
REVIEW
published: 20 August 2021

doi: 10.3389/fcvm.2021.730203

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 August 2021 | Volume 8 | Article 730203

Edited by:

Yuli Huang,

Southern Medical University, China

Reviewed by:

Guanwei Fan,

Tianjin University of Traditional

Chinese Medicine, China

Linlin Lu,

Guangzhou University of Chinese

Medicine, China

*Correspondence:

Yue Liu

liuyueheart@hotmail.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Cardiovascular Metabolism,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 24 June 2021

Accepted: 21 July 2021

Published: 20 August 2021

Citation:

Li Y, Cui J, Liu Y, Chen K, Huang L

and Liu Y (2021) Oral, Tongue-Coating

Microbiota, and Metabolic Disorders:

A Novel Area of Interactive Research.

Front. Cardiovasc. Med. 8:730203.

doi: 10.3389/fcvm.2021.730203

Oral, Tongue-Coating Microbiota,
and Metabolic Disorders: A Novel
Area of Interactive Research
Yiwen Li 1†, Jing Cui 1†, Yanfei Liu 2, Keji Chen 1, Luqi Huang 3 and Yue Liu 1*

1National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese

Medical Sciences, Beijing, China, 2 The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese

Medical Sciences, Beijing, China, 3China Academy of Chinese Medical Sciences, Beijing, China

Interactions between colonizing microbiota and the host have been fully confirmed,

among which the tongue-coating microbiota have a moderate rate of renewal and

disease sensitivity and are easily obtained, making them an ideal research subject. Oral

microbiota disorders are related to diabetes, obesity, cardiovascular disease, cancer,

and other systemic diseases. As an important part of the oral cavity, tongue-coating

microbiota can promote gastritis and digestive system tumors, affecting the occurrence

and development of multiple chronic diseases. Common risk factors include diet, age,

and immune status, among others. Metabolic regulatory mechanisms may be similar

between the tongue and gut microbiota. Tongue-coating microbiota can be transferred

to the respiratory or digestive tract and create a new balance with local microorganisms,

together with the host epithelial cells forming a biological barrier. This barrier is involved

in the production and circulation of nitric oxide (NO) and the function of taste receptors,

forming the oral-gut-brain axis (similar to the gut-brain axis). At present, the disease

model and mechanism of tongue-coating microbiota affecting metabolism have not been

widely studied, but they have tremendous potential.

Keywords: tongue coating microbiota, metabolic disorders, gut microbiota, mechanisms, oral microbiota

INTRODUCTION

Microbial–host interactions closely influence human health status (1, 2). Microorganisms
colonizing the human body can participate in the synthesis and metabolism of vitamins, proteins,
and lipids, promote immunity, maintain the local ecological balance in organs, degrade nutrients,
provide energy to the host (1, 3, 4) and have an important impact on host metabolic processes.
In contrast, oral microbiota have gradually gained importance as easily detectable colonizing
microorganisms, and research has shifted from oral diseases to a broader perspective, of which
tongue-coating microbiota are an important part. Tongue-coating diagnosis is a pivotal aspect of
traditional Chinese medicine (TCM). The TCM theory suggests that the tongue is fumigated by
“stomach qi,” which indicates differences in disease etiology and disease status (5) and is widely
used in clinical practice (6, 7).

