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Abstract

Background: The enumeration of chemical graphs (molecular graphs) satisfying given constraints is one of the
fundamental problems in chemoinformatics and bioinformatics because it leads to a variety of useful applications
including structure determination and development of novel chemical compounds.

Results: We consider the problem of enumerating chemical graphs with monocyclic structure (a graph structure
that contains exactly one cycle) from a given set of feature vectors, where a feature vector represents the frequency of
the prescribed paths in a chemical compound to be constructed and the set is specified by a pair of upper and lower
feature vectors. To enumerate all tree-like (acyclic) chemical graphs from a given set of feature vectors, Shimizu et al.
and Suzuki et al. proposed efficient branch-and-bound algorithms based on a fast tree enumeration algorithm. In this
study, we devise a novel method for extending these algorithms to enumeration of chemical graphs with monocyclic
structure by designing a fast algorithm for testing uniqueness. The results of computational experiments reveal that the
computational efficiency of the new algorithm is as good as those for enumeration of tree-like chemical compounds.

Conclusions: We succeed in expanding the class of chemical graphs that are able to be enumerated efficiently.

Keywords: Chemical graphs, Enumeration, Monocyclic structure, Feature vector

Introduction
The enumeration of chemical structures satisfying given
constraints is an important topic in chemoinformat-
ics [1-3]. Applications of the enumeration of chemical
structures include structure determination using mass-
spectrum and/or NMR-spectrum [4,5], virtual explo-
ration of the chemical universe [6,7], reconstruction of
molecular structures from their signatures [8,9], and
classification of chemical compounds [10]. The enu-
meration problem is also important for development of
novel chemical compounds because virtual exploration
of chemical universe and reconstruction of molecular
structures from their signatures are considered to be
important elementary technologies. The enumeration of
chemical structures has a long history. Cayley [11] con-
sidered the enumeration of structural isomers of alka-
nes in the 19th century. The seminal work of Pólya on
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counting the number of isomers using group theory is also
famous [12].
In this paper, we consider the problem of enumerating

chemical structures having monocyclic graph structures
satisfying a given constraint, where a monocyclic graph
is an undirected connected graph containing exactly one
cycle (a graph is connected if there exists a path connect-
ing every pair of vertices), and a constraint is given in the
form of a set of feature vectors (i.e., a set of descriptors).
We assume that each feature vector specifies the num-
ber of occurrences of each labeled path of length up to
a given constant K , where a labeled path is an alternat-
ing sequence of atom names and bond types (see Figure 1
for an example of a feature vector). We also assume that a
set of feature vectors is given by specifying the minimum
and maximum numbers of occurrences of each labeled
path. We develop an efficient algorithm for this enumera-
tion problem by extending existing algorithms [13,14] for
enumerating tree-like chemical structures (i.e., chemical
structures without cycles). In this extension, some novel
concepts are introduced and rigorous mathematical anal-
ysis is performed in orer to guarantee the correctness of
the algorithm.
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Figure 1 Example of a chemical structure and its feature vector.
In this example, a feature vector consists of the number of
occurrences of each atom type and each bond type (e.g., C2C denote
the double bond between two carbon atoms). Note that the entry of
C1C is 8 because each bond is counted for both directions. Since
there may exist multiple structures with the same feature vector,
enumeration of such structures is required.

In order to verify the computational efficiency of our
proposed algorithm, we perform computational experi-
ments using a set of some chemical compounds from the
KEGG LIGAND database [15]. The results suggest that
the proposed algorithm enumerates chemical structures
havingmonocyclic graph structures as nearly efficiently as
tree-like chemical graphs have been enumerated.
The rest of this paper is organized as follows. First, we

review some mathematical definitions and give a formal
definition of the enumeration problem for chemical struc-
tures with monocyclic graph structures. Next, we review
background and related work. Then, we present the
algorithm and the results of computational experiments.
Finally, we conclude with future work. Mathematical
proofs, pseudocodes for the algorithm, and some details
on computational experiments are given in Additional
file 1.

Preliminaries and problem formulation
This section reviews some basic definitions on graphs
and formalizes the problem to be addressed in this work.
Before providing formal descriptions, we briefly explain
the problem definition using an example in Figure 2.

Figure 2 Example of a �-coloredmulti-graph G and its feature
vector f1(G). G represents a hydrogen-suppressed chemical graph,
where deg(v;G) < val(c(v)) holds for some vertex v ∈ V(G). Since
each path is counted for both directions, the entry for C2C is not one,
but two.

Our basic problem is to enumerate all chemical struc-
tures each of which is consistent with a given feature
vector and the valence condition. Each coordinate of a
feature represents the number of occurrences of vertex-
and edge-labeled paths. In order to keep the size of a
feature vector moderate, we restrict the length of paths
to be no greater than a constant K . In the example of
Figure 2, we consider paths of lengths 0 and 1, where a
path of length 0 corresponds to a single atom and a path
of length 1 corresponds to a bond including its endpoint
atoms. For example, the columns O, N, and C of feature
vector f1(G)mean that each target structure must contain
exactly one oxygen, two nitrogen, and three carbon atoms,
respectively. The columns N1O, N1C, and C2C mean that
each target structure must contain exactly one single bond
connecting N and O, two single bonds connecting C and
N, and one double bond connecting C and C. It should
be noted that one single bond connecting N and O is
counted by both O1N and N1O. Then, the chemical struc-
tureG is consistent with f1(G). However, another chemical
structure may be consistent with a given feature vector.
For example, the feature vector remains the same even if
the double bond (along with the branching carbon atom)
is moved into the backbone chain. Therefore, it is desir-
able to enumerate all chemical structures consistent with
a given feature vector and the valence condition (speci-
fied by val(. . .)). On the other hand, there may not exist
any consistent chemical structure if K is large; thus it may
not be appropriate to uniquely specify a feature vector.
Therefore, we assume in our target problem that upper
and lower bounds of the number of occurrences of each
labeled path are given as shown in Figure 3.
A multi-graph is a graph that can have multiple edges

between the same pair of vertices, where vertices corre-
spond to atoms andmulti-edges correspond to double and
triple bonds in chemical compounds. We call a connected
multi-graph a k-augmented tree if the number of adjacent
vertex pairs (i.e., vertex pairs connected by edges) minus

Figure 3 Example of an input of EULF and part of its output. The
input includes upper and lower feature vectors, and the output
includes multi-trees G1 and G2 and a 1-augmented tree G3.



Suzuki et al. Journal of Cheminformatics 2014, 6:31 Page 3 of 18
http://www.jcheminf.com/content/6/1/31

the number of vertices is k − 1 (hence a multi-tree is a 0-
augmented tree). That is, a k-augmented tree is a graph
obtained by adding edges to k different pairs of nonadja-
cent vertices in a multi-tree (see Figure 4). The problem
considered in this paper is to enumerate all 1-augmented
trees satisfying specified upper and lower bound condi-
tions on feature vectors. In the following, we provide the
mathematical definition of the problem. We assume that
readers have some familiarity with basic concepts in graph
theory. For those who are not familiar with graph theory,
we suggest referring to an appropriate textbook (e.g., [16]).
Readers not interested in mathematical details can skip
this part.
A graph is defined to be an ordered pair (V , E) of a finite

set V of vertices and a finite set E of edges, where an edge
is an unordered pair of distinct vertices (thus no self-loop
exists), where an edge with two end-vertices u and v is
denoted by uv. A graph is called a multi-graph when E
is not necessarily composed of distinct pairs of vertices
(thus multiple edges are allowed in a multi-graph and E
is no longer a set, but a multi-set), and is called a simple
graph if no multiple edges are allowed. The multiplicity
(the number of multiple edges) between two vertices u
and v is denoted by m(u, v). An edge in a multi-graph G

Figure 4 Examples of k-augmented trees. A k-augmented tree is
obtained by adding k edges to a multi-tree, where a multi-tree is a
tree with multiple bonds (precisely, multiple edges between the
same pair(s) of vertices).

is called simple if its multiplicity in G is one. We denote
the vertex set and edge set of a graph G by V (G) and
E(G), respectively. For a vertex v in a multi-graph G, let
deg(v;G) denote the number of edges incident to ver-
tex v (i.e., degree of v). In this paper, a cycle is a closed
path with a length at least three (two edges with the
same endvertices are not treated as a cycle), and a con-
nected multi-graph (resp., simple graph) with no cycle is
a multi-tree (resp., simple tree). A k-augmented tree is a
connected multi-graph such that the number of adjacent
vertex pairs (i.e., vertex pairs connected by edges) minus
the number of vertices is k − 1. For two vertices u and
v in a multi-graph G, let G + uv denote the multi-graph
obtained by adding a new edge uv to G; when uv ∈ E(G),
let G − uv denote the multi-graph obtained by removing
uv from G. Let Z+ denote the set of nonnegative inte-
gers, and let � be a set of colors, which correspond to
chemical elements such as H, O and C. Let each color
c ∈ � be associated with a valence val(c) ∈ Z+. A multi-
graph G is said to be � − colored if each vertex v has
a color c(v) ∈ �. Chemical compounds can be viewed
as�-colored, self-loopless connected multi-graphs, where
vertices and colors represent atoms and elements,
respectively.
Let d ∈ Z+ be a prescribed integer, which corre-

sponds to the maximum multiplicity of chemical graphs,
and �k,d denote the set of all alternating sequences
(c0,m1, c1, . . . ,mk , ck) consisting of colors c0, c1, . . . , ck ∈
� and m1,m2, . . . ,mk ∈ {1, 2, . . . , d}. We denote the
union of �0,d, �1,d, �2,d , . . . ,�k,d by �≤k,d. Let Fk(�, d)
be the set of all mappings g from �≤k,d to Z+, i.e.,
Fk(�, d) = {g : �≤k,d → Z+}.
For a path P = (v0,m1, v1, . . . ,mk , vk) such that V (P) =

