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a b s t r a c t 

Purpose: No method is available to systematically study SARS-CoV-2 transmission dynamics using the 

data that rideshare companies share with government agencies. We developed a proof-of-concept method 

for the analysis of SARS-CoV-2 transmissions between rideshare passengers and drivers. 

Method: To assess whether this method could enable hypothesis testing about SARS-CoV-2, we repeated 

ten 200-day agent-based simulations of SARS-CoV-2 propagation within the Los Angeles County rideshare 

network. Assuming data access for 25% of infections, we estimated an epidemiologist’s ability to analyze 

the observable infection patterns to correctly identify a baseline viral variant A, as opposed to viral variant 

A with mask use (50% reduction in viral particle exchange) , or a more infectious viral variant B (300% 

higher cumulative viral load). 

Results: Simulations had an average of 190,387 potentially infectious rideshare interactions, resulting in 

409 average diagnosed infections. Comparison of the number of observed and expected passenger-to- 

driver infections under each hypothesis demonstrated our method’s ability to consistently discern large 

infectivity differences ( viral variant A vs. viral variant B ) given partial data from one large city, and to 

discern smaller infectivity differences ( viral variant A vs. viral variant A with masks ) given partial data 

aggregated across multiple cities. 

Conclusions: This novel statistical method suggests that, for the present and subsequent pandemics, 

government-facilitated analysis of rideshare data combined with diagnosis records may augment effort s 

to better understand viral transmission dynamics and to measure changes in infectivity associated with 

nonpharmaceutical interventions and emergent viral strains. 

© 2022 Elsevier Inc. All rights reserved. 
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The emergence of novel, partially vaccine-resistant strains of 

ARS-CoV-2 poses a serious threat to ongoing public health ef- 

orts [ 1 , 2 ]. Policies to contain the spread of COVID-19 rely on un-

erstanding what such strains mean for the risk of transmission 

nd how they may impact optimal strategies to contact trace, test, 

uarantine, and vaccinate [ 3 , 4 ]. Important factors in our under- 

tanding of viral transmission include the effectiveness of nonphar- 
Abbreviations: NPI, nonpharmaceutical intervention; RIDE, Rideshare Infection 

etection; LA, Los Angeles County. 
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aceutical interventions (NPIs) such as facemasks [ 4 , 5 ]; the preva- 

ence of superspreaders in the population [6] ; the increased infec- 

ivity of new viral strains [ 7 , 8 ]; and the ongoing extent to which

accines reduce infectivity given emergent strains and waning im- 

unity [ 2 , 9 ]. The emergence and rapid spread of the Delta and

micron variants have highlighted the limitations of the current 

nfrastructure, even after data-sharing improvements during the 

rst year of the pandemic, to offer only retrospective identification 

f emergent viral strains and their transmission dynamics [1] . 

The study of the transmission of SARS-CoV-2 has been con- 

trained primarily to specialized settings, such as laboratory ex- 

erimentation, by examining infections in households, trains, hos- 

itals, and military facilities, and through placebo-controlled vac- 

ine clinical trials [ 5 , 10–14 ]. The usefulness of these data is lim-

ted by the difficulty of translating the results to other settings 

nd the emergence of new viral strains. Practical and ethical limi- 
 modeling method to analyze rideshare data for the surveillance 
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ations to clinical trials and the challenges of drawing causal infer- 

nce from observational data limit our ongoing understanding of 

eal-world transmission dynamics for COVID-19. For example, more 

han 9 months after the emergence of the Delta variant with over 

0,0 0 0 diagnosed “breakthrough” infections in vaccinated individu- 

ls [ 15 ], the research community still lacked consensus on whether 

hese infected vaccinated individuals had a reduced level of trans- 

issibility relative to infected unvaccinated individuals [ 16 , 17 ], or 

hether they were equally contagious [ 18 , 19 ]. 