Oral microbiota are not identical to tongue-coating microbiota. The oral cavity contains several
habitats, and microbiota are distributed in the tongue coating, saliva, teeth, buccal mucosa (cheek),
soft and hard palate, gingival sulcus, tonsils, throat, and lips (8, 9). Factors influencing the formation
of oral microbiota include temperature, humidity, saliva volume, pH, oxygen, and the rate of
local mucosal shedding (10, 11). Therefore, there is specificity in the microbiota of different
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loci. For example, there are significant differences in species
and abundance between the tongue coating-derived conjugates
of Veillonella and Streptococcus and dental plaque-derived
complexes of Veillonella and Streptococcus (12). The tongue
coating microbiota has stability with a moderate rate of shedding
of biofilms formed by tongue epithelial cells and microbiota,
making it a good site for study. In contrast, dental plaque-
predictive sensitivity to disease may be inferior to that of tongue
coating (13, 14). A higher rate of dental plaque shedding makes
it less stable (14). Oral epithelial cells are renewed every 2.7 h
(15), and rapid biofilm shedding affects the stability of the test
results. The tongue dorsum is rich in filiform papilla, fungiform
papillae, one row of annular papillae, and foliate papillae. It has
a high diversity of bacterial communities, whereas, the non-
keratinized epithelium at the base of the tongue can rapidly
absorb small molecules and interact with the host. The proximity
of the tongue to the tonsils allows compounds shed from
epithelial cells and tongue-coating microbiota to be transported
into the respiratory and digestive tracts. These characteristics
make tongue-coating microbiota more likely to achieve oral-gut
microbiota translocation and have broader metabolic effects.

Tongue-coating microbiota have also been associated with
chronic systemic diseases, in which nutrients and metabolic
disorders occur, such as gastritis and diabetes (16, 17) and
different types of cancer (18–20). Due to its association
with chronic non-oral diseases, tongue-coating microbiota
are expected to serve as a potential markers for metabolic
homeostasis and may be used as a future diagnostic tool. A
metabolic disorder is an imbalance between uncoordinated
digestion and absorption of substances in all diseases. Research
directions in tongue-coating microbiota, its relationship
with metabolic diseases, and its role in metabolism, are
worth exploring.

OVERVIEW OF TONGUE COATING
MICROBIOTA

The Oral Microbiology Database
The National Institutes of Health Common Fund Human
Microbiome Project (https://commonfund.nih.gov/hmp) (21)
was established in 2007 and has previously examined the
microbiota from nine oral cavity sites, including the tongue
(22). Oral microbiota are relatively stable at the phylum
level, but inter-host microbiota variation is high at both the
species and strain levels (23). While published articles are
available online (24), no tests on tongue-coating microbiota
have been reported. Additional sequence analysis websites or
databases (CORE et al.) have been developed based on the
database (25, 26). Comparing high-throughput epidemiologic
investigations,16S rRNA gene sequencing and the Human Oral
Microbe Identification Microarray (HOMIM) provide similar
sequencing detection sensitivity (27).

TheHumanOralMicrobiomeDatabase (HOMD, http://www.
homd.org/) was established in 2007 and is the first website
that provides tools to describe human oral microorganisms
systematically. Currently, 775 microorganisms are included

online, of which 445 are from the oral cavity. Furthermore,
57% of the microorganisms were formally named, 13% were
unnamed but cultured, and 30% were uncultured. A basic local
alignment search tool (BLAST) (28) is available to search for
genes and their annotations and is linked to JBrowse (29)
to obtain information on the sequence of genes and other
relevant information. The site allows searching for microbial
strains by species taxonomic ID, genus, species, habitats, and
nomenclatural status and provides a complete biotaxonomy list.
However, currently, the colonization site is only localized to the
oral cavity, and no detailed information is provided for tongue-
coating-associated microbiota.

Common Microbiota in Tongue Coating
The tongue-coating microbiota are structurally complex and
contain not only monolayers of sparsely colonized bacteria but
also equally free bacteria, bacteria on squamous epithelial cells,
and structurally complex bacterial entities (consortia) (30). This
shows that the epithelial cells of the tongue dorsum are a mixture
of rapidly shed, sparsely colonized cells, and long-lived structures
where more substantial biofilms can form. The microbiota and
tongue papillae form a wide range of interspecies interactions
that can be specifically classified as synergistic, signaling, or
antagonistic (31, 32). Different species and genera of bacteria may
have the samemetabolic function, and the functional redundancy
is widespread (30). Diversity and appropriate redundancy allow
for greater stability (33) and metabolic efficiency (34). Therefore,
the normal tongue coating microbiota diversity is higher than
that of diseased individuals (20); however, microbiota abundance
may be greater (35) in diseased than in healthy populations.