{v0, v1, . . . , vk}, E(P) = {v0v1, v1v2, . . . , vk−1vk}, and mi =
m(vi−1, vi) is the multiplicity of edge vi−1vi, the length of
P is defined to be k = |V (P)| − 1, and the color sequence
c(P) of P is defined to be the sequence c(P) = (c(v0),m1,
c(v1) , . . . ,mk , c(vk)) ∈ �k,d.
Given a multi-graph G and a sequence t ∈ �k,d for

some k, let occ(t,G) denote the number of paths P in G
such that c(P) = t. For an integer K ∈ Z+, the feature
vector fK (G) of level K in G is defined to be the |�≤K ,d|-
dimensional vector fK (G) whose value at each entry t ∈
�≤K ,d is given by fK (G)[t]= occ(t,G). In this paper, we
treat hydrogen-suppressed chemical graphs with carbon
C, nitrogen N or oxygen O, which are represented by �-
colored multi-graphs G with color set � = {O, N, C}.
Figure 2 illustrates an example of �-colored multi-graph
G that represents a hydrogen-suppressed chemical graph
and its feature vector f1(G).
Note that in hydrogen-suppressed chemical graph G,

deg(v;G) < val(c(v)) may hold for some vertex v ∈ V (G).
Let us define the residue degree res(v) of a vertex v to
be val(c(v)) − deg(v;G). In a multi-graph G, we interpret
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res(v) of a vertex v as the number of hydrogen atoms
attached to the vertex v (in our proposed procedure, we
also interpret res(v) as the number of new edges/bonds
that can be attached to v when G is being constructed by
adding more edges).
For a vector g ∈ FK (�, d) of level K ≥ 1, a multi-graph

G with fK (G) = g is a multi-graph such that the occur-
rence of each path t = (c0,m1, c1, . . . ,mp, cp) in G with
length of at most K is completely specified by g[t], in par-
ticular V (G) = {t | g[t]≥ 1, t ∈ �0,d = �} (i.e., G has
exactly g[t] vertices of color t), E(G) = {t | g[t]≥ 1, t =
(c,m, c′) ∈ �1,d} (i.e., G has exactly g[(c,m, c′)] edges of
multiplicity m that join a vertex of color c and a vertex of
color c′).
For two vectors gL, gU ∈ FK (�, d) and an integer k ≥ 0,

let Gk( gL, gU) denote the set of all�-colored k-augmented
trees G such that gL ≤ fK (G) ≤ gU (i.e., fK (G) = g′ for
some g with gL ≤ g′ ≤ gU ) and deg(v;G) ≤ val(c(v)),
v ∈ V (G).
Our problem is to enumerate all k-augmented trees G

on a given set of atoms each of which is consistent with
one of the feature vectors between the lower and upper
vectors gU , gL ∈ FK (�, d), such that gL ≤ gU (where
gL[t]= gU [t] for all t ∈ �0,d since the vertex set is fixed
for all G).
In what follows, we fix a color set� and an upper bound

d on multiplicity. We define the problem of enumerating
k-augmented trees as follows.

Enumerating chemical graphs with given upper and
lower path frequency (EULF) Given a maximum path
length K ∈ Z+ and feature vectors gU , gL ∈ FK (�, d)
such that gL[t]= gU [t] for all t ∈ �0,d , enumerate all
multi-graphs G ∈ Gk( gL, gU).
Figure 3 illustrates an example of an input of EULF

with upper and lower feature vectors gL and gU and part
of its output, multi-trees G1,G2 ∈ G0( gL, gU) and a
1-augmented tree G3 ∈ G1( gL, gU).
For k = 0, we have developed an efficient algorithm for

EULF [13,14]. The purpose of this work is to describe an
algorithm for EULF with k = 1. We assume that the max-
imum valence is 4 and mainly enumerate a 1-augmented
tree such that the cycle contains an edge of multiplic-
ity one (a single bond), since otherwise a 1-augmented
tree is a single cycle consisting of edges of multiplicity
two, which can be separately handled as a special rare
case.

Background
As mentioned in Introduction, enumeration of chemi-
cal structures has a long history and many studies have
been done. In the field of machine learning, a simi-
lar problem, which is called the preimage problem, has
been studied [17,18]. In this problem, a desired object

is computed as a feature vector in a feature space,
and then the feature vector is mapped back to the
input space, where this mapped back object is called
a preimage. The definition of the feature vectors based
on the frequency of labeled paths [19,20] or small
fragments [10,21] has been widely used. Akutsu and
Fukagawa [22] formulated the graph preimage problem
as the problem of inferring graphs from the frequency
of paths of labeled vertices and proved that the problem
is computationally intractable (NP-hard) even for pla-
nar graphs with bounded degrees [22]. Nagamochi [23]
proved that a graph determined by the frequency of paths
with length one can be found in polynomial time if any
exists.
The preimage problem has also been studied in the field

of chemoinformatics as a part of inverse QSAR/QSPR
(quantitative structure-activity relationship/quantitative
structure-property relationship) studies. Indeed, the
problem is essentially the same as reconstruction and/or
enumeration of molecules from their descriptors in
inverse QSAR/QSPR [8,9,24,25], where the descriptors
correspond to feature vectors in the preimage problem.
Wong and Burkowski developed a practical preimage
basedmethod and demonstrated that it actually generated
the structure of a new drug candidate [26]. For enumer-
ation of molecules from descriptors, useful tools such as
MOLGEN have been developed [27]. However, they are
not very efficient if large structures are to be enumer-
ated because many of them treat general graph structures
(under the valence constraint).
It might be possible to develop significantly faster algo-

rithms for the preimage problem if we restrict the class
of target chemical structures and employ recent tech-
niques for enumeration of graph structures. Fujiwara
et al. [28] studied enumeration of tree-like chemical
graphs that satisfy a given feature vector which speci-
fies frequency of paths of up to a prescribed length K
in a chemical compound to be constructed. They pro-
posed a branch-and-bound algorithm that consists of
a branching procedure based on the tree enumeration
algorithm by Nakano and Uno [29,30] and bounding
operations designed by properties on path frequency
and atom-atom bonds. They showed by means of com-
putational experiments on enumeration of alkane iso-
mers that their algorithm works at least as efficiently
as the fastest algorithm while using much less memory
space.
To reduce the size of the search space, Ishida et al. [31]

have introduced a new bounding operation, called the
detachment-cut, based on the result of Nagamochi [23].
In this problem formulation, it is required that the path
frequency of a chemical structure is exactly the same as
the specified one. However, there does not exist such
a structure in many cases because a mapping between
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chemical structures and feature vectors is not surjective
and thus there are many vectors in a feature space that
do not have preimages. To seek solutions effectively in
a relaxed constraint, Shimizu et al. [13] recently intro-
duced a problem of enumerating tree-like hydrogen-
suppressed chemical graphs that satisfy one of a given set
of feature vectors which is specified by a pair of upper
and lower feature vectors. They proposed a branch-and-
bound algorithm for the problem, called 1-Phase algo-
rithm, and afterward Suzuki et al. [14] proposed a more
efficient and effective algorithm, called 2-Phase algorithm.
Implementations of these algorithms [13,14] for enumer-
ating tree-like hydrogen-suppressed/hydrogen-retained
chemical graphs with given upper and lower bounds
on path frequencies are available on a web server
(http://sunflower.kuicr.kyoto-u.ac.jp/tools/enumol2/).
As shown by Nakano and Uno [29,30], the class of

trees admits a nice scheme for computer representa-
tion of their structures (called “left-heavy trees”) which
enables us to generate trees significantly faster (in con-
stant time per tree) without executing any explicit test on
the uniqueness of structure representations of temporar-
ily generated labeled graphs. Development of algorithms
for enumerating chemical graphs with a “non-tree struc-
ture” is thereby a challenging task if we still wish to
attain high computational efficiency as we have achieved
for enumeration of tree-like chemical graphs, because no
such effective representation scheme is known for general
graphs. It should be noted that although polynomial-time
algorithms have been developed for equivalence test and
unique representation form problems for bounded degree
graphs [32,33] and chemical compounds [34], they are not
directly applicable to efficient enumeration of chemical
graphs.
In the NCI database (http://cactus.nci.nih.gov/ncidb2.

