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ABSTRACT
The cardiac late sodium current (INa,late) is the small sustained component of the sodium current 
active during the plateau phase of the action potential. Several studies demonstrated that 
augmentation of the current can lead to cardiac arrhythmias; therefore, INa,late is considered as 
a promising antiarrhythmic target. Fundamentally, enlarged INa,late increases Na+ influx into the 
cell, which, in turn, is converted to elevated intracellular Ca2+ concentration through the Na+/Ca2+ 

exchanger. The excessive Ca2+ load is known to be proarrhythmic. This review describes the 
behavior of the voltage-gated Na+ channels generating INa,late in health and disease and aims to 
discuss the physiology and pathophysiology of Na+ and Ca2+ homeostasis in context with the 
enhanced INa,late demonstrating also the currently accessible antiarrhythmic choices.
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Introduction

The cardiac action potential (AP) is composed of 
several ion currents. During the initial depolariza-
tion, voltage-gated Na+ channels open to further 
depolarize the membrane. This is followed by 
a tightly regulated process, in which L-type Ca2+ 

channels open to let the Ca2+ ions flow into the cell 
(L-type Ca2+ current, ICa,L), so that the contraction 
can occur in the process called Ca2+-induced Ca2+ 

release (CICR) by opening the ryanodine receptors 
(RyR). Besides the depolarizing inward currents, 
a number of outwardly driven K+ currents repolar-
ize the membrane. During repolarization, Ca2+ is 
removed from the cytoplasm; therefore, complete 
relaxation of the cell occurs while the membrane 
potential returns to its resting value so that the next 
AP can be elicited [1–3].

The behavior of Na+ current is not monotonic 
in time. Once the membrane potential reaches the 
threshold level for the voltage-gated Na+ channels, 
a significant Na+ influx depolarizes the membrane 
and creates the upstroke of the AP. However, this 
fast, early peak Na+ current (INa,early) is rapidly 
inactivated causing the fast decay of the INa,early 
[4,5]. Under certain conditions, Na+ channels 
might recover from inactivation and reopen 

during the plateau phase of the AP, bringing 
a further depolarizing Na+ influx, termed as the 
late Na+ current (INa,late) (Figure 1) [6]. As INa,early 
increases the intracellular Na+ concentration [Na+ 

]i at the upstroke of the AP, the Na+/Ca2+ 

exchange (NCX) switches to its reverse mode and 
removes Na+ from the cell at the cost of intracel-
lular Ca2+ load. This reverse mode persists for only 
a very short period of time and NCX works in its 
forward mode at the rest of the AP, underlying the 
vast majority of sarcolemmal Ca2+ extrusion [1,7]. 
INa,late is a minute, but persistent inward current 
which is much smaller in amplitude than INa,early 
in healthy myocytes. However, under certain 
pathophysiological conditions, INa,late can become 
much larger and might cause Na+ (and Ca2+) over-
load leading to arrhythmogenesis (Figure 1). In the 
present review we aim to discuss the arrhythmo-
genic role of INa,late in context with the intracellu-
lar Na+ and Ca2+ overload.

Voltage-gated sodium channels

Since the original observations by Hodgkin and 
Huxley on squid giant axon, voltage-gated Na+ 

channels are known to be regulated by changes 
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in the actual membrane potential [8]. If the mem-
brane voltage is favorable for channel opening, the 
movement of ions is determined by the electro-
chemical gradient of the ion. Voltage-gated Na+ 

channels consist of a large pore-forming pseudote-
trameric α subunit, accessory β subunits and scaf-
folding proteins (Figure 2(a)). To date there are 9 
different α subunits (Nav1.1, Nav1.2, Nav1.3, Nav 
1.4, Nav1.5, Nav1.6, Nav1.7, Nav1.8, Nav1.9) 
encoded by 9 different genes (SCN1A, SCN2A, 
SCN3A, SCN4A, SCN5A, SCN8A, SCN9A, 
SCN10A, SCN11A) of which the Nav1.5 is consid-
ered to be the dominant cardiac subtype [9,10]. 
Nav1.5 is relatively insensitive to the Na+ channel 
blocker neurotoxin, tetrodotoxin (TTX) [9,11–13]. 
However, other TTX sensitive subtypes – such as 
Nav1.1, Nav1.2, Nav1.3, Nav1.4 and Nav1.6 – are 
also reported to be expressed in the heart [14–18]. 
An α subunit encoded by a specific gene deter-
mines not only the channel subtype itself, but also 
the receptor population of the particular channel. 
The 6 possible β subunits (β1, β1A, β1B, β2, β3, 

β4) are encoded by four genes (SCN1B, SCN2B, 
SCN3B, SCN4B) [19–22]. The α subunit alone is 
sufficient to form a functional channel; however, 
the auxiliary β subunits are required for regular 
channel kinetics and cell surface expression [20]. 
In fact, as the β subunits modulate the number of 
the available channels on the cell surface, they play 
a role in regulating peak current density [20]. 
Furthermore, β subunits control activation, inacti-
vation, and recovery from inactivation by altering 
their voltage range [23,24].