Analysis of data collected via digital disease surveillance may 

elp elucidate evolving SARS-CoV-2 transmission dynamics [20] . 

obile phone applications for contact tracing (e.g., Google Apple 

xposure Notification technology) gather extensive real-world data, 

ut with limited information about the highly variable settings 

n which these interactions take place [21] . In contrast, in-vehicle 

ransmission dynamics can be well characterized and are relatively 

onsistent. Aerosolized viral dynamics within cars have been stud- 

ed [22] , and rideshare companies already share data with gov- 

rnment health agencies for contact tracing [23] , but to the best 

f our knowledge no statistical method is available for the use of 

hese data for the systematic study of the transmission dynamics 

f COVID-19. 

The interactions between passengers and drivers facilitated by 

ideshare platforms such as Uber and Lyft are, essentially, a series 

f partially controlled, standardized, pseudo-random experiments 

f SARS-CoV-2 transmissions. Rideshare trips are often the only 

onnection between individuals; are governed by mask-wearing 

olicies implemented on specific dates; occur in a relatively con- 

rolled environment with fairly consistent spatial dynamics; and 

re sporadic with respect to time, location, and duration. Previ- 

us studies have associated rideshare trips with up to a 10-fold 

ncrease in COVID-19 infection risk [24] , suggesting that infection 

atterns among rideshare trips may be substantial. Furthermore, 

ideshare location and time data are stored in a machine-readable 

ormat that could be linked to data such as diagnoses or self- 

eported symptoms (anonymized in accordance with local legisla- 

ion). Thus, rideshare trip data may facilitate the automated iden- 

ification of the emergence of new viral strains and the study of 

heir transmission dynamics, with and without the presence of 

PIs and vaccination, and based on passenger and driver charac- 

eristics. 

The unknown and potentially low “signal-to-noise” ratio of 

etected-to-undetected viral infections in a rideshare network 

resents a challenge for the usefulness of a statistical method to 

nalyze rideshare data merged with diagnosis data [25] . The poten- 

ial utility of such a method depends on its performance accurately 

etecting rideshare-acquired infections while accounting for undi- 

gnosed infections as well as for “false-positive” rideshare interac- 

ions that appear to have resulted in transmission even though the 

otential infectee contracted the virus elsewhere. 

We develop Rideshare Infection Detection (RIDE), a probabilis- 

ic method and model of rideshare transmissions designed to test 

ypotheses about the emergence of novel strains of SARS-CoV-2 

nd their transmission dynamics. Since aggregated rideshare and 

iagnosis data are not currently publically available, we simulate 

iral transmission data in a hypothetical rideshare network based 

n empirical data from a large US city. We use these simulated 

ata to test hypotheses about transmission dynamics, while as- 

uming access to only the kinds of data that may be available in 

ractice. Primarily this study attempts to assess (1) RIDE’s abil- 

ty to detect changes in infectivity associated with either mask 

se or a more infectious, emergent viral variant, and (2) RIDE’s 

bility to detect an increase in superspreading. Ultimately, we 

im to demonstrate that future application of RIDE with real- 

orld data has the potential to augment understanding of viral 

ransmission dynamics, thereby informing policy makers in their 
2 
esponse to changing conditions during the current and future 

andemics. 

ETHODS 

verview 

We derive a mathematical model of in-vehicle viral transmis- 

ion. Using large-scale, agent-based computer simulation with em- 

irical diagnoses and rideshare data from Los Angeles County, we 

pply this mathematical transmission model to generate hypothet- 

cal SARS-CoV-2 rideshare infection patterns representative of a 

arge US city during quarantine. We develop RIDE, a statistical 

ethod for the analysis of these simulated infection patterns as- 

uming access only to the kind of data that would be available to 

n epidemiologist, for example, with incomplete knowledge of in- 

ections and infection origins. As a proof-of-concept, we apply a 

imited Monte Carlo technique to test the power of this statisti- 

al method to differentiate between the mathematical transmission 

arameters corresponding to a baseline strain versus other hypo- 

hetical transmission scenarios. 