2/), the ratio of the number of chemical compounds
with k-augmented tree structures to that of all regis-
tered chemical compounds is approximately 9%, 22%,
28%, 20%, and 11% for k = 0, 1, 2, 3, and 4, respectively.
This implies that we have been able to treat only 9% of
all of chemical compounds with high computational effi-
ciency. As the first step toward efficient enumeration of
non-tree chemical graphs, we consider the problem of
hydrogen-suppressed chemical graphs with 1-augmented
tree (monocyclic) structure. If we can solve this problem,
we can treat 31% (= 9% + 22%) of chemical compounds.
Although no effective representation scheme is known
even to 1-augmented trees, we can create a tree by remov-
ing one edge in the unique cycle in a 1-augmented tree
(twomultiple edges with the same endvertices is not called
a cycle in this paper). Additionally, 2-Phase algorithm [14],
which enumerates tree-like hydrogen-suppressed chemi-
cal graphs, can be used without any major modification
to enumerate such trees T = G − e with one edge

deficit from 1-augmented trees G to be constructed. Thus
the main task is to efficiently test the uniqueness of
generated labeled 1-augmented trees. To design such a
procedure, we use a well-reflected definition of a parent
0-augmented tree T = G − e of a 1-augmented tree G.
As a result, we can combine the new procedure with 2-
Phase algorithm to obtain an algorithm for enumerating
hydrogen-suppressed chemical graphs with 1-augmented
tree structure from upper and lower bounds on feature
vectors.

Method
Our proposed algorithm is based on existing algorithms
to enumerate colored trees [29,30] and colored multi-
trees [13,14,28,31]. The basic strategy of our algorithm
is to generate a multi-tree first and then extend it to a
1-augmented tree by adding an edge. In enumeration algo-
rithms, it is important not to miss any possible structures
and not to duplicate identical structures. In order to effi-
ciently cope with these conditions, the concept of the
family tree has been widely employed in various enumer-
ation algorithms. To define a family tree for graphs, we
need to define a parent-child relationship between graph
structures so that a parent structure is uniquely deter-
mined from a child structure, where each child structure is
obtained by adding a vertex or an edge to its parent struc-
ture. Because extension of a multi-tree to a 1-augmented
tree is the core part of our proposed algorithm, we need
to provide a proper definition of the parent-child rela-
tionship between a multi-tree and a 1-augmented tree.
As will be shown later, there may exist multiple pos-
sible ways of having a parent structure. How to define
the unique parent of a given 1-augmented tree is one
of the novel points of our proposed algorithm. Another
important issue on generating 1-augmented trees is not
to generate identical 1-augmented trees from the same
multi-tree. As will be shown later, there is a case in which
additions of different edges result in identical structures.
How to efficiently prevent this kind of duplicate genera-
tion of identical structures is the other novel point of our
proposed algorithm. In the following, we give a detailed
description of the algorithm including these novel points.
Again, readers not interested in mathematical details can
skip this part.

Overview of a new algorithm for 1-Augmented trees
Let G′

0 be the set of 0-augmented trees (multi-trees)
T = G − e obtained from each 1-augmented tree G ∈
G1( gL, gU) by removing a simple edge e in the unique cycle
of G.
Then we have G′

0 ⊆ G0( g′
L, gU) for a modified lower vec-

tor g′
L in a vector set G′

L. We construct such a vector set
G′
L from gL as follows: For each t ∈ �k,d with k ≥ 2, let

g′
L[t]= 0; and for each t ∈ �1,d , let

http://sunflower.kuicr.kyoto-u.ac.jp/tools/enumol2/
http://cactus.nci.nih.gov/ncidb2.2/
http://cactus.nci.nih.gov/ncidb2.2/
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g′
L[t]=

{
max{gL[t]−1, 0} if t is symmetric (i.e., it is identical with its reversal)
max{gL[t]−2, 0} otherwise.

Thus our first task is to generate all multi-trees T ∈
G0( g′

L, gU) by using fast conventional algorithms such as
2-Phase algorithm.
Our next task is to generate 1-augmented trees G from

each multi-tree T ∈ G0( g′
L, gU) such that no 1-augmented

tree in G ∈ G1( gL, gU) will be duplicated during the entire
enumeration over all T ∈ G0( g′

L, gU). To attain this objec-
tive without storing all generated 1-augmented trees for
a comparison with a newly generated 1-augmented tree,
we define a mapping π : G1( gL, gU) → G0( g′

L, gU); the
multi-tree T = π(G) for a 1-augmented tree G is called
the parent of G. For a multi-tree T , a 1-augmented tree
G with π(G) = T is called a child of T (possibly T
has more than one child), and is called a feasible child
of T if G ∈ G1( gL, gU). Note that any of definition of
such a mapping will suffice as long as π(G) is determined
only by the information of an “unlabeled graph” G (i.e.,
topological structure) except for a possible difference in
computational efficiency to avoid duplication of solutions.
In the following, we show the 2-Phase algorithm,

present details of our definition of parents π and design
an efficient procedure for generating all childrenG from a
given multi-tree T ∈ G0( g′

L, gU).

Summary of 2-Phase algorithm for 0-Augmented tree
In this section, we summarize 2-Phase Algorithm [14]
for generating all multi-trees in G0( g′

L, gU). In the first
phase, we simplify input feature vectors by adding the
frequencies of the paths that include multiple edges to
the corresponding paths which consist of only simple
edges and then enumerate simple trees for the simplified
upper and lower feature vectors. Figure 5 illustrates fea-
ture vectors gU and g′

L and simplified feature vectors gu
and g′

l .
In the second phase, we assignmultiplicities of edges for

each of the simple trees to satisfy the feature vector con-
straint and the valence constraint. The inputs and outputs
of the first phase and second phase in 2-Phase Algorithm
are described as follows:

Figure 5 Illustration of modified feature vectors. The frequency of
O1C and C1O increases after the simplification.

First Phase
Input: A color set �, lower and upper feature vectors g′

L
and gU , respectively;
Output: All simple trees in G0( g′

l , gu) for g
′
l and gu which

are simplified from g′
L and gU , respectively.

Second Phase
Input: A simple tree T ∈ G0( g′

l , gu) obtained by the first
phase, a color set �, and lower and upper feature vectors
g′
L and gU , respectively;
Output: All multi-trees in G0( g′

L, gU) obtained by assign-
ing a multiplicity to T .

From the given multi-tree T ∈ G0( g′
L, gU), our efficient

procedure generates all 1-augmented trees in G1( gL, gU).

Parent-child relationship
In this section, to avoid duplication of a 1-augmented tree
during the entire enumeration over all T ∈ G0( g′

L, gU),
we introduce a parent-child relationship between a 0-
augmented tree and a 1-augmented tree.

Signature of rootedmulti-trees
To define the parent π(G) of a 1-augmented tree G using
only topological structure, we first introduce the concepts
of “canonical form” and “signature” for a class of multi-
graphs.
We fix the total order of colors in � arbitrarily, e.g.,

O<N<C, and regard each color c ∈ � as a small inte-
ger in Z+. We define the lexicographical order among
sequences with elements in�∪Z+ as follows. A sequence
A = (a1, a2, . . . , ap) is lexicographically smaller than a
sequence B = (b1, b2, . . . , bq) (denoted by A < B) if and
only if there is an index k such that (i) ai = bi (1 ≤ i ≤ k);
and (ii) ak+1 < bk+1 (k + 1 ≤ min{p, q}) or k = p < q;
otherwise A = B, i.e., p = q and ai = bi (1 ≤ i ≤ p), or
B < A. Let A ≤ B denote A < B or A = B.
A multi-graph is called labeled if each vertex has a

unique name or an index such as v0, v1, . . . , vn−1, and
we usually record a multi-graph as labeled in our com-
puter. Hence, testing isomorphism of two multi-graphs is
to find labels for these “unlabeled graphs” such that the
two labeled graphs completely match each other includ-
ing the adjacency between every two vertices. For a class
G of multi-graphs, if we have a way of choosing a label
for each multi-graph G ∈ G that is unique up to auto-
morphisms of G, then we can test the isomorphism of
two graphs directly with their labels. Such a labeling for G
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is called the canonical form of G. Once such a canonical
form is obtained, we can easily encode each multi-graph
G ∈ G into a code σ(G) (which is an integer or a sequence
of integers/colors), called the signature of G, such that
two multi-graphs G,G′ ∈ G are isomorphic if and only if
σ(G) = σ(G′). Without loss of generality we assume a
total order over {σ(G) | G ∈ G} by introducing, if nec-
essary, a total order over all colors and a lexicographical
(total) order over all sequences of integers and colors.
A rooted graph is a multi-graph in which a vertex is des-

ignated as the root, and two rooted graphs are isomorphic
if there is an isomorphism that maps their roots onto each
other.
Any tree T has either a vertex or a pair of adjacent

vertices removal of which leaves no component with at
least |V (T)|/2 vertices [35], where the former is called the
centroid and the latter is called the bicentroid.
In a rootedmulti-tree T , the parent vertex of a non-root

vertex v is denoted by p(v) and the depth of a vertex v is
denoted by depth(v), where the depth of a vertex is its dis-
tance to the root. For a vertex v in T , let Tv denote the
subtree induced from T by all descendants of v including
v. For an edge e = uv in T (where u = p(v)), let Te (Tuv)
denote the subtree of T that consists of Tv and u = p(v)
joined by edge e = uv.
For the class of rooted multi-trees, a canonical form of

a rooted multi-tree T is given by an “ordered tree” τ of
it (i.e., determination of a total order among children of
each vertex). Let dfs(τ ) denote the total order of vertices
in τ visited by the depth-first-search order according to
the order for children in τ . For example, Figure 6 illus-
trates three ordered trees τ1, τ2 and τ3, which are obtained
from the same multi-tree T rooted at the centroid, where
the number beside each vertex v indicates dfs(v).
We let δ(τ ) denote the alternating sequence