Voltage-gated Na+ channel α subunits consist of 
approximately 2000 amino acid residues, creating 
four domains (DI-DII-DIII-DIV) (Figure 2(a-b)). 
Each domain is formed by six transmembrane 
segments (S1-S6). Segments 1–4 (S1-S4) function 
as the voltage sensor domain of the channel. This 
domain senses membrane depolarization leading 
to channel activation. The S1-S4 connects to the 
channel’s pore-forming domain S5-S6 via an intra-
cellular linker. This structure encompasses the 
central aqueous pore domain (Figure 2(c)). The 

Figure 1. Comparison of the physiological and the pathological INa,late in ventricular cardiomyocytes. (a) Ventricular action potentials 
recorded from healthy and diseased hearts. Diseased INa,late is increased causing a longer action potential. Dashed line shows the 
control action potential. (b) Representative electrophysiological recordings of the INa in normal and diseased myocytes. Blue shows 
the early, peak component of the INa (INa,early), while red shows the sustained, late component of the current (INa,late).
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selectivity filter is also located in the pore domain, 
recognizing the charge and radius of the ion.

At membrane potentials negative to the thresh-
old of the Na+ channel the channel’s open prob-
ability is low. Upon depolarization, however, the α 
subunit undergoes a conformational change, the 
voltage sensor activates, the activation gate – and 
therefore the Na+ channel – quickly opens, thereby 
conducting Na+ current and resulting in the 
upstroke of the cardiac AP. A few milliseconds 
later the channel inactivates quickly as the inacti-
vation gate closes into the channel’s pore domain 
yielding a nonconducting state [25]. The homolo-
gous domains are connected by intracellular inter-
domain loops (IDI/II, IDII/III and IDIII/IV). 
Inactivation gate incorporates the smallest 

interdomain cytoplasmic loop (IDIII/IV) and 
functions as a lid that locks the pore during inac-
tivation (Figure 2(a)) [25–29]. Normal inactivation 
is needed to prevent excess depolarization and to 
ensure timely repolarization. It has also been pro-
posed that the inactivation gate is formed and 
stabilized as a molecular complex, formed by the 
IDIII/IV and the C-terminal loop of the α subunit 
[30]. After depolarization and inactivation, during 
the repolarization phase, Na+ channels recover 
from inactivation ready to be activated again [31].

Late sodium current

INa,late is normally a small but persistent current 
(Figure 1). It is active during the plateau phase of 

Figure 2. Structure of the cardiac Nav1.5 α subunit. (a) Alpha and beta subunits of the cardiac voltage-gated Na+ channel isoform 
showing the four domains of the alpha subunit (DI-DIV) and the six transmembrane segments (S1-S6) in each domain and the 
auxiliary beta subunits. Grey zone shows the pore-forming domain. Red shows the inactivation gate between the DIII and DIV (IDIII/ 
IV). (b) Side and (c) top (intracellular) view of the cryo-EM structure of the rat Nav1.5 α subunit displaying the domains in different 
colors (PDB ID: 6UZ3) and the channel pore (c) generated by PyMol Software.[182]

CHANNELS 3



the cardiac AP; therefore, the current can play 
a significant role in determining the duration and 
the shape of the AP (Figure 1(b)) [32–34]. 
A possible explanation of this discrepancy (i.e., 
a tiny current causing large effects on the AP) is 
given by the role of net membrane current. During 
the plateau phase of the AP the impedance of the 
cell membrane is high [35] and according to 
Ohm’s law, at this stage, small changes in net 
membrane current lead to relatively large changes 
in the membrane potential, and consequently, in 
AP duration (APD) [36,37].

Three different gating modes of Nav1.5 have 
been described in ventricular cells (Figure 3) 
[38]. The transient mode is the main gating 
mode for the INa,early. Burst mode and late scat-
tered mode are responsible for 
INa,late; however, burst mode openings decline 
quickly, leaving the late scattered mode to be the 
main gating for INa,late during the plateau phase. 
Furthermore, several inactivation processes have 
been proposed, each governing APD, Na+ channel 
steady-state inactivation and Na+ flux balance of 

the cell [39,40]. Fast inactivation takes place only 
in the first milliseconds and the channel recovers 
rapidly at negative membrane potentials. This is 
followed by the intermediate inactivation which 
recovers slowly compared to the fast inactivation. 
Slow inactivation from the open state occurs over 
hundreds of milliseconds and finally, ultraslow 
inactivation can take seconds.

