome stages, differences in predicted mem-
brane fluidity between stages, as well as our observation of
no increase in lipidome representation and variability in
aging, could not be directly linked to existing knowledge.
Altogether, our work sheds light on the lipidome organi-
zation of the human PFC and highlights the need for further
detailed research of lipidome organization and functions in
healthy and diseased brains.
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