(c0, d0, c1, d1, . . . , cn−1, dn−1) such that ci and di denote
the color and depth, respectively, of the i-th vertex vi in
dfs(τ ), andM(τ ) denote the sequence (m1,m2, . . . ,mn−1)
of the multiplicity mi = m(vi, p(vi)) of the edge joining
the i-th vertex and its parent p(vi) in T . For a vertex v,
let dfs(v) denote the labeling number of v in dfs(τ ). For

Figure 6 Illustration of a rooted tree and left-heavy trees. (a) An
ordered tree τ1 rooted at its centroid; (b) a left-heavy tree τ2; and (c)
the canonical form τ3.

example, Figure 6 illustrates δ(τi) of ordered trees τi,
i = 1, 2, 3 andM(τ2) andM(τ3).
A left-heavy tree of a rooted multi-tree T is an ordered

tree τ that has the maximum code δ(τ ) among all
ordered trees of T (hence a left-heavy tree τ is a canon-
ical form and δ(τ ) is a signature of it when we ignore
the multiplicity of rooted multi-trees). We define the
canonical form of a rooted multi-tree T to be the left-
heavy tree τ that has the maximum code M(τ ) among
all left-heavy trees of T , and let σ(T) denote a sig-
nature of T (a code of the canonical form τ such as
(δ(τ ),M(τ ))). For example, in Figure 6, τ2 and τ3 are left-
heavy trees of T , since they have lexicographically maxi-
mum sequences δ(τ2) = δ(τ3) among all ordered trees τ of
the rooted multi-tree T , and τ3 is the canonical form of T
and (δ(τ3) = (C, 0,C, 1,N, 2,C, 1,N, 2,N, 1,O, 2),M(τ3) =
(2, 1, 1, 2, 1, 1)) is the signature of T since it is a left-heavy
tree with the lexicographically maximumM(τ3) among all
left-heavy trees τ of T .
Using the canonical form for rooted multi-trees, we

can define a canonical form for “unrooted” multi-trees
T by regarding them as trees rooted at the centroid or
bicentroid.

Defining parentsπ

We are now ready to define parents π for 1-augmented
trees (note that there is no root for any 1-augmented tree).
Let G be a 1-augmented tree with a unique cycle C of
length p which by our assumption contains at least one
simple edge. Then there are p possible choices G − ei,
i = 1, 2, . . . , p, for the parent of G. We introduce a rule to
choose one of them based only on the topological infor-
mation onG and C. For each vertex v in C, letN(v) denote
the set of vertices in V −V (C) adjacent to v. Removing an
edge vw with v ∈ V (C) and w ∈ N(v) leaves a multi-tree
containing w, which we denote by Tw. For each vertex v in
C, we encode all multi-trees Tw, w ∈ N(v) into a signature
σ ∗(v) using the signature σ for rooted multi-trees; we set

σ ∗(v) = (c(v), σ(Tw1), σ(Tw2), . . . , σ(Twh)),

such that σ(Tw1) ≥ σ(Tw2) ≥ · · · ≥ σ(Twh) holds
for N(v) = {w1,w2, . . . ,wh}. Note that two vertices
v and v′ in C have the same color and an identi-
cal set of subtrees in N(v) and N(v′) if and only if
σ ∗(v) = σ ∗(v′). For each simple edge e = uv in C, we
define a code c∗(e) as follows. We encode the unique path
u1 (= u), u2, . . . , uh (= v) from u to v along C into
σ ∗(u, v) = (σ ∗(u1),m1, σ ∗(u2),m2, . . . ,mh−1, σ ∗(uh)),
where mi = m(ui, ui+1). Symmetrically, we define
σ ∗(v, u)=(σ ∗(uh),mh−1, σ ∗(uh−1),mh−2, . . . ,m1, σ ∗(u1)).
The code c∗(e) is defined to be lexicographically the max-
imum one between two sequences σ ∗(u, v) and σ ∗(v, u).
Furthermore, let E∗(C) be the set of simple edges e∗ in
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C such that c∗(e∗) is lexicographically maximum among
c∗(e) for all simple edges e in C.
We call an edge vwwith v ∈ V (C) and w ∈ N(v) a heavy

edge if Tw has at least |V (G)|/2 vertices. We distinguish
two cases to define parent π .

Case 1. There is no heavy edge around C: For an
arbitrary edge e ∈ E∗(C), we define π(G) to be
G − e (note that when |E∗(C)| ≥ 2, G is
symmetric around C and G − e and G − e′ will
be isomorphic for any two edges e, e′ ∈ E∗(C)).
Figure 7 illustrates how the parent π(G) of a
1-augmented tree G in Case 1 is determined on
these signatures σ(u, v) and σ(v, u) of simple
edges uv in the cycle C.

Case 2. There is a heavy edge v∗w∗: Note that no other
edge can be a heavy edge. Let e1 and e2 be the
two edges in C that are adjacent to v∗, where at
least one of them is a simple edge since
deg(v) ≤ 4. If exactly one of them, e.g., e1 is a
simple edge, then we define π(G) to be G − e1.
When e1 and e2 are simple edges, we choose
one of them as follows. We first ignore all trees
Tw with w ∈ N(v∗), which are symmetric at
the vertex v∗ commonly shared by e1 and e2
and hence useless to construct a signature for
distinguishing e1 and e2. Without using Tw
with w ∈ N(v∗), we construct the code c∗(e1)
and c∗(e2). Finally we choose any edge ei such
that c∗(ei) is lexicographically maximum

Figure 7 Illustration of defining the parent π(G) of a
1-augmented tree G. Three multi-trees T1 = G − uw, T2 = G − vz
and T3 = G − wz are obtained from G by removing a simple edge in
the cycle. Each number on the left side of each vertex v in G indicates
its signature σ ∗(v) of {Tw | w ∈ N(v)}. The code σ ∗ for each pair of
adjacent vertices in the cycle of G is given by σ ∗(w, u) = ((C, 2, 1),
1, (C, 2), 1, (C, 1), 2, (C)),σ ∗(u,w) = ((C), 2, (C, 1), 1, (C, 2), 1, (C, 2, 1)),
σ ∗(v, z) = ((C, 1), 2, (C), 1, (C, 2, 1), 1, (C, 2)),σ ∗(z, v) = ((C, 2), 1,
(C, 2, 1), 1, (C), 2, (C, 1)),σ ∗(w, z) = ((C, 2, 1), 1, (C), 2, (C, 1), 1, (C, 2)),
and σ ∗(z,w) = ((C, 2), 1, (C, 1), 2, (C), 1, (C, 2, 1)). Then π(G) is
defined to be T1 = G − uw because σ ∗(w, u) is maximum over all of
these six codes.

between c∗(e1) and c∗(e2), and define π(G) to
be G − ei.

Generating children
Recall that our algorithm for enumerating 1-augmented
trees consists of two major stages: the first stage enumer-
ates all multi-trees T ∈ G0( g′

L, gU) by 2-Phase algorithm,
and the second stage generates all feasible children G
for each T ∈ G0( g′

L, gU), i.e., 1-augmented trees G ∈
G1( gL, gU) with π(G) = T . This section describes a pro-
cedure for generating all children G = T + e of a given
multi-tree T by adding a new edge e.
For simplicity, we consider the case where a given multi-

tree T has the centroid (the case where it is rooted at the
bicentroid can be treated with aminor technicalmodifica-
tion). In the following, we assume that a given multi-tree
T is represented as its canonical form (a left-heavy tree)
τ rooted at its centroid, and that its sequences δ(τ ) =
(c1, d1, . . . , cn, dn) and M(τ ) = (m2,m3, . . . ,mn) over the
labeling dfs(τ ) have been already computed after the first
stage (2-Phase algorithm can deliver not only solutions T
but also τ and these sequences together).
It should be noted that the canonical form of left-heavy

trees enjoys the following recursive structure. For any ver-
tex v in T , the subtree Tv of T rooted at v induces an
ordered tree τv from the left-heavy tree τ and τv is again
the canonical form of Tv, since dfs(τv) is a subsequence
of dfs(τ ) with consecutive vertices and its ordered pair
(δ(τv),M(τv)) is also lexicographically maximized over all
ordered trees of Tv.

Testing generated 1-Augmented trees
Given the left-heavy tree τ of a multi-tree T , we add a
new edge xy for two nonadjacent vertices x, y ∈ V (T)
(dfs(x) < dfs(y)) to obtain G = T + xy. Let C denote the
cycle created in G. We check the following condition to
test whether T is the parent of G or not.

Case I. C contains the root (centroid) of T :

(A) σ ∗(xy) is lexicographically maximum
among σ ∗(e) for all simple edges e in C.