athematical model of transmission 

We estimate patient infectivity relative to symptom onset 

ith a general mathematical model of viral transmission adapted 

ith SARS-CoV-2-specific parameter estimates from the literature 

 10 , 26 , 27 ]. In-vehicle probability-of-infection functions incorporat- 

ng ride duration and ride timing relative to the infector’s symp- 

om onset are derived for unique passenger-to-driver and driver-to- 

assenger transmission dynamics. We define four hypothetical sce- 

arios of transmission ( Table 1 ). Scenario “viral variant A ” assumes 

o facemask use and overall viral load homogeneity across infected 

ndividuals. This serves as the baseline. In scenario “viral variant A 

ith masks ,” we represent masking with a 50% reduction in viral 

article exchange between infector and potential infectee. In sce- 

ario “viral variant A with increased superspreading ,” we increase 

he likelihood of superspreading by introducing infectivity asym- 

etry in the population, with 1 in 20 infected individuals having a 

ve-fold higher overall probability of transmitting SARS-CoV-2 [6] . 

n scenario “viral variant B, ” based on research detailing the emer- 

ent D614G SARS-CoV-2 strain, we introduce a viral variant with 

00% higher viral load relative to the baseline viral variant A (see 

upplementary Section II for details) [7] . 

eneration of synthetic rideshare transmission data 

We apply agent-based modeling to generate synthetic data to 

epresent the data that may become available if public health 

gencies partner with rideshare companies. The characteristics of 

rban rideshare networks, COVID-19 diagnoses, and estimates of 

he fraction of true infections represented by the diagnoses from 

arch 17, 2020 to October 3rd, 2020 (200 days) in Los Angeles 

ounty (LA) were derived from the literature [28–30] . This time 

eriod represents the “first wave” of the pandemic in LA, occurring 

n spring and summer of 2020. LA rideshare volume, with an esti- 

ated 75% reduction during this period of quarantine, was simu- 

ated [30] . The total number of infections in LA was assumed to be 

wice the number of diagnosed infections reported over the period 

onsidered [ 25 , 31 ]. Each network was initialized by assigning a day 

f symptom onset to randomly selected passengers and drivers, 

ith the number of infections proportional to the estimated his- 

orical number of infections reported 3 days later (to account for 

he average delay between symptom onset and testing) [32] . The 

ime of symptom onset was chosen from a truncated normal dis- 

ribution calibrated to best fit the distribution of empirical LA di- 
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Table 1 

Hypothesized sets of SARS-CoV-2 transmission parameters and probability of infection for populations with differing transmission characteristics 

Parameters 

Estimates from 

literature (mean 

[95% confidence 

interval]) 

“Viral variant A …

“Viral variant B”

… ” … with masks”

… with increased 

super-spreading”

No masks, baseline 

super- spreading 

Masks, baseline 

super- spreading † 
No masks, 5% 

super- spreaders ‡ 
No masks, baseline 

super-spreading 

Viral expulsion relative to viral variant A 

— % 

Not available 100% - - 300% 

Viral exchange reduction due to NPIs — % Not available - 50% - - 

Infectivity of “superspreader ” relative to 

baseline viral variant A — % 

Not available - - 500% - 

Days infectious before symptom onset —

days 

2.3 [0.8-3.0] 2.3 2.3 2.3 3 

Peak infectivity relative to symptom 

onset— days ∗
-0.7 [ −2.0-0.2] -0.7 -0.7 -0.7 -2 

probability of passenger-to-driver infection 

from 20 min ride w/ passenger on day of 

symptom onset — % 

- 1.5% 0.7% 7.40% 2.8% 

probability of driver-to-passenger infection 

from 20 min ride w/ driver on day of 

symptom onset — % 

- 2.9% 1.5% 14.70% 5.6% 

See Supplementary Section II for details of the mathematical model of in-vehicle viral transmission. 
∗ Adjusted for via gamma infectivity distribution shape and scale parameters. 
† Passenger and driver both wearing masks, blocking 50% of viral particle exchange. 
‡ Increased likelihood of superspreading: Assumes 5% of infected individuals are “superspreaders” with 20x increased cumulative viral load; the remaining 95% of infected 

individuals are 78.9% as infectious as baseline individuals with viral variant A . 
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Fig. 1. Simplified schematic of RIDE analytical method to identify potential and ob- 

served infections. Observed infections are tabulated by counting individuals with 

symptom onset following a potentially infectious rideshare interaction. The ex- 

pected number of infections is the sum of all potential infections, each weighted 

by its probability of infection. Arrow thickness for each potential infection corre- 

sponds to the probability-of-infection magnitude, which is calculated given a math- 

ematical model of rideshare transmission that depends on ride duration, the tim- 

ing of the ride relative to the potential infector’s symptom onset, and the assumed 

SARS-CoV-2 transmission parameters given the hypothesized scenario and viral 

variant. 
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gnoses during the simulated time period (see Supplementary Sec- 

ion III for details). 