The window Na+ current is a well-known phe-
nomenon characterizing Na+ channels. Due to an 
overlap between steady-state activation and inacti-
vation curves (“window of potentials”), a fraction 
of Na+ channels can recover from inactivation and 
might reopen. However, considering the voltage 
range of this window current (approximately – 
70 mV), it is far below the physiological plateau 
potential of the AP, so it is unlikely to play a major 
role in the INa,late [34,41–43].

There are marked interspecies differences in the 
profiles of the INa,late. One practical difference is 
the shape and duration of the AP, resulting in 
distinct INa,late profiles. Our group has recently 
demonstrated that INa,late in human and canine 
ventricular myocytes is markedly disparate from 
cells isolated from guinea pig hearts [44] or some 
other mammals including rabbits and pigs [45–-
45–47]. The greatest difference was in the time 
course and profile of the INa,late. In human and 
canine cells, the amplitude of the INa,late monoto-
nically decreases during the time course of the AP. 
On the contrary, guinea pig cells show a different 
current profile, namely, the current amplitude 
increases during the plateau phase to only decline 
during the terminal repolarization. In addition, 
Horváth et al. and Hegyi et al. reported that the 
density of the INa,late is comparable to the major 
repolarizing K+ currents in guinea pig and rabbit 
myocytes [45,47]. Also in rabbits, the atrial density 
of INa,late was greater than measured in the ven-
tricles [48].

INa,late shows reverse rate-dependent properties, 
that is, the higher the pacing frequency (i.e. heart 
rate), the lower the density of the current 
[37,49,50]. However, the early and late compo-
nents behave differently. The higher [Na+]i, 
observed at high frequency, is mainly determined 
by the early component as INa,late recovers slowly 
from inactivation at rapid pacing [51]. 
Additionally, at higher frequencies, APD is usually 

Figure 3. Different gating modes determining the INa,early and 
INa,late. (a) Schematic illustrations of the three Nav1.5 gating 
modes. INa,early is determined by the transient mode. Burst 
mode and late scattered mode are responsible for INa,late, how-
ever, the late scattered mode is the main gating for INa,late. (b) 
Representative electrophysiological recording of the INa. Blue 
shows the early, peak component of the INa (INa,early), while red 
shows the sustained, late component of the current (INa,late). C, 
closed and O, opened.
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shortened, allowing less time for activation of 
INa,late. Therefore the shorter the APD the smaller 
the INa,late and Na+ influx. In contrast, during 
bradycardia APD is longer and shows greater beat- 
to-beat variability [52]. Therefore, bradycardia, 
associated with enhanced INa,late, may strongly be 
proarrhythmic [45,53,54]. As there are marked 
interspecies differences in heart rate and APD, 
species having long APs (e.g. human, canine, gui-
nea pig) are expected to manifest larger INa,late and 
Na+ influx than species with fundamentally 
shorter APs (e.g. rat, mouse).

Late sodium current in disease

In normal, healthy myocytes, the amplitude of 
INa,late is much smaller, less than 0.1% of the peak 
INa,early [55,56]. However, as stated before, the 
current is persistent, lasting for 100–400 ms; there-
fore, the inward charge carried by INa,late is com-
parable to INa,early mediated within 1–2 ms [57,58]. 
Some papers in the literature refer to this as endo-
genous INa,late and is thought to be without any 
arrhythmic properties.

On the other hand, the density of INa,late can be 
increased under many pathophysiological condi-
tions, such as heart failure (HF) [53,59], hyper-
trophic cardiomyopathy, inherited long QT 
syndrome 3 (LQTS-3) [16,34,53,60,61], oxidative 
stress, or atrial fibrillation (AF) with intracellular 
Ca2+ handling abnormalities [62]. Moreover, even 
a low heart rate or pharmacological interventions 
can elevate INa,late [63]. INa,late is also augmented in 
myocardial ischemia/reperfusion injury [18,62] 
and in the presence of characteristic components 
of ischemia (e.g. hypoxia, ischemic metabolites, 
hydrogen peroxide) as documented in voltage 
clamp experiments [64–67].