Tongue-coating microbiota are reported more consistently
at the phylum level, but with contradicting literature on the
species level, which may be related to sampling methods,
inclusion criteria, ethnicity, and region (14, 20, 36–39). The
results of 16S rRNA analysis showed that tongue-coating
colonizing microbiota in healthy humans at the phylum level
included the following: Firmicutes, Bacteroidetes, Proteobacteria,
Actinobacteria, Spirochaetes, Fusobacteria, and Synergistetes (27,
38, 40, 41), and the abundance of the top three microbiota
was consistent with the overall distribution of the oral cavity.
However, the proportions of Actinobacteria and Spirochaetes
were higher than those of the oral cavity (42). The dominant
tongue microbiota at each taxonomic level is shown in Figure 1

(14, 20, 43–50).
Common harmful oral bacteria can damage immunity and

cause chronic inflammation (51, 52). Changes in the abundance
of Enterococcus sp. and Lactobacillus sp. lead to the expansion
of Th17 cells and the accumulation of IL-6 and IL-23 (53).
Periodontitis not only originates from the gingival microbiota
but is also affected by tongue-coating microbiota (14, 54).
Porphyromonas spp. have been shown to induce atherosclerosis
(55, 56) and diabetes (55). In obese individuals, tongue-coating
Bacteroidales (order), Enterococcus (genus), and Staphylococcus
(genus) were elevated, and Prevotella (genus) and Butyricoccus
(genus) were decreased (50). In rheumatoid arthritis (RA)
patients and at-risk individuals, tongue-coating Prevotella and
Veillonella were higher in relative abundance than populations
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FIGURE 1 | The dominant tongue coating microbiota at each taxonomic level. Different phyla are color-coded; layers from the inside to outside are

phylum-class-order-genus. Black text indicates microbiota whose abundance is increased in metabolic diseases, and yellow text shows microbiota whose abundance

is decreased in metabolic diseases (44–50).

in healthy controls (13). RA patients present with an increased
relative abundance of pro-inflammatory species.

Studies on oral probiotics have found that probiotic products
containing Lactobacillus improve oral health status and may
improve disease symptoms (57), such as fatty liver and cancer
(53). Therefore, tongue epithelial cells have a barrier function
(58) and are involved in taste production (44, 59), the oral-gut
axis (60, 61), and nitric oxide (NO) cycling (62, 63). Thus, the role
of tongue-coating probiotics in the host can be explored in several
ways. Among nitrate-reducing bacteria, Veillonella, Actinomyces,
Haemophilus, and Neisseria are highly abundant in the tongue
coating and are potential probiotics (64).

Tongue Coating Microbiota and Intestinal
Microbiota
Intestinal microbiota are more extensively and intensively
studied than tongue-coating microbiota (65, 66), and their
relationships and whether the two have similar metabolic
mechanisms deserve further exploration. Both tongue-coating
microbiota and gut microbiota are associated with metabolic
status (67), immune status, age (41), sex, genetic factors,

environmental factors (68), antibiotic use, infant feeding status
(69), and probiotic and prebiotic administration closely related
to diet (70, 71). Colonization by intestinal and tongue-coating
microbiota are dominated by anaerobic bacteria (69). The
unweighted intestinal microbiota are separated from the oral
microbiota compartment, indicating a large difference in the oral
gut microbiota (72). Some can undergo microbiota displacement
from the oral to the gut (37) or otherwise interact with each
other. There are dozens of genera shared by the tongue coating
and intestinal microbiota (72), such as Lactococcus, Bilophila, and
Akkermansia. Oral and intestinal microbiota share nearly 45%
homology but differ in their abundance.