Case II. Otherwise:

(B) x is the ancestor of y;
(C) σ ∗(xy) ≥ σ ∗(e) if the edge e incident to x

in C is simple.

Then, we have the following lemma, where the proof is
given in S1.1 (of the Additional file 1).

Lemma 1. For a multi-tree T and two nonadjacent ver-
tices x, y ∈ V (T), testing whether T = π(T + xy) can
be done by checking the above condition in O(|V (C)|2)
time.
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Avoiding duplication of children
In previous sections, we have showed that all children (i.e.,
1-augmented trees) of a given multi-tree T can be gen-
erated by the definition of the parent-child relationship
between multi-tree and 1-augmented tree. However, if T
has two isomorphic subtrees Tu and Tv then we would
have two children T + xy and T + x′y′, which are isomor-
phic to each other. To avoid such duplication, we test if
T + xy is isomorphic to T + x′y′ for some other vertices
x′ and y′ when we add an edge xy to T . In fact, we do
not try to find other such pair x′ and y′ explicitly. Instead
we introduce a rule that we do not generate T + xy by
any edge xy that has such an “isomorphic” vertex pair x′
and y′ on the left hand side of x and y in T . To detect
this situation efficiently, we first compute data on each
vertex v in T that indicates whether the left hand side of
v contains another vertex u such that its subtree Tp(u)u
is isomorphic to Tp(v)v. Using such data, we show that
given a vertex pair x and y whether there is an isomor-
phic pair x′ and y′ in the left hand side can be checked
in constant time. In other words, we show an O(n2) time
algorithm extracting all the leftmost side vertex pairs
from T .
Among all isomorphic vertex pairs, we call the leftmost

one an “admissible pair”, where “isomorphic” means here
that the connection of vertices in each pair results in an
isomorphic tree. Figure 8 shows an example of a case
in which additions of different edges result in identical
structures and the admissible pair.
In this section, we show the validity that we only need to

add an edge between each admissible pair to avoid dupli-
cation and omission of 1-augmented trees generated from
one multi-tree T . Finally, for a multi-tree, we provide an

Figure 8 Illustration of admissible and non-admissible pairs. A
cycle will be created by adding each edge shown by a black dotted
line. Two 1-augmented trees T+uv and T+uv′ are 1-augmented trees
obtained from the multi-tree T by adding a simple edge such that
T + uv and T + uv′ are isomorphic to each other. (a) The vertex pair
(u, v) is an admissible pair, and (b) the other is not an admissible pair
(at least one admissible pair always exists in every 1-augmented tree).
Therefore, T + uv′ is not created (all 1-augmented trees are discarded
except for the 1-augmented tree created for admissible pair).

efficient algorithm extracting all vertex pairs to generate
all children of the multi-tree.

Admissible pairs
We write T + uv ∼ T + u′v′ if and only if T + uv and
T + u′v′ are isomorphic. For a tree T , let cT denote its
centroid, which is either a vertex (unicentroid) or an edge
(bicentroid). Let T be a left-heavy tree rooted at its cen-
troid cT . When cT is a bicentroid rr′, r and r′ will be the
vertices that have no parent in the parent-child relation-
ship in T . We shall now introduce “rooted-isomorphism”
among 1-augmented trees obtained from T by adding a
new edge. We regard a 1-augmented tree G = T + uv
obtained by adding new edge uv between two nonadjacent
vertices u, v ∈ V (T) as a graph rooted at cT . When cT is a
vertex r, we say that two 1-augmented trees G = T + uv
and G′ = T + u′v′ are rooted-isomorphic if they admit
an isomorphism ψ such that cT in G = T + uv corre-
sponds to cT in G′ = T + u′v′ (i.e., ψ(r) = r when cT is
a vertex r, and {ψ(r),ψ(r′)} = {r, r′} when cT is an edge
rr′) . We write T + uv ≈

r
T + u′v′ if and only if T + uv

and T + u′v′ are rooted-isomorphic with root r. Then,
the following theorem holds, where the proof is given in
Additional file 1: S1.2.

Theorem 2. Let T be a left-heavy tree rooted at its
centroid cT and {u, v}, {u′, v′} ⊆ V (T) be two pairs of non-
adjacent vertices. If T + uv ∼ T + u′v′ then T + uv ≈

r
T + u′v′.

Theorem 2 tells us that two 1-augmented treesG = T+
uv and G′ = T + u′v′ are isomorphic if and only if they
are rooted-isomorphic (i.e., cT in G corresponds to cT in
G′ in the isomorphism ψ , where possibly ψ(r) = r′ and
ψ(r′) = r when cT = rr′).
Now we consider how to generate a set GT of 1-

augmented trees T + uv such that the 1-augmented
tree T + uv for any pair of nonadjacent vertices u, v ∈
V (T) is isomorphic to exactly one 1-augmented tree G
in the set GT . By Theorem 2, we only need to check
the rooted-isomorphism among 1-augmented trees T +
uv for all pairs of nonadjacent vertices u, v ∈ V (T).
Based on this, we can modify a given tree T with bicen-
troid cT = rr′ into a tree T ′ with unicentroid r∗ by
inserting a new vertex on the edge rr′. Since this does
not change the rooted-isomorphism among 1-augmented
trees T ′ + uv or the left-heaviness of T , we assume
in the following that a given tree T has a unicentroid
cT = r.
Let T be a left-heavy tree. We shall introduce some ter-

minology. Let x be a non-root vertex x in T . Denote by
left(x) the immediate left sibling of a non-root vertex x (if
any). We define data copy as follows.
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copy(x) =
{
1 if left(x) exists and Ty ≈

r
Tx holds (i.e., x is a copy of y) for y = left(x),

0 otherwise.

Let u and v be two vertices inT . We denote by P(u, v) the
unique path in T that connects u and v, where P(u, v) =
P(v, u). Let lca(u, v) denote the least common ancestor of
u and v, i.e., the highest vertex in P(u, v) (where we define
lca(u, v) to be the edge cT = rr′ when T is rooted at the
bicentroid cT = rr′, and u ∈ V (Tr) and v ∈ V (Tr′)).
When dfs(u) < dfs(v), we define the greatest uncommon
ancestor gua of u and v as follows:

Let gua(u, v) denote the child of lca(u, v) that is
closest to u in T , where gua(u, v) is an ancestor of u
(including u itself) if lca(u, v) �= u;
Let gua(v, u) denote the child of lca(u, v) that is an
ancestor of v (including v itself), where
gua(u, v) = gua(v, u) if lca(u, v) = u.

We call a pair of nonadjacent vertices u, v ∈ V (T) with
dfs(u) < dfs(v) admissible if it satisfies the following con-
ditions (see Figure 9 for conditions (1) and (2) and
Figure 10 for condition (3)):

(1) copy(w)=0 for all verticesw ∈V (P(lca(u, v), r))−{r};
(2) copy(w) = 0 for all vertices w ∈ V (P(u, gua(u, v))) ∪

V (P(v, gua(v, u)))− {lca(u, v), gua(v, u)};
(3) if copy(gua(v, u)) = 1 then

(i) gua(u, v) = left(gua(v, u)) (hence u �=
lca(u, v)); and

(ii) For the copy û of vertex u in Tgua(v,u), it holds
dfs(v) ≥ dfs(û) (where dfs(û) = dfs(u)+
|V (Tgua(u,v))|).

Note that (3)-(i) implies that copy(gua(v, u)) in (2) needs
to be 0 when lca(u, v) = u.
The next lemma indicates that we only need to add an

edge between each admissible pair to avoid duplication of
1-augmented trees, where the proof is given in Additional
file 1: S1.3.

Lemma 3. For a left-heavy tree T rooted at its unicen-
troid cT = r, let GT = {T + uv | admissible pairs u, v ∈
V (T)}. Then the 1-augmented tree T + uv for any pair of
nonadjacent vertices u, v ∈ V (T) is isomorphic to exactly
one 1-augmented tree G in GT .

Algorithm
In this section, we describe an algorithm of the second
stage to generate all children of a given multi-tree T
without duplication and omission, and show the compu-
tational complexity of the second stage. To generate all

children of T , we first find all admissible pairs (u, v) for
T and test whether T is the parent π(T + uv) of T + uv
or not. Notice that a straightforward method would take
O(n) time to check whether a pair (u, v) is admissible or
not. Since there are at most nC2 vertex pairs in amulti-tree
T , finding all admissible pairs for T may take O(n3) time.
That is, from Lemma 1, we may need O(n3|V (C)|2) =
O(n5) time to generate all children of T .
In what follows, we design a fasterO(n4)-time algorithm

to generate all children of a given multi-tree T . For this,
we find only a subset of all admissible pairs, called the set
of “candidate” pairs defined as follows (see also Figure 11).
We see that no pair (x, y) generates a child T + xy of T if
a heavy edge is created in T + xy and x is not an ances-
tor of y, since such (x, y) does not satisfy any of Cases I
and II for generating children of T . Hence we are not
interested in storing such pairs (x, y), and call an admis-
sible pair (x, y) a candidate pair when (i) no heavy edge
is created in T + xy; or (ii) x is an ancestor of y, where
(i) (resp., (ii)) is a necessary condition of Case I (resp.,
Case II). By definition, every candidate vertex pair (x, y)
is admissible, whereas any admissible pair (x, y) such that
T + xy is a child of T is always a candidate pair. There-
fore, to generate all children of T , we do not need to find
all admissible pairs and only have to extract all candidate
pairs.
To facilitate this, we examine all vertex pairs (u, v)

(dfs(u) < dfs(v)) in T in a lexicographical order with
respect to (dfs(u), dfs(v)), i.e., we choose each vertex
vi from v0 to vn−1 as u and then choose each vertex
vj from vi+1 to vn−1 as v. We call the lexicographi-
cal order over vertex pairs a dfs order. For each of the
generated vertex pairs, we check whether it is a candi-
date pair or not. Finally, for each candidate pair (u, v),
we test whether T + uv is a child of T in Case I
or II.
We can find all candidate pairs for a multi-tree T in

O(n2) time in total as stated below. The proof is given in
Additional file 1: S1.4.