The AP lengthening effect of the augmented 
INa,late can also be observed in HF [68]. The 
increased INa,late results in a Na+ overload, which, 
in turn, leads to elevation of intracellular Ca2+ 

concentration [Ca2+]i. The concomitant abnormal 
conduction can cause sudden death in HF patients. 
Conduction velocity is determined also by the Na+ 

channel function [69]. In the ventricular conduc-
tive system (Purkinje fibers) – in contrast to ven-
tricular myocardium – slow pacing generates 
a higher, while fast pacing results in 

a significantly lower INa,late. This transmural inho-
mogeneity may be a trigger for cardiac arrhyth-
mias [70]. All these mechanisms may lead to 
complex pathological electrical and mechanical 
performance, such as contractile dysfunction 
[71], disturbed myocardial energetics [72] and 
arrhythmias [73]. Increased INa,late is most 
arrhythmogenic in those cases, where the repolar-
ization reserve is already compromised, such as 
during treatment with IKr inhibitors [74], or in 
the remodeled myocardium.

In the above mentioned diseases several path-
ways can play a role in the alteration of INa,late. 
INa,late can be elevated by reactive oxygen species 
(ROS), H2O2 [60,66,75], acidosis [76,77], hypoxia 
[78,79], or nitric oxide (NO) [80]. Furthermore, 
INa,late is also altered by transcriptional regulation 
[81], N-glycosylation [82,83], phosphorylation on 
tyrosine residues [84] or arginine methylation 
[85]. Modulation of channel function can also be 
achieved by mechanosensitivity [86,87], β- 
adrenergic stimulation [47], or CaMKII [88–90].

Calcium and sodium homeostasis

In the case of facilitated sarcolemmal Na+ entry to 
the cytoplasm, [Na+]i is going to increase with 
a concomitant rise in the [Ca2+]i, which is consid-
ered to be arrhythmogenic [3]. Furthermore, high 
Ca2+ via the Ca2+/calmodulin-dependent protein 
kinase II (CaMKII) – protein kinase C (PKC) 
pathway can further increase INa,late thereby initi-
ating a vicious circle, leading to spatial heteroge-
neity of Ca2+ transients and triggered activities 
[90–92]. Therefore, a better understanding of the 
effects of the elevated INa,late on Na+ and Ca2+ 

homeostasis is critically important.
The Na+ balance of a healthy myocyte consists 

of influx and efflux of Na+. The main sources for 
Na+ influx from the extracellular compartment are 
the Na+ channels, the NCX and the Na+/H+ 

exchanger (NHX). Na+ leaves the cell via the 
Na+/K+ pump (NKP) and NCX operating in its 
reverse mode. Approximately 25% of the Na+ 

entry is produced by the Na+ channels, equally 
distributing between INa,early and INa,late, while 
NCX provides about 60% of total Na+ influx 
[93]. Additionally, other routes for Na+ fluxes 
may contribute to a minor extent. The Na+ and 
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Ca2+ homeostasis are strictly coupled processes 
[93,94]. Beyond the conversion of the elevated 
intracellular Na+ to Ca2+ by the NCX, it is easy 
to consider that a sustained depolarization above 
−40 mV, due to the augmented INa,late, may 
increase the open probability of L-type Ca2+ chan-
nels. In other words, a longer AP causes higher 
Ca2+ influx and Ca2+ load [95–99].

Enhancement of the INa,late can be achieved 
through the Ca2+ – calmodulin (CaM) – CaMKII 
pathway. CaM and CaMKII can regulate the channel 
individually and cooperatively as well [90,100,101]. 
CaM modulates Na+ channel function by binding to 
an IQ domain of the channel protein at the 
C-terminus and enhances slow inactivation (Figure 
4) [102–104]. CaM decreases the sustained INa,late 
during depolarization, therefore reduces the risk of 
arrhythmias [105]. Until recently, understanding of 
the association of Na+ channels and CaM was lim-
ited, as most of the studies applied the Ca2+-free 
CaM, apocalmodulin (apoCAM). The binding site 
for both Ca2+-free and Ca2+-occupied CaM is the 
IQ motif [106]. Wang et al., however, recently 
demonstrated that Ca2+ induces a conformational 
switch in the CaM, in which the N-lobe of the 
CaM contacts with the distal IQ motif of the 
C-terminal domain of the Na+ channel, while the 
C-lobe of the CaM (Ca2+ free) remains anchored to 
the IQ motif and this action is isoform-specific [107]. 