Numerous studies have confirmed the strong relationship
between gut microbiota and oral microbiota dysbiosis and
systemic disease. However, the association between tongue
coating microbiota and gut microbiota remains elusive. First,
the tongue coating microbiota can translocate to the gut and
lead to fluctuations in the gut microbiota. Recently, it was
found that the abundance of 14 taxa has increased in tongue
coating samples and stool samples from older adults (72), i.e.,
microbiota from other parts of the host may migrate to the oral
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FIGURE 2 | The interaction between tongue coating and gut microbiota and its effects on other systems (60, 61, 81).

cavity. The mechanism could be a decline in gastrointestinal
function, or decreased gastric and bile acid secretion in the
elderly. Oral microbiota are not inactivated and reach the
intestine, invasion of gingival or tongue tissue by tongue coating
microbiota, the impaired mucosal barrier function of the tongue
epithelium, decreased levels of ligand proteins in the tongue
(73), or Fap2-mediation (74) blood diffusion to reach the
intestine (75). Second, changes in abundance in tongue coating
microbiota are consistent with intestinal microbiota in disease,
and both abundances are altered during the activation of immune
receptors or abnormal hormone levels (76–78). In patients with
autoimmune liver disease, Veillonella spp. are increased, and
positively correlated in the oral and intestinal tracts (46). The

tongue and intestine are involved in digestion through reflex
stimulation of the gastric system, pancreas, liver, and gallbladder
(79). Microbiota can also influence metabolism by interacting
with taste receptors on the tongue and intestine (80), which may
be related to the specific effector mechanism of the oral-gut axis
(see Figure 2).

There are differences in themetabolic effects of gut and tongue
coating microbiota. The production and oxidation of intestinal

microbiotic metabolites, such as short-chain fatty acids (SCAFs)
and branched-chain fatty acids, regulate energy expenditure (82).

Gut microbiota also participate in the regulation of bile acid
metabolism and the TMAO pathway. At present, the effects of

tongue coating on related mechanisms have not been identified.
The main metabolic process used by oral microorganisms is

anaerobic respiration, whereas, microbial fermentation is the
main process in the intestine (83). Therefore, the mechanisms

involved in developing chronic systemic diseases by tongue

coating microbiota differ from those of the intestinal microbiota.

Tongue Coating Microbiota and Metabolic
Status
The metabolites of tongue coating microbiota and chronic
inflammation mutually promote each other. Tongue coating
microbiota dysbiosis is directly associated with the development
of periodontitis (14) and oral mucosal disease (84). Dental
caries and periodontitis cause chronic infection, increase
arterial inflammation and are high-risk factors for diabetes
and cardiovascular disease (85–87). Porphyromonas gingivalis
and Fusobacterium nucleatum have been shown to exacerbate
chronic inflammation. C-reactive protein levels are elevated,
and inflammatory responses are more severe in those with
oral microbiota dysbiosis and are directly proportional to
low-density lipoprotein (LDL) levels and the carotid intima-
media area (60). The bacterial metabolites lipopolysaccharide
(LPS) and IgG correspond to microbiota, and their activation
of neutrophils can be detected in the blood of atherosclerosis
patients (88), suggesting that the oral microbiota accelerates
disease progression through endotoxin-activated immunity.
Matrix-degrading metalloproteinases (MMPs) are important
inflammatory mediators in cardiovascular disease and play
a key role in the rupturing of atherosclerotic plaques (89),
destruction of periodontal connective tissue, and exacerbating
oral microbiota dysbiosis. Patients with myocardial infarction
and periodontitis have elevated salivary MMPs and reduced
tissue metalloproteinase inhibitor-1 levels, which may be
related to oral microbiota metabolism (90). Periodontal
microbiota causes widespread chronic inflammation and insulin
resistance, exacerbating both the incidence and progression
of Type 2 diabetes (91). Patients with periodontitis caused
by chronic microbiota dysbiosis present with elevated serum
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LDL levels, decreased HDL levels, and elevated triglycerides,
while periodontal treatment improves dyslipidemia and reduces
total cholesterol and serum LDL levels. The pathogenesis of
atherosclerosis is associated with oral microbiota, and poor
oral hygiene can cause increased levels of fibrinogen and cell
adhesion proteins (90). Endothelial dysfunction caused by oral
microbiota leads to increased blood pressure (64).