Lemma 4. For a left-heavy multi-tree T, all candidate
pairs of T can be found in O(n2) time.

Finally, by Lemma 1 and Lemma 4, we can generate all
children of a multi-tree T in O(n4) time, as stated in the
next lemma.

Lemma 5. Given a left-heavy multi-tree T, all children
of T can be generated in O(n4) time.
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Figure 9 Illustration of conditions (1) and (2) for admissible pairs. The black dotted line joins two vertices u and v, which will be the edge to
create a cycle in the 1-augmented tree T + uv. (a) and (b) illustrate the case of lca(u, v) �= u (where two rooted subtrees T(gua(u, v)) and
T(gua(v, u)) are not isomorphic to each other by copy(gua(v, u)) = 0) and the case of lca(u, v) = u, respectively (note that lca(u, v) �= v by
dfs(u) < dfs(v)). Conditions (1) and (2) exclude any ancestor w of u or v such that copy(w) = 1 (otherwise we can prove that there is a
lexicographically smaller pair (u′, v′) such that T + u′v′ is isomorphic to T + uv).

Proof. For a left-heavy multi-tree T , we can find all
candidate pairs in O(n2) time by Lemma 4. For each can-
didate pair (u, v), we can test whether T = π(T + uv)
or not in O(|V (C)|2) time by Lemma 1. Thus, for a left-
heavy multi-tree T , all children of T can be generated in
O(n2|V (C)|2) = O(n4) time.

Experimental and results
This section reports experimental results of our algo-
rithm enumerating 1-augmented trees. Tests were carried
out on a PC with an Intel Core i5 processor running at
3.20 GHz and the Linux operating system using the C
language, employing instances based on chemical com-
pounds selected from the KEGG LIGAND database [15]
(http://www.genome.jp/ligand/).
(I) First we select four chemical compounds “C00062,”

“C03343,” “C03690,” and “C07178” as chemical graphs
with 0-augmented tree (acyclic) structure and four
chemical compounds “C00095,” “C00270,” “C00645,” and
“C00837” as chemical graphs with 1-augmented tree
structure (see Additional file 1: Figure S21 for illustrations
of these chemical graphs), wherein each benzene ring in
chemical compounds “C03343,” “C03690,” and “C07178” is
regarded as a virtual atom b of valence 6. These com-
pounds are heuristically selected based on the following
criteria: (i) each compound is a 0-augmented tree or
1-augmented tree (except benzene ri ngs), (ii) each com-
pound consists of C,O,H (or, C,O,N,H) atoms, (iii) com-
pounds are not very similar to each other, and (iv)
compounds have varying sizes but are not too large.

The virtual atom b is treated as one atom so that we
discard all possible regioisomers of benzene. Thus in our
experiment, we consider the cycles not caused by ben-
zenes but by other substructures in these 1-augmented
trees. We remark that an efficient algorithm has been
developed for generating all possible regioisomers of a
given 0-augmented tree structure with virtual atoms b by
Li et al. [36], and an implementation of the algorithm is
available on a web server (http://sunflower.kuicr.kyoto-u.
ac.jp/tools/enumol2/).
To generate problem instances from each of the selected

chemical graphs, we define w ∈ Z+ to be a width between
upper and lower feature vectors. From the feature vector
g = fK (G) of a chemical graph G at level K , we construct
two feature vectors gU and gL of width w as follows. For
each entry t with g[t]≥ 1, let gU [t]= g[t]+w and gL[t]=
max{g[t]−w, 0}; and for each entry t with g[t]= 0, let
gU [t]= gL[t]= 0. See Additional file 1: Figure S23 (resp.,
Additional file 1: Figure S24) for the lower and upper fea-
ture vectors gL and gU withK = 1 and w = 1 (resp.,K = 2
and w = 1) created from C00062.
To examine the computational efficiency, we com-

pare the time per output multi-tree/1-augmented tree
by our algorithm and by 2-Phase algorithm [14]. Our
algorithm enumerates not only the 1-augmented trees in
G1( gL, gU) but also the multi-trees in G0( gL, gU). There-
fore, if time per output graph of our algorithm is close
to that of 2-Phase algorithm, then we can enumerate 1-
augmented trees as fast as 2-Phase algorithm enumerates
multi-trees.

http://www.genome.jp/ligand/
http://sunflower.kuicr.kyoto-u.ac.jp/tools/enumol2/
http://sunflower.kuicr.kyoto-u.ac.jp/tools/enumol2/
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Figure 10 Illustration of condition (3) for admissible pairs. The
black dotted line joins two vertices u and v, which will be the edge to
create a cycle in the 1-augmented tree T + uv. Condition (1) and (2)
exclude any ancestor w of u or v such that copy(w) = 1 except for
w = gua(v, u). The assumption copy(gua(v, u)) = 1 requires the
rooted subtree Tgua(u,v) to be isomorphic to Tgua(v,u) and condition
(3)-(i) requires Tgua(u,v) to be located immediately on the left of Tgua(v,u)
among the subtrees rooted at the children of lca(u, v). Then Tgua(v,u)
contains a copy û of u (i.e., dfs(û) = dfs(u)+ |Tgua(u,v)|). Similarly
Tgua(u,v) contains a copy v̂ of v (i.e., dfs(v̂) = dfs(v)− |Tgua(u,v)|).
Condition (3)-(ii) requires dfs(û) ≤ dfs(v) (otherwise we can prove
that (v̂, û) is a lexicographically smaller pair such that T + v̂û is
isomorphic to T + uv). Although Tgua(u,v) and Tgua(v,u) are isomorphic
to each other, only paths and nodes relevant for explanation are
shown in this figure.

Table 1 shows the result of the comparison of 2-Phase
algorithm and our algorithm for varying K with fixed
w = 1, where the meanings of columns are as follows.
Note on tables:

(1) C00062, C00095, C00270 C00645, C00837, C03343,
C07178, and C03690 are the chemical compounds in
the KEGG LIGAND database, respectively;

(2) in Table 1, the width for constructing upper and
lower feature vectors is 1;

(3) n is the number of vertices without hydrogen atoms
in an instance preprocessed by replacing each
benzene ring with a new atom with six valences;

(4) w is the width for constructing upper and lower
feature vectors;

(5) K is the level of given feature vectors;
(6) “time (s)” is the CPU time in seconds;
(7) T.O. means the “time over” (the time limit is set to be

1,800 seconds);
(8) “time/graph” is the time per enumerating one graph;
(9) “tree” is the number of all possible solutions of

tree-like chemical graph in the time limit;
(10) “cycle” is the number of all possible solutions of

1-tree chemical graph in the time limit;
(11) “ratio” is a number such that “time/graph” of our

algorithm is divided by that of 2-Phase algorithm;
(12) for any real numbers x and y, let xEy denote x × 10 y.

It is to be noted that in some instances, the number of
enumerated trees by 2-Phase algorithm and that of our
algorithm are different because of the time limit. Hence,

Figure 11 Illustration of candidate pairs. A graph G will be created by adding each edge shown by a black dotted line. However, no vertex pair
for any of edges a, b and c is a candidate pair. We do not have to add edges a, b, and c to T1, T2, and T3, respectively because neither G − a, G − b,
nor G − c can be the parent of G.
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Table 1 Comparison of 2-Phase algorithm and our algorithm in chemical graphs (I)