There are controversial studies on whether Ca2+ 

alone can regulate Na+ channels [102,105,108]. 
Gardill et al. concluded that the position of the EF- 
hand domain regulates Ca2+-dependent inactivation 
[106]. Anomalous diffraction studies, on the other 
hand, proposed a Ca2+-sensor role for CaM rather 
than the EF-hand of the Na+ channel C-terminal 
domain [109]. CaMKIIδ – the predominant cardiac 
isoform – may also alter the inactivation properties 
of Na+ channels. The Ca2+-CaM complex activates 
CaMKII which, in turn, phosphorylates the Na+ 

channel and enhances INa,late [88–90,110]. CaMKII 
increases intermediate inactivation and slows recov-
ery, but slows the open state inactivation of INa,early 
and increases INa,late, increasing ultimately [Na+]i [-
110–112]. Na+ channel regulation by CaMKII can 
also take place by association with the channel and 
by phosphorylation of the channel proteins [111]. In 
rabbits, phosphorylation of Na+ channels by endo-
genous CaMKII occurs even at physiological Ca2+ 

levels [111]. In addition to the effects on Na+ chan-
nels, phosphorylation by CaMKII enhances protein 
kinase A (PKA), ICa,L and sarcoendoplasmic reticu-
lum Ca-ATPase (SERCA) and activates RyR (Figure 
4) [113–118]. Sustained depolarization by the aug-
mented INa,late also contributes to cell Ca2+gain. 
These altogether increase the sarcoplasmic reticulum 
(SR) Ca2+ content and the open probability of RyR, 
therefore giving substrate for spontaneous Ca2+ 

release events [112,119].
In HF (both human HF and animal model of HF) 

expression and activity of CaMKII are increased, 
which may be proarrhythmogenic [120–122]. 
Furthermore, it has been shown that transgenic over-
expression of cytosolic CaMKII can induce HF 
[117,118]. Acute overexpression of CaMKII 
enhances INa,late and increases [Na+]i, slows inactiva-
tion of INa,early and recovery from inactivation, while 
shifting steady-state inactivation to more negative 
membrane potential in a Ca2+-dependent manner 
[111]. All these effects of acute overexpression of 
CaMKII can be hindered by CaMKII inhibition. In 
undiseased ventricular cells, it has been shown that 
a fourfold increase in Na+ current density was 
required to achieve a significant increase in [Na+]i 
[61,123]. Wei et al. demonstrated that phosphoryla-
tion of CaMKII and the expression of Nav1.5 chan-
nel protein has been significantly elevated in the left 
ventricle upon treatment with the Ca2+ channel 

Figure 4. Connection of the Ca2+/CaM complex to the Na+ 

channel. Crystal structure shows the human Nav – Ca2+/CaM 
complex (PBD ID: 6MUD [106]) designed by PyMol Software 
[106]. Blue shows the C-terminal region of the Nav1.5 α subunit, 
while red shows the CaM with 4 Ca2+ ions bound (cyan 
spheres). CaM, calmodulin.
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activator Bay K 8644 and the Na+ channel activator 
sea anemone toxin II (ATX-II). These effects were 
readily reversible by the application of TTX [124]. 
Bay K 8644 and ATX-II increased the APD more 
powerfully when applied simultaneously and caused 
ventricular tachycardia with high incidence. This 
synergistic connection between high [Ca2+]i and 
high [Na+]i potentiates their arrhythmogenic 
activities.

Mitochondria are important Ca2+ buffering 
stores [125,126]. They contribute to Ca2+ home-
ostasis by taking up cytosolic Ca2+ via the mito-
chondrial Ca2+ uniporter (MCU) or releasing Ca2+ 

through the mitochondrial NCX (mNCX), the lat-
ter being an [Na+]i sensitive transporter 
[67,127,128]. Under conditions of Ca2+ overload, 
as suggested by Ronchi et al. in a simulated ische-
mia protocol in rat ventricular myocytes, blockade 
of the sarcolemmal NCX turned mitochondria into 
a Ca2+ source from being a Ca2+ sink. It was 
concluded that during Ca2+ overload mitochon-
dria may play a role in providing extra cytosolic 
Ca2+ and may be responsible for the INa,late 
mediated perturbation of the intracellular 
milieu [129].

Elevated [Na+]i, when exceeding the func-
tional reserve of the NKP, increases [Ca2+]i by 
switching NCX to a reverse mode operation with 
a consequent loading of the SR Ca2+ stores 
(Figure 5). Even a relatively small, a few milli-
molar increase in [Na+]i slows Ca2+ extrusion by 
NCX [93]. In addition, CaMKII phosphorylates 
the SERCA regulatory protein phospholamban 
(PLN), thereby augmenting SERCA activity and 
further gaining SR Ca2+ content [118]. This pre-
disposes SR and RyR to spontaneous Ca2+ 

releases which lead to the development of 
delayed afterdepolarizations (DAD). DADs 
occur in diastole after full repolarization and 
are usually the results of intracellular Ca2+ over-
load and spontaneous SR Ca2+ release (Figure 6 
(a)). The abnormal Ca2+ release generates 
a depolarizing current by activating the forward 
mode of NCX [130]. The development of DADs 
has clinical importance as they generate trig-
gered activity which contributes to arrhythmo-
genesis in certain diseases, such as 
catecholaminergic polymorphic ventricular 
tachycardia (CPVT), HF or AF [3].