Chronic diseases can also remodel the microbiota. In a
mouse model, diabetes increased IL-17 expression, and chronic
inflammation led to changes in the abundance of oral microbiota.
Transplantation of altered oral microbiota to germ-free mice
resulted in increased susceptibility to diabetes (92). Diabetes can
cause changes in the oral microbiota (93). Comparison of oral
microbiota between Type 2 diabetics and non-diabetics revealed
Neisseria spp., Fusobacterium, Veillonella, and Streptococcus
spp. increased.

The above studies on oral microbiota suggest a close
relationship between tongue coating microbiota and chronic
inflammatory and systemic diseases, especially metabolic
diseases. Tongue coating microbiota has been confirmed as
a potential biomarker for gastritis (20) and have predictive
value for gastric cancer (20) and pancreatic head cancer (94).
The correlation of tongue coating microbiota with greater
metabolism is worth exploring.

Mechanisms by Which Tongue Coating
Microbiota Affects Metabolism
The mechanism by which the tongue coating microbiota affects
metabolism may be similar to intestinal microbiota, namely the
biological barrier effect, involvement in the nitric oxide (NO)
cycle, and taste production (45, 59). Metabolism in the oral
cavity produces various antimicrobial compounds and enzymes,
such as lysozyme, amylase, immunoglobulins, and epithelial
cell shedding, which influence the establishment and renewal
of the tongue coating microbiota. In turn, the tongue coating
microbiota produces different metabolites and endotoxins,
forming a complex barrier between the microbiota and the local
environment of the tongue. Oral microbiota dysbiosis and cell
wall production of endotoxins (e.g., LPS) promote inflammation
and tissue destruction, and disruption of epithelial integrity
further aggravates the penetration of oral microbiota into the oral
epithelium and connective tissue (95). Studies have shown that
microbiota, such as Porphyromonas gingivalis, can downregulate
ligand protein expression and disrupt the oral mucosal barrier
(96). On the other hand, the main sources of nutrients for
microorganisms are saliva, host-consumed food, and various by-
products produced between species, which support the growth
and reproduction of microbiota, forming a biological barrier
that competitively inhibits opportunistic pathogenic bacteria (see
Figure 3).

Tongue coating microbiota play an important role in
exogenous NO production and uptake, regulating host NO
homeostasis. As a gaseous signaling molecule, NO is bound to
human proteins via S-nitrosylation and plays an important role
in a variety of physiological processes, including the regulation
of vascular tone, nerve transmission, mitochondrial respiration,

and skeletal muscle systolic function, thereby alleviating the
development of diseases such as diabetes, hypertension, and
coronary heart disease (97, 98). There are endogenous and
exogenous pathways for NO production, and the microbiota-
nitrate-nitrite-NO pathway serves as the main source of
exogenous NO (99). NO production is non-strain-specific, and
relevant microbiota–host interactions exist in the tongue and
gut. Some microbiota can convert dietary nitrate to nitrite and
produce NO via nitrate reductase or react with endothelial
and plasma proteins to form S-nitrosothiol (SNO). Nitrite, NO,
and SNO have activated soluble guanylate cyclase (sGC) and
increased cGMP levels in tissues. The nitric oxide synthase
(NOS)-NO pathway improves vascular tone through cGMP/PKG
and cellular signals that stimulate smooth muscle relaxation
(64, 94, 97). Veillonella, Actinomyces, Prevotella, Neisseria, and
Haemophilus are among the most abundant NO-producing
tongue coating microorganisms (99). NO in the tongue crypt
can diffuse directly into the circulation through the highly
vascularized tissues of the tongue, and regular tongue coating
removal increases nitrate reduction to produce more NO (100)
while reducing the production of sulfur-containing compounds
to reduce bad breath. Microbiota also regulate the host gene
expression profile by binding to various host proteins. For
example, binding to argonaute protein inhibits miRNA activity
to regulate host development (101). In vitro, excessive NO
production can lead to developmental deformities in the host
(101). In humans, dietary nitrate lowers blood pressure in
healthy populations (102, 103). In the absence of any dietary
changes, the use of mouthwash with sterilizing effects can
disrupt oral microbiota, thereby reducing oral and plasma nitrite
levels in healthy populations, and is associated with a sustained
increase in systolic and diastolic blood pressure (102, 103).
Thus, NO production by the oral microbiota in healthy humans
has positive implications for vascular endothelial homeostasis
(see Figure 3).