Entry 2-Phase Algorithm Our Algorithm

Formula n K Tree Time Time/graph Tree Cycle Time Time/graph Ratio

1 388,192 0.288 741.9E-9 388,192 1,786,467 14.056 6.5E-6 8.7

2 614 0.021 34.2E-6 614 229 0.134 159.0E-6 4.6

C00062 3 95 0.020 210.5E-6 95 0 0.039 410.5E-6 2.0

C6H14N2O4 12 4 1 0.008 8.0E-3 1 0 0.018 18.0E-3 2.3

5 1 0.005 5.0E-3 1 0 0.006 6.0E-3 1.2

6 1 0.006 6.0E-3 1 0 0.006 6.0E-3 1.0

7 1 0.004 4.0E-3 1 0 0.004 4.0E-3 1.0

1 1,708 0.007 4.1E-6 1,708 12,626 0.050 3.5E-6 0.9

2 50 0.004 80.0E-6 50 1,085 0.043 37.9E-6 0.5

C00095 3 0 0.046 – 0 286 0.046 160.8E-6 –

C6H12O6 12 4 0 0.006 – 0 19 0.035 1.8E-3 –

5 0 0.004 – 0 7 0.030 4.3E-3 –

6 0 0.004 – 0 5 0.028 5.6E-3 –

7 0 0.004 – 0 5 0.013 2.6E-3 –

1 5,446,987 7.690 1.4E-6 5,446,987 31,395,098 217.681 5.9E-6 4.2

2 373 0.022 59.0E-6 373 71 0.171 385.1E-6 6.5

C03343 3 187 0.023 123.0E-6 187 25 0.071 334.9E-6 2.7

C16H22O4 15 4 101 0.022 217.8E-6 101 9 0.042 381.8E-6 1.8

5 51 0.022 431.4E-6 51 6 0.059 1.0E-3 2.4

6 43 0.009 209.3E-6 43 0 0.036 837.2E-6 4.0

7 28 0.013 464.3E-6 28 0 0.020 714.3E-6 1.5

1 2,926,382 2.878 983.5E-9 2,926,382 23,965,432 146.669 5.5E-6 5.5

2 41,468 1.035 25.0E-6 41,468 213,820 37.792 148.0E-6 5.9

C00645 3 491 0.562 1.1E-3 491 4,482 6.281 1.3E-3 1.1

C8H15NO6 15 4 0 0.523 – 0 73 4.168 57.1E-3 –

5 0 0.374 – 0 5 2.320 464.0E-3 –

6 0 0.135 – 0 3 0.430 143.3E-3 –

7 0 0.121 – 0 1 0.328 328.0E-3 –

1 167,172,180 238.554 1.4E-6 ≥ 1,594,520 ≥ 33,962,677 T. O. 50.7E-6 35.5

2 210 1.232 5.9E-3 210 641 1.888 2.2E-3 0.4

C00837 3 0 0.853 – 0 4 1.206 301.5E-3 –

C8H18N6O4 18 4 0 0.445 – 0 2 0.523 261.5E-3 –

5 0 0.389 – 0 1 0.596 596.0E-3 –

6 0 0.298 – 0 1 0.367 367.0E-3 –

7 0 0.285 – 0 1 0.395 395.0E-3 –

1 62,234,720 321.155 5.2E-6 ≥ 4,812,773 ≥ 40,426,928 T. O. 39.8E-6 7.7

2 884 0.310 350.7E-6 884 180 1.824 1.7E-3 4.9

C07178 3 22 0.026 1.2E-3 22 4 0.099 3.8E-3 3.2

C21H28N2O5 18 4 1 0.004 4.0E-3 1 0 0.005 5.0E-3 1.3

5 1 0.004 4.0E-3 1 0 0.005 5.0E-3 1.3

6 1 0.004 4.0E-3 1 0 0.005 5.0E-3 1.3

7 1 0.005 5.0E-3 1 0 0.005 5.0E-3 1.0
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Table 1 Comparison of 2-Phase algorithm and our algorithm in chemical graphs (I) (Continued)

1 ≥ 1,208,446,991 T. O. 1.5E-6 ≥ 7,009,856 ≥ 47,008 T. O. 255.1E-6 171.2

2 27,312,856 965.131 35.3E-6 ≥ 337,989 ≥ 3,593,865 T. O. 458.1E-6 13.0

C00270 3 156,073 391.611 2.5E-3 ≥ 1,546 ≥ 234,187 T. O. 7.6E-3 3.0

C11H19NO9 21 4 0 299.393 – ≥ 0 ≥ 165 T. O. 10.9E+0 –

5 0 208.268 – ≥ 0 ≥ 7 T. O. 257.1E+0 –

6 0 19.361 – 0 2 85.109 42.6E+0 –

7 0 9.720 – 0 2 30.301 15.2E+0 –

1 ≥ 664,049,939 T. O. 2.7E-6 ≥ 4,621,297 ≥ 33,216,732 T. O. 47.6E-6 17.5

2 164,885 34.357 208.4E-6 164,885 1,425 213.810 1.3E-3 6.2

C03690 3 32,995 15.978 484.3E-6 32,995 179 66.612 2.0E-3 4.1

C24H38O4 23 4 3,884 2.265 583.2E-6 3,884 17 5.383 1.4E-3 2.4

5 1,237 1.490 1.2E-3 1,237 13 3.466 2.8E-3 2.3

6 559 0.773 1.4E-3 559 0 1.554 2.8E-3 2.0

7 177 0.445 2.5E-3 177 0 0.617 3.5E-3 1.4

the “tree” and “cycle” columns show the number of incom-
plete solutions in instances whose “time” column is “T.O.”.
However, this is not a critical issue because we mainly
want to know the “time per graph” and its “ratio” between
2-Phase algorithm and our algorithm.We can make use of
them as beneficial results from “tree,” “cycle,” and “time”
columns even if they are incomplete and “T.O.”.
We find that almost all instances solved within the

time limit by 2-Phase algorithm are also solved by our
algorithm within the time limit. Moreover, the “ratio” of
instances is less than 10 except 4 out of 38 cases, and
that of many instances is less than 5. This means that
the time per output by our algorithm is close to that
by 2-Phase algorithm. Therefore, we have demonstrated
that our algorithm maintains the high computational effi-
ciency of 2-Phase algorithm even if K changes. Note that
our algorithm does not output any 1-augmented trees in
G1( gL, gU) in “C00062,” “C03343,” “C07178,” and “C03690”
when K is large. This is because the instances are acyclic
chemical compounds: 1-augmented trees become less
able to satisfy the feature vector constraint as K increases
and only multi-trees can satisfy the feature vector
constraint.
Table 2 shows the result of the comparison of 2-Phase

algorithm and our algorithm for varying w with fixed
K = 3. Just like with Table 1, almost all instances
solved within the time limit by 2-Phase algorithm are
also solved by our algorithm within the time limit. The
“ratio” of instances is less than 10 except 7 out of 48
cases, and that of many instances is less than 5. In par-
ticular, with respect to “C00095,” “C00645,” and “C00837,”
which have 1-augmented tree structure, the “ratio” is
less than 1 or close to 1. This implies that our algo-
rithm can enumerate 1-augmented trees and multi-trees
faster than 2-Phase algorithm enumerates multi-trees.

These results mean that the time per output by our algo-
rithm is close to that by 2-Phase algorithm. Therefore, we
have demonstrated that our algorithm maintains the high
computational efficiency of 2-Phase algorithm even if w
changes.
Finally, from Table 1 and Table 2, we compare 2-

Phase algorithm and our algorithm in terms of varying
n, where n is the size of an instance. Note that n is
the number of vertices without hydrogen atoms in an
instance preprocessed by replacing each benzene ring
with a new atom with six valences. We notice that there
is no large difference in the “ratio” between all cases in
spite of the fact that the instance size of C03690 is almost
twice as large as that of C00062. This implies that our
algorithm maintains the high computational efficiency
of 2-Phase algorithm even if the instance size becomes
large.
(II) Next we select four chemical compounds, prosta-

glandin (D08040), allobarbital (D00332), gabapentin
(D00555), and histamine (D00079) as chemical graphs
with 1-augmented tree structure (see Additional file 1:
Figure S22 for illustrations of these chemical graphs), all
of which are existing drug compounds. We conducted the
same experiment as we did for (I): Table 3 shows the result
of the comparison of 2-Phase algorithm and our algorithm
for varying K with fixed w = 1; Table 4 shows the result of
the comparison of 2-Phase algorithm and our algorithm
for varying w with fixed K = 3. In this experiment, we
observe that there still is no large difference in the “ratio”
between all cases except for the instance of D00079.

Discussions and conclusions
We considered the problem of enumerating all chemi-
cal graphs of 1-augmented tree structure from a given
set of path-frequency based feature vectors specified by
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Table 2 Comparison of varying widthw in chemical graphs (I)