Besides DADs, early afterdepolarizations 
(EAD) can be generated in the case of abnormal 
Na+ channel function (Figure 6(b)). APD is 
lengthened upon slower INa,early inactivation 
predisposing the cell to the generation of 
EADs. There are several subtypes of EADs 
(phase 2, phase 3 and late phase 3 EAD) but, in 
general, they occur before the terminal repolar-
ization. In most cases, a longer AP (except for 
the late phase 3 EAD) allows ICa,L to recover 
from inactivation generating a positive feedback 
loop triggering further APs [3]. It is important 
to note that activation of CaMKII itself may also 
contribute to the facilitation and reactivation of 
ICa,L [131,132]. It has been shown, however, that 
both the SR Ca2+ load with the concomitant 
spontaneous Ca2+ release and the inward depo-
larizing current delivered by the NCX and the 
reactivated INa are also accountable for the gen-
eration of EADs [133–135]. Two possible 
mechanisms have been proposed to explain the 
EAD generation by INa,late; SR Ca2+ overload and 
the reactivation of ICa,L during the plateau phase 
of the AP [63]. Our experiments in guinea pig 
myocytes showed that INa,late-induced EADs are 
mediated by spontaneous SR Ca2+ release as the 
first occurrence of EAD precedes – i.e. occurs at 
more positive membrane potential – the window 
current voltage range of ICa,L, therefore making 
ICa,L reactivation as a key feature less likely [45].

It has been demonstrated in LQTS-3 patients, 
that a gain-of-function mutation of SCN5A 
resulted in an enlargement of INa,late [136]. 
Besides increasing INa,late, the mutation also caused 
elevation of [Na+]i and [Ca2+]i which was asso-
ciated with a reduction in the forward mode and 
an increase in the reverse mode activity of NCX 
[123,137–139]. Other studies have shown high SR 
Ca2+ content and spontaneous diastolic Ca2+ tran-
sients in isolated cells from LQTS-2 mutant mice 
[140,141].

Previously, we established the concept of rela-
tive short-term beat-to-beat variability of APD 
(RSV), which might be a novel approach for pre-
dicting arrhythmias [52,142]. In those settings, 
higher RSV is considered to be more arrhythmo-
genic by increasing the dispersion of refractori-
ness. Those experiments showed that higher Na+ 

current causes higher variations in the APD, which 
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Figure 5. Schematic illustration of the physiological and pathophysiological processes leading to arrhythmias upon increased INa,late. (a) In 
a healthy myocyte, excitation-contraction coupling controls contraction by periodically increasing and decreasing the intracellular Ca2+ 

concentration. (b) If INa,late is elevated, as in the case of many diseases, intracellular Na+ and a concomitant Ca2+ overload may lead to 
arrhythmias. High intracellular Na+ concentration can activate the reverse mode NCX to further load the cell with Ca2+. Ca2+ overload and 
the longer action potential duration predispose the cell to proarrhythmic events. Red arrows show Ca2+ related, while blue arrows show 
Na+ related processes. Dashed lines indicate the phosphorylation targets of the Ca2+ – CaM – CaMKII pathway. APD, action potential 
duration; CaM, calmodulin; CaMKII, Ca/calmodulin-dependent protein kinase II; DAD, delayed afterdepolarization; EAD, early afterdepolar-
ization; ICa,L, L-type Ca2+ current; INa,early, the fast, early component of the Na+ current; INa,late, the persistent, late component of the Na+ 

current; NCX, Na+/Ca2+ exchange; NHX, Na+/H+ exchanger; NKP, Na+/K+ pump; PLN, phospholamban; PMCA, plasma membrane Ca2+- 
ATPase; RyR, ryanodine receptor; SERCA, sarcoplasmic reticulum Ca2+-ATPase; SV, short term beat-to-beat variability of action potential 
duration.
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is in agreement with the proarrhythmic role of 
INa,late. In our experiments, Na+ current was inhib-
ited by TTX and lidocaine, or alternatively, acti-
vated by veratridine. Similar increase in beat-to- 
beat variability was observed under Ca2+ overload 
conditions [143] and in situations where the repo-
larization reserve has been compromised [52].