For each rideshare interaction involving an infected individual, 

he probability of infection was calculated using the parameter set 

orresponding to the hypothetical viral scenario being tested and 

ia applying the previously derived passenger-to-driver or driver- 

o-passenger transmission functions. The interaction was assumed 

o result in transmission based on a draw from a Bernoulli random 

ariable with probability of success equal to the calculated prob- 

bility of infection. For those infected, an incubation period was 

rawn from a normal distribution, and a subsequent symptom on- 

et time was assigned. 

From this simulated data, we then derive data representative of 

he empirical data that would be available to an epidemiologist. 

e consider a Partial Reporting scenario with access to diagnosis 

nd symptom onset data for 25% of infections and a Full Reporting 

cenario in which data are available for all infections. 

Full mathematical details for the generation of the simulated 

ata are available in Supplementary Section III. 

ypothesis testing with RIDE 

Using only the data that would be available to an epidemiol- 

gist (neither undiagnosed infections nor information on the ori- 

in of each diagnosed infection), we introduce Rideshare Infection 

etection (RIDE) to analyze the simulated rideshare infection pat- 

erns in order to calculate the number of expected infections and 

he number of observed infections ( Fig. 1 ). 

Using synthetic data produced via simulated propagation of vi- 

al variant A , we test hypotheses about which scenario ( viral variant 

, viral variant A with masks , or viral variant B ) best corresponds to

he apparent number of rideshare infections observable in the net- 

ork. For each scenario, we use the parameter set corresponding 

o the scenario being tested and knowledge only of diagnosed in- 

ections to calculate the expected number of rideshare infections, 

qual to the sum of the probabilities of infection across all po- 

entially infectious rideshare interactions (i.e., the sum of the ex- 

ected values of the Bernoulli distributions). The observed num- 

er of rideshare infections is determined by counting the num- 
3 
er of interactions in which a diagnosed individual within their 

nfectious window shared a rideshare vehicle with a potential in- 

ectee who had a positive diagnosis with symptom onset between 

.5 and 10 days following the rideshare trip. This observed num- 

er is then adjusted to account for the percentage of infections di- 

gnosed (this diagnosis percentage is assumed known) and for an 

stimation of the average number of “false positives” (interactions 

hat appeared to have resulted in an infection even though the in- 

ectee was infected elsewhere) given the overall infection density 

n the network. For each respective level of reporting ( Full vs. Par- 

ial Reporting) , this simulated propagation and analysis with RIDE 

as repeated 10 times to determine the impact of transmission 

tochasticity and rideshare network variability. Across the 10 sim- 

lations, the differences in the expected number of passenger-to- 
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Fig. 2. Modeled probability of transmission from passenger to driver. Probability 

of infection varies significantly depending upon interaction dynamics (time of ride 

relative to passenger’s symptom onset and ride duration) and upon assumptions 

defining the hypothetical SARS-CoV-2 transmission parameters (representing the 

passenger’s viral variant; whether the passenger is a superspreader; and whether 

face masks are used). ∗Probability of driver infection given 20 min ride with infected 

passenger. † Baseline viral variant. ‡ Passenger and driver wearing masks, blocking 50% of 

viral particle exchange. §Superspreaders with viral variant A are 500% more infectious 

than baseline individuals with viral variant A . ¶Alternative viral variant B is 300% more 

infectious than baseline and has different infectivity parameters within the previously 

estimated 95% confidence intervals. 
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river infections (given each set of hypothesized parameters) and 

he observed number of passenger-to-driver infections are com- 

ared with a pairwise Kruskal-Wallis test (Supplementary Section 

V). 