In contrast, the chemosensory system inmammals is regulated
by bacterial metabolites, and tongue coating microbiota may also
be involved in taste formation, affecting eating and metabolism
(104). In traditional Chinese medicine, the relationship between
the five tastes and the internal organs was proposed as early as
the period of the “Inner Canon of the Yellow Emperor: sour
taste enters the liver, astringent taste enters the lung, and bitter
taste enters the heart.” These observations have been clinically
corroborated in long-term clinical practice (105). The taste
system mainly includes carbohydrate, amino acid, fat receptors
(58), and bitter receptors. Through the above feeding sensations,
the function of the tongue establishes a close relationship with
the metabolic system. Obese children have significantly lower
taste discrimination and fewer fungiform papillae, accompanied
by reduced α-diversity of tongue coating microbiota. In healthy
subjects, tongue coating microbiota was associated with taste
function, thereby affecting dietary habits, such as preference for
salty baked products, saturated fat-rich products. Beverages are
consumed more frequently by those who are insensitive to salty
flavors than by those who are sensitive.

Likewise, sweet foods are consumed more frequently by those
who are insensitive to sweet flavors (106). Prevotella abundance
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FIGURE 3 | Mechanisms of tongue coating microbiota involved in metabolism. The tongue coating microbiota transfers or co-presents with other parts, including the

respiratory tract and the gut (left). These three pathways may be involved in metabolism: (1) The production of nitric oxide (2) Receptor function (3) The formation of

consortia with oral epithelial cells and entering the blood when the epithelial barrier is impaired (right).

is positively associated with vegetable intake, whereas, Clostridia
abundance is associated with protein/fat-rich diets (106). A
recent study of the human microbiome found that commensal
bacteria have developed strategies to stimulate chemosensory
receptors and trigger host cell function (104). Thus, tongue
coating microbiota may impact metabolic systems through
interactions with chemosensors on the tongue. Similar to
the gut microbiota, several previous studies have elucidated
feedback mechanisms in gut microbiota-microbiota products-
intestinal epithelial cells-endocrine metabolic homeostasis
(107, 108) and have inhibitory effects on gastrointestinal
motility and appetite through GLP-1, CCK-, ghrelin-, and
peptide tyrosine tyrosine (PYY)-labeled EECs in the human
small intestine and colon (109). It can be suggested that
tongue coating microbiota and their hosts share similar
interaction mechanisms.

CONCLUSIONS

Tongue coating microbiota, one of the important components of
the oral microbiota, have high sampling stability. Disturbances
in tongue coating microbiota have been shown to elevate various
chronic inflammatory markers, as well as being closely linked
to mechanisms such as local mucosal barriers, nitric oxide
metabolism, and taste chemoreceptors. Although, there is a lack
of studies of drug action on tongue-coating microbiota to treat
disease, studies have shown that probiotics can modulate oral
microbiota and improve health (110, 111). In contrast, frequent
use of antibiotics or mouthwash adversely affects blood pressure
(102, 103). Therefore, tongue coating microbiota are expected
to become a new, easy, and non-invasive biological marker that

can contribute to diagnostic and prognostic studies of chronic
non-infectious diseases.

Research on tongue coating microbiota has not been
extensively conducted, and the number of studies related to
metabolic diseases and metabolic mechanisms is limited in
the field of oral microbiota. Tongue coating microbiota and
intestinal microbiota show some similarity in composition, as
both are involved in food digestion. Based on studies on intestinal
microbiota, tongue coating microbiota may also be involved in
various metabolic mechanisms in the human body. The standard
sampling procedure and research paradigm of tongue coating
microbiota should be standardized, and multi-omics studies or
tongue-gut clustering analysis should be performed in the future.
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