INa,late can be directly or indirectly regulated by 
Ca2+, CaM, and CaMKII. In general, the higher 
[Ca2+]i shifts the steady-state inactivation curve of 
the Na+ current to more positive voltages and 
increases the availability of the channels at more 
positive potentials [45,108,144]. Consequently, the 
buffering of [Ca2+]i should decrease INa,late. Our 
experiments, however, showed that INa,late is rather 
influenced by the shape and voltage profile of the 
AP than by Ca2+ itself [45]. On the other hand, 
inhibition of CaMKII successfully prevented the 

catecholamine-induced spontaneous Ca2+ waves, 
DADs and EADs while improving contractile 
function [145–148]. Unfortunately, targeting 
CaMKII as an antiarrhythmic option is rather 
difficult considering its immensely complex signal-
ing network.

It has recently been shown that inhibition of the 
exchange protein directly activated by cAMP 
(Epac) can induce EADs [149]. The mechanism 
involves oxidative activation of CaMKII by an 
increase in cellular reactive oxygen species, ROS 
an increase in INa,late and prolongation of APD. 
ROS activation of CaMKII phosphorylates RyR 
and Nav1.5, leading to SR Ca2+ leak through RyR 
and enhanced INa,late [150]. Application of ranola-
zine prevented the proarrhythmic effects: 
decreased APD and abolished EADs, i.e. the 
impaired Epac signaling induced arrhythmias.

Figure 6. Basic mechanisms for early and delayed afterdepolarizations. (a) Factors involved in the generation of delayed after-
depolarizations (DAD). Increased [Na+]i elevates [Ca2+]i (and SR Ca2+ content) by switching NCX to reverse mode if the functional 
reserve of the NKP is reached. CaMKII phosphorylates phospholamban, also increasing SR Ca2+ content. High SR Ca2+ causes 
spontaneous Ca2+ release via the ryanodine receptors. This abnormal Ca2+ signaling switches NCX to forward mode, generating the 
transient inward current and this membrane depolarization can lead to triggered activity. Usually happens at high frequency, during 
diastole. Membrane potential recording shows a typical DAD. (b) Early afterdepolarization (EAD) occurs when the outward currents 
are reduced (reduced repolarization reserve) and/or the inward currents are enhanced. INa,late promotes EAD generation by the 
reactivation of ICa,L during the plateau phase, NCX activation and SR Ca2+ overload. Membrane potential recording shows a typical 
phase EAD. EAD, early afterdepolarization; DAD, delayed afterdepolarization; ICa,L, L-type Ca2+ current; IK1, inward rectifier K+ current; 
IKr, rapid component of delayed rectifier K+ current; IKs, slow component of delayed rectifier K+ current; INa, Na+ current; INCX, Na+/Ca2 

+ exchange; Iti, transient outward current; NKP, Na+/K+ pump; RyR, ryanodine receptor; SR, sarcoplasmic reticulum; SERCA, 
sarcoplasmic reticulum Ca2+-ATPase; TA, triggered activity.
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For a detailed review about the role of Ca2+ in 
arrhythmogenesis see a recent review of Kistamás 
et al [3].

Antiarrhythmic drug development

It became clear that elevation of INa,late, [Na+]i, and 
[Ca2+]i is arrhythmogenic; therefore, an effective 
antiarrhythmic treatment is necessary under these 
conditions. An obvious objective is the inhibition 
of voltage-gated Na+ channels. However, the dis-
appointing results of the CAST and SWORD stu-
dies clarified that blocking a single specific ion 
channel alone can lead to unexpected adverse 
effects. Recently, a need for selective inhibitors 
that are able to distinguish between INa,early and 
INa,late is rather emerging. The selectivity here is 
critically important since blocking the early com-
ponent of the current can lead to a decrease in 
conduction velocity and might lead to conduction 
block and reentrant arrhythmias [3,151,152].

A number of inhibitors have been developed to 
date including ranolazine, eleclazine (GS-6615), 
lidocaine, GS-458967, GS-462808, and F15845, 
however, mainly ranolazine was used for excessive 
experimental and clinical studies (Table 1) [153]. 
The main issue with most of these inhibitors is 
that they function in a voltage-dependent manner 
and exert their INa,late selective effects mainly at 
lower than physiological membrane potentials. 
Coming closer to the physiologically relevant 
membrane voltage range, these inhibitors tend to 
block INa,early more and more, thus losing their 
selectivity [153]. Secondly, their blocking effect is 
rate-dependent, in other words, the inhibition of 
Na+ current increases with the pacing frequency, 
exerting thus a lesser impact on INa,late in brady-
cardia, when INa,late is thought to be significantly 
greater [154].