Separately, two synthetic rideshare infection patterns were sim- 

lated and compared: propagation of viral variant A and propaga- 

ion of viral variant A with increased superspreading . For each round 

f analysis, the differences were calculated between the number 

f observed passengers infected per infectious driver for the in- 

reased superspreading scenario minus the respective values for 

he baseline scenario. This was repeated 10 times each for both 

artial and Full Reporting , and the resulting distributions were com- 

ared with the Kruskal-Wallis test. All P-values were adjusted for 

ultiple testing (Supplementary Section IV). 

All simulated viral propagation and analysis with RIDE were 

erformed with R (Version 4.0.3, 2010; Vienna, Austria) and exe- 

uted with Stanford’s Sherlock High-Performance Computing Clus- 

er. 

ESULTS 

athematical model 

Differences in viral strains and the various hypothetical prop- 

gation scenarios considered resulted in notable differences in the 

robability of rideshare-acquired SARS-CoV-2 infection ( Fig. 2 ). Rel- 

tive to the baseline scenario probability-of-infection given a 20- 

inute ride without mask use with a passenger with viral variant 

 one day before symptom onset, the probability of driver infec- 

ion was found to be 51% lower when both driver and passenger 

re masked (scenario viral variant A with masks ), 480% higher when 

he passenger was one of the more infectious individuals from sce- 

ario viral variant A with increased superspreading , and 342% higher 

hen the passenger was infected with viral variant B . 
4 
ynthetic rideshare transmission data 

The simulation was initiated with a baseline infection proba- 

ility of 528,828 out of 10 million, assuming an infection preva- 

ence double the 264,414 diagnosed, reported COVID-19 infections 

n LA during this period. Data from 10 simulated trials of SARS- 

oV-2 propagation within the LA rideshare network resulted in 

n average of 190,387.1 (range 187,898–193,645) potentially infec- 

ious rideshare interactions, encompassing possible passenger-to- 

river and driver-to-passenger transmissions. When these 10 sim- 

lated trials were propagated assuming SARS-CoV-2 transmission 

arameters corresponding to viral variant A , there were an average 

f 409.0 (range 384–424) rideshare infections resulting in a diag- 

osis for the Partial Reporting scenario (access to data on 25% of 

nfections), and 16 6 6.4 (range 1,614 to 1,698) diagnosed rideshare 

nfections for the Full Reporting scenario. 

ypothesis testing with RIDE 

Across 10 trials of propagation with viral variant A followed by 

ypothesis testing with RIDE given Partial Reporting , the difference 

etween the number of expected minus observed passenger-to- 

river rideshare infections was 16.7 (range −54.4 to 78.8) when as- 

uming viral variant A without masks or increased superspreading; 

61.0 (range −130.3 to 0.2) when assuming viral variant A with 

asks without increased superspreading; and 294.9 (range 224.8–

71.4) when assuming viral variant B without masks or increased 

uperspreading (all adjusted P -values < .001). The results were 

ualitatively similar in the Full Reporting scenario, with greater dif- 

erences, less variation, and a higher level of significance ( Fig. 3 ). 

For the secondary investigation comparing analytical results 

iven simulated propagation of viral variant A with increased super- 

preading relative to simulated propagation of viral variant A , the 

ean observed number of drivers that infected exactly one passen- 

er was 9.2 (range 29 to −6) lower in the superspreader scenario 

nd the mean number of drivers that infected exactly two passen- 

ers was 1.8 (range −8 to 7) higher in the superspreader scenario 

iven Partial Reporting . The results were qualitatively similar in the 

ull Reporting scenario, with greater differences ( Fig. 4 ). In both the 

ull and Partial Reporting scenarios, the combined data from the 10 

rials led to significant differences in the distributions ( Full Report- 

ng, P < .001; Partial Reporting, P < .05). 

IMITATIONS 

The primary limitations of this work stem from the use of syn- 

hetic data. Although we include sources of variability in our model 

y incorporating stochastic ride durations, ride timing relative to 

ymptom onset, transmission heterogeneity, etc., real-world infec- 

ion patterns would include additional sources of noise. For exam- 

le, we do not consider some factors affecting in-vehicle air cir- 

ulation, such as the potential for open windows [22] , seating ar- 

angements [33] , whether the airflow system is operating [34] , po- 

ential barriers between the front and back seat, or differences in 

ehicle sizes. Furthermore, we do not incorporate the possibility 

f systematic infectivity differences between diagnosed and undi- 

gnosed individuals, immunity from recent SARS-CoV-2 infection, 

on-uniform diagnostic testing and reporting rates between drivers 

nd passengers, nor systematic differences between neighborhoods 

ithin cities. Finally, our hypothesis testing with RIDE assumes ac- 

urate estimation of the total fraction of infections that are diag- 

osed (which is not precisely known by the scientific community), 

s well as accurate data about infected individuals’ symptom onset 

ime relative to diagnosis, which may not be consistently recorded. 