GS-458967, like other Na+ channel blockers 
including ranolazine and mexiletine, reduces 
APD and suppresses EAD or DAD formation 
and generation of Torsade de Pointes (TdP) type 
ventricular tachyarrhythmias [18,155–159]. 
F15845, an anti-ischemic drug, was also shown to 
inhibit INa,late and prevent ventricular tachycardia 
and fibrillation [155]. The latest promising inhibi-
tor compound was the eleclazine (GS-6615) which 
has undergone clinical trials. Eleclazine was 

demonstrated to bind to the Na+ channels with 
rapid kinetics and block INa,late with minimal 
effects on other ion currents and without adverse 
side effects [160]. Eleclazine shortened APD and 
the QT-interval, decreased spatiotemporal disper-
sion of repolarization, and suppressed the epi-
nephrine induced ventricular tachycardias. 
Despite the encouraging results with eleclazine, 
the drug and the clinical trials were suspended as 
the number of implantable cardioverter defibrilla-
tor (ICD) shocks was higher in the eleclazine- 
treated group. The use of amiodarone, a blocker 
with mixed effects, seemed to be a promising drug 
in HF, but there was a higher incidence of QT 
prolongation and bradycardia or pulmonary fibro-
sis, hepatotoxicity, and thyrotoxicity [161].

The most extensively studied selective INa,late 
inhibitor is the antiischemic ranolazine. 
Ranolazine reduces Na+ dependent Ca2+ overload 
by inhibiting INa,late [162]. This compound also 
inhibits the rapid component of the delayed recti-
fier K+ current (IKr) [163], ICa,L [73] and reverse 
mode NCX [164]; however, effects on ICa,L and 
NCX are mainly out of the therapeutic concentra-
tion range of the drug. Ranolazine is also a weak β- 
adrenergic agonist [165], while it has minimal 
effects on blood pressure or heart rate [166]. 
Furthermore, ranolazine reduced the beat-to-beat 
variability of APD [167]. Unfortunately, ranola-
zine shares the same disadvantages, namely, the 
enhancement of INa,early inhibition in the case of 
partially depolarized membrane observed in dis-
eased hearts or at higher activation rates [168,169]. 
At low pacing rates inhibition of INa,late success-
fully decreased the arrhythmic events, such as 
EADs, DADs or TdP [45,53,75,170–172]. 
Ranolazine reduced the dispersion of repolariza-
tion [173] the occurrence of EADs and TdP 
[75,174]. Dispersion of repolarization is caused 
by the shortening of the APD of midmyocardial 
cells, where INa,late is the most prominent. In 
LQTS-3 patients ranolazine decreased [175], 
while in a different study it increased the QT 
interval, due to IKr blockade [176].

It has been demonstrated that suppression of 
INa,late hinders Ca2+ overload [167,177–179]. The 
hallmark of INa,late inhibition is the suppression of 
Ca2+-dependent triggered activities, by reducing 
[Na+]i and [Ca2+]i. A second feature of the INa,late 
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blockade is the normalization of repolarization, 
allowing restoring the repolarization reserve [55].

Characterization of the true gating mechanism 
of INa,late (the potential gating mechanisms were 
discussed previously) may also bring a better ther-
apeutic protocol closer, since each gating mechan-
ism has its own characteristic drug affinity and 
sensitivity profile [164,180,181].

Conclusions

In summary, we have reviewed the arrhythmo-
genic behavior of the augmented late Na+ current 
and the concomitant elevation of intracellular Na+ 

and Ca2+ concentrations. In spite of the tremen-
dous work that had been done on understanding 
the background of the Ca2+ related arrhythmias, 
there is still a need for more research to better 
design antiarrhythmic treatments and drugs. It 
became clear that more attention has to be paid to 
INa,late in patients with Ca2+-dependent arrhyth-
mias, especially in the case of bradycardia.

Various processes can lead to Ca2+ overload and 
the therapeutic options are rather complex if we 
take into account the augmented INa,late. Hence, 
a selective INa,late inhibitor may only treat a part of 
the issue. To date, the most selective drug to INa,late 
in the market is ranolazine; however, it exerts 
electrophysiological effects on other ion currents 
as well. Therefore, more work is necessary to gain 
a better understanding of the role of INa,late and 
Ca2+ handling in cardiac arrhythmias and to 
develop novel antiarrhythmic therapies with 
a focus on translational aspects.
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