The simulated propagations for this proof-of-concept testing 

onsidered COVID-19 infections in LA during the first wave of the 



C.W. Safranek and D. Scheinker Annals of Epidemiology xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: AEP [m5G; September 30, 2022;19:46 ] 

Fig. 3. Differences given 10 trials in the number of passenger-to-driver infections expected and observed in the simulation based on analysis with different hypotheses of 

SARS-CoV-2 transmission, according to the percent of infections reported (left, Full Reporting ; right, Partial Reporting ). Variability in results given analyses of 10 simulated 

synthetic datasets resulting from SARS-CoV-2 propagation in Los Angeles County when true propagation conditions correspond to viral variant A with no masks. For each 

simulated dataset, and with access to only diagnosed infections, the epidemiologist assesses the difference in the expected number of passenger-to-driver infections given 

analysis with hypothesized parameters (assuming either viral variant A, viral variant A with masks , or viral variant B ) minus the adjusted number of observed rideshare 

infections in the network. Each dot within a box-plot represents results with the given hypothesis for one round of Los Angeles County simulation and analysis. Box-plot 

midline represents the median of analysis results across the 10 trials, box edges show interquartile range, and whisker tips show the minimum and maximum result values. 
∗Observed infections adjusted to account for undiagnosed infections and baseline "false-positive" transmissions (Supplementary IV). 

Fig. 4. Differences in the number of passenger infections per driver in simulations with baseline variant versus variant with increased superspreading, according to the 

percent of infections reported (left, Full Reporting ; right, Partial Reporting ). Variability in the differences between results given analyses of 10 simulated synthetic datasets 

resulting from SARS-CoV-2 propagation of viral variant A in Los Angeles County given either a population with homogeneous cumulative infectivity (baseline superspreading 

scenario) or asymmetric infectivity (increased superspreading scenario, where 5% of infected individuals are “superspreaders”). Each dot within a box-plot represents analysis 

results with the given hypothesis for one round of Los Angeles County simulation and analysis. Box-plot midline represents the median of analysis results across the 10 

trials; box edges show interquartile range; whisker tips are minimum and maximum values; and black dot shows outliers, as specified by Tukey. 
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andemic, when there were 132,207 diagnosed infections over 6 

onths. However, in the more recent Omicron wave, in just one 

onth (December 25, 2021 to January 25, 2022) LA’s cumulative 

iagnosed case count rose from 1.5 million to 2.5 million [29] . 

iven this higher relative rate of infections, RIDE’s detection power 

ould potentially be 24-fold greater during the Omicron wave. 

oreover, given improved PCR and antigen testing infrastructure, 

iagnosis rates have since likely increased above the conservative 

5% estimate used for the Partial Reporting scenario. Finally, real- 
5 
orld deployment of RIDE could aggregate data across multiple 

ities and combine analyses of passenger-to-driver and driver-to- 

assenger transmissions. Thus, the additional noise introduced by 

he aforementioned limitations would likely be mitigated by these 

actors given real-world deployment of RIDE (see Supplementary 

ection V for details). 

For simplicity, we did not address all possible scenario permu- 

ations (e.g., mask use x new viral variant). Instead, we focused on 

ssessing RIDE’s detection ability with regards specific events of 
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he COVID-19 pandemic, such as the start of the mask mandate 

nd the rapid Delta variant outbreak. Other scenario permutations 

ay represent opportunities for future research. 

ISCUSSION 

Using simulated viral propagation patterns generated based on 

mpirical ridesharing data and COVID-19 diagnoses records from 

os Angeles County (LA), we demonstrate that analysis of rideshare 

ata may allow for the identification of emergent SARS-CoV-2 

trains and the study of their transmission characteristics. Our 

nalyses of LA’s first COVID-19 wave show that such an approach 

ay be effective given data aggregated over 6 months and when 

s few as 25% of infectious individuals have been identified. While 

dditional sources of noise may confound real-world deployment 

f RIDE, consideration of our simulations’ conservative assump- 

ions suggests that meaningful, even real-time pandemic monitor- 

ng may be feasible. Together, our findings indicate that further in- 

estigation is warranted for the development of such a system at 

he national scale and with access to more detailed data. 

We demonstrate that current research-based estimates for the 

ange of SARS-CoV-2 transmission parameter values leave signif- 

cant uncertainty in transmission modeling, leading to substan- 

ial variability in probability-of-infection predictions for a typical 

ideshare interaction. We demonstrate the ability of RIDE to differ- 

ntiate between values within the current estimated range, poten- 

ially enabling measured appraisal of the emergence of more infec- 

ious viral strains; the effectiveness of Uber and Lyft’s nationwide 

ask mandates for all drivers and passengers; and the extent of 

uperspreading in the population. 

Previous epidemiological modeling research combining diag- 

oses records and retrospective passenger transportation data from 

igh-speed trains in China sets precedent for RIDE [33] . The 

tandardized format of rideshare data at an international scale 

resents a significant opportunity for a more extensive study of vi- 

al transmission. While our simulations have similarities with pre- 

ious agent-based modeling studies predicting SARS-CoV-2 trans- 

ission patterns within other settings (e.g., universities) [35] , the 

ain contribution of our work is not estimating the number of 

ideshare-based infections, but rather developing a method to an- 

lyze real-world rideshare infection patterns if we were to have 

ccess to retrospective data. 

Straightforward expansions of RIDE could increase real-world 

ypothesis-testing power via the aggregation of data across multi- 

le cities and with the integration of additional forms of data, such 

s vaccination records. These extensions could be used to evaluate 

he extent to which vaccines reduce the infectivity of vaccinated 

nfected individuals relative to unvaccinated infected individuals, 

nd how this reduction may diminish over time given emergent 

iral variants or due to naturally waning immunity. 

Other avenues of potential investigation include assessment of 

he effectiveness of other NPIs beyond masks and the prevalence 

nd dynamics of possible passenger-to-passenger infections due 

o indirect contact through shared surface contact and leftover 

erosols in the vehicle. Finally, this analytical method paired with 

he communication features of rideshare platforms could facili- 

ate a largely automated “radar” for contact tracing within the 

ideshare network. 

The US Center for Disease Control and Prevention may have 

rounds to require rideshare dataset access so that it can be 

erged with the list of positive COVID-19 diagnoses, strain se- 

uencing data, vaccination records, and other relevant data. The 

ase has been made for digital disease surveillance that maintains 

onsiderations of ethics and patient privacy [36] . Large rideshare 

ompanies such as Uber and Lyft are already sharing data with 

ublic health officials to assist with contact tracing [23] , but no 
6

tandardized analytics framework is available to aggregate and de- 

ive insights from these data. While logistics—the details of which 

re beyond the scope of this article—for the large-scale merging of 

ideshare and infection data are complex, it could be accomplished 

n an anonymous fashion given careful data processing. 

ONCLUSION 

The rideshare network of exposure is unlike any other, with 

ens of millions of potentially infectious connections between in- 

ividuals worldwide. Unlike more general cellphone-based contact 

ata, rideshare contacts occur in a relatively controlled environ- 

ent with fairly consistent spatial dynamics, are often the only 

onnection between individuals, and are sporadic with respect to 

ime, location, and duration. We demonstrated, via simulations of 

OVID-19 propagation through a rideshare network based on Los 

ngeles County, that viral strains with differing SARS-CoV-2 trans- 

ission parameters lead to detectably different patterns of in- 

ections, even in the presence of limited diagnostic information. 

or the present and subsequent pandemics, analysis of rideshare 

ata combined with diagnosis records may augment effort s to bet- 

er understand viral transmission dynamics and to measure the 

hanges in infectivity associated with nonpharmaceutical interven- 

ions, vaccination, or emergent viral strains. 
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