Entry 2-Phase Algorithm Our Algorithm

Formula n w K Tree Time Time/graph Tree Cycle Time Time/graph Ratio

1 3 95 0.020 210.5E-6 95 0 0.039 410.5E-6 2.0

2 3 862 0.020 23.2E-6 862 100 0.130 135.1E-6 5.8

C00062 3 3 2,531 0.030 11.8E-6 2,531 894 0.213 62.2E-6 5.3

C6H14N2O4 12 4 3 3,611 0.044 12.2E-6 3,611 2,737 0.254 40.0E-6 3.3

5 3 4,438 0.044 9.9E-6 4,438 5,454 0.265 26.8E-6 2.7

50 3 5,138 0.045 8.8E-6 5,138 12,044 0.388 22.6E-6 2.6

1 3 0 0.005 – 0 286 0.046 160.8E-6 –

2 3 40 0.065 1.6E-3 40 1,569 0.065 40.4E-6 0.0

C00095 3 3 280 0.009 32.1E-6 280 4,899 0.089 17.2E-6 0.5

C6H12O6 12 4 3 855 0.010 11.7E-6 855 8,273 0.148 16.2E-6 1.4

5 3 1,502 0.011 7.3E-6 1,502 12,085 0.177 13.0E-6 1.8

50 3 4,608 0.012 2.6E-6 4,608 23,686 0.186 6.6E-6 2.5

1 3 187 0.023 123.0E-6 187 25 0.071 334.9E-6 2.7

2 3 2,077 0.091 43.8E-6 2,077 1,251 0.880 264.4E-6 6.0

C03343 3 3 5,345 0.201 37.6E-6 5,345 5,746 3.134 282.6E-6 7.5

C16H22O4 15 4 3 10,391 0.346 33.3E-6 10,391 16,912 4.041 148.0E-6 4.4

5 3 14,531 0.482 33.2E-6 14,531 33,064 5.887 123.7E-6 3.7

50 3 19,819 0.655 33.0E-6 19,819 94,725 7.833 68.4E-6 2.1

1 3 491 0.562 1.1E-3 491 4,482 6.281 1.3E-3 1.1

2 3 7,846 1.122 143.0E-6 7,846 76,261 17.199 204.5E-6 1.4

C00645 3 3 151,227 2.420 16.0E-6 151,227 716,216 39.476 45.5E-6 2.8

C8H15NO6 15 4 3 216,507 2.946 13.6E-6 216,507 1,270,462 33.842 22.8E-6 1.7

5 3 272,898 3.405 12.5E-6 272,898 1,757,010 40.323 19.9E-6 1.6

50 3 355,958 3.985 11.2E-6 355,958 2,625,154 43.002 14.4E-6 1.3

1 3 0 0.853 – 0 4 1.206 301.5E-3 –

2 3 389 1.569 4.0E-3 389 660 2.496 2.4E-3 0.6

C00837 3 3 2,510 1.999 796.4E-6 2,510 3,173 3.367 592.5E-6 0.7

C8H18N6O4 18 4 3 8,544 2.314 270.8E-6 8,544 12,834 3.994 186.8E-6 0.7

5 3 13,796 2.465 178.7E-6 13,796 27,186 4.841 118.1E-6 0.7

50 3 24,313 2.683 110.4E-6 24,313 94,089 5.540 46.8E-6 0.4

1 3 22 0.026 1.2E-3 22 4 0.099 3.8E-3 3.2

2 3 386 0.058 150.3E-6 386 261 0.426 658.4E-6 4.4

C07178 3 3 2,376 0.089 37.5E-6 2,376 1,288 0.735 200.6E-6 5.4

C21H28N2O5 18 4 3 4,092 0.102 24.9E-6 4,092 2,240 0.863 136.3E-6 5.5

5 3 4,629 0.109 23.5E-6 4,629 2,385 1.284 183.1E-6 7.8

50 3 5,103 0.115 22.5E-6 5,103 2,603 0.980 127.2E-6 5.6

1 3 156,073 391.611 2.5E-3 ≥ 1,546 ≥ 234,187 T. O. 7.6E-3 3.0

2 3 12,515,364 1331.770 106.4E-6 ≥ 93,244 ≥ 1,107,707 T. O. 1.5E-3 14.1

C00270 3 3 ≥ 88,182,895 T. O. 20.4E-6 ≥ 4,350,635 ≥ 1,135,547 T. O. 328.3E-6 16.1

C11H19NO9 21 4 3 ≥ 134,281,382 T. O. 13.4E-6 ≥ 5,230,515 ≥ 2,086,287 T. O. 246.0E-6 18.4

5 3 ≥ 169,965,948 T. O. 10.6E-6 ≥ 5,213,010 ≥ 2,383,696 T. O. 237.1E-6 22.4

50 3 ≥ 254,637,067 T. O. 7.1E-6 ≥ 7,025,893 ≥ 12,785,700 T. O. 90.9E-6 12.9
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Table 2 Comparison of varying widthw in chemical graphs (I) (Continued)

1 3 32,995 15.978 484.3E-6 32,995 179 66.612 2.0E-3 4.1

2 3 2,472,133 149.048 60.3E-6 ≥ 1,763,123 ≥ 702,493 T. O. 730.0E-6 12.1

C03690 3 3 13,120,833 509.010 38.8E-6 ≥ 2,416,279 ≥ 2,028,470 T. O. 405.0E-6 10.4

C24H38O4 23 4 3 43,379,162 1289.269 29.7E-6 ≥ 1,815,035 ≥ 4,297,658 T. O. 294.5E-6 9.9

5 3 ≥ 80,447,027 T. O. 22.4E-6 ≥ 2,828,014 ≥ 10,431,681 T. O. 135.7E-6 6.1

50 3 ≥ 111,576,848 T. O. 16.1E-6 ≥ 3,580,958 ≥ 55,327,406 T. O. 30.6E-6 1.9

upper and lower feature vectors, and proposed a new
exact algorithm by extending 2-Phase algorithm [14]. The
experimental results reveal that the computational effi-
ciency of the new algorithm remains high, considering the
hardness of treating 1-augmented trees compared with
0-augmented trees.

One of our future works is to introduce new bounding
operations for 1-augmented trees in 2-Phase algorithm
and our procedure for creating a cycle. Additionally, it
is important to extend the proposed algorithm for enu-
meration of k-augmented trees with k ≥ 2 because we
can cover 59%, 79%, and 90% of chemical compounds by

Table 3 Comparison of 2-Phase algorithm and our algorithm in chemical graphs (II)

Entry 2-Phase Algorithm Our Algorithm
Formula n K Tree Time Time/graph Tree Cycle Time Time/graph Ratio

1 2,609 0.006 2.3E-6 2,609 11,263 0.036 2.6E-6 1.1

2 193 0.007 36.3E-6 193 165 0.015 41.9E-6 1.2

D08040 3 14 0.009 642.9E-6 14 5 0.014 736.8E-6 1.1

C5H9N3 8 4 9 0.005 555.6E-6 9 2 0.006 545.5E-6 1.0

5 4 0.004 1.0E-3 4 1 0.005 1.0E-3 1.0

6 4 0.004 1.0E-3 4 1 0.005 1.0E-3 1.0

7 1 0.005 1.3E-3 4 1 0.006 1.2E-3 0.9

1 17,470 0.127 7.2E-6 17,470 264,326 1.446 5.1E-6 0.7

2 1,183 0.023 19.4E-6 1,183 16,233 0.294 17.9E-6 0.9

D00332 3 30 0.017 566.7E-6 30 1,318 0.170 126.1E-6 0.2

C9H17NO2 12 4 0 0.025 – 0 292 0.112 383.6E-6 –

5 0 0.034 – 0 41 0.090 2.2E-3 –

6 0 0.021 – 0 12 0.050 4.1E-3 –

7 0 0.016 – 0 8 0.037 4.6E-3 –

1 54,072,616 200.647 3.7E-6 ≥11,645,178 ≥110,673,601 T.O. 14.7E-6 4.0

2 68,253 5.458 80.0E-6 68,253 321,853 130.500 334.2E-6 4.2

D00555 3 4,590 4.115 896.5E-6 4,590 6,511 70.821 6.4E-3 7.1

C11H18N2O3 16 4 91 2.702 29.7E-3 91 278 28.632 77.5E-3 2.6

5 0 1.438 – 0 38 15.129 397.3E-3 –

6 0 0.694 – 0 5 6.882 1.4E+0 –

7 0 0.211 – 0 1 0.663 663.0E-3 –

1 ≥10,280 T.O. 175.1E-3 ≥1,432 ≥883,812 T.O. 2.0E-3 0.0

2 ≥19,587,838 T.O. 91.9E-6 ≥0 ≥0 T.O. – –

D00079 3 ≥1,134,806 T.O. 1.6E-3 ≥21,048 ≥0 T.O. 85.5E-3 53.4

C20H32O5 25 4 ≥17,852 T.O. 100.8E-3 ≥0 ≥0 T.O. – –

5 ≥23 T.O. 78.3E+0 ≥0 ≥0 T.O. – –

6 ≥0 T.O. – ≥0 ≥0 T.O. – –

7 ≥0 T.O. – ≥0 ≥0 T.O. – –
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Table 4 Comparison of varying widthw in chemical graphs (II)

Entry 2-Phase Algorithm Our Algorithm

Formula n w K Tree Time Time/graph Tree Cycle Time Time/graph Ratio

1 3 14 0.009 643.9E-6 14 5 0.014 736.8E-6 1.1

2 3 49 0.009 183.7E-6 49 14 0.017 269.8E-6 1.5

D08040 3 3 58 0.009 155.2E-6 58 21 0.017 215.1E-6 1.4

C5H9N3 8 4 3 60 0.009 150.0E-6 60 25 0.017 200.0E-6 1.3

5 3 60 0.009 150.0E-6 60 26 0.017 197.6E-6 1.3

50 3 61 0.003 49.2E-6 61 28 0.017 191.0E-6 3.9

1 3 30 0.017 566.7E-6 30 1,318 0.170 126.1E-6 0.2

2 3 313 0.024 76.7E-6 313 8,822 0.266 29.1E-6 0.4

D00332 3 3 1,327 0.024 76.7E-6 1,327 18,010 0.285 14.7E-6 0.8

C9H17NO2 12 4 3 2,239 0.025 11.2E-6 2,239 24,550 0.293 10.9E-6 1.0

5 3 4,197 0.025 6.0E-6 4,197 30,122 0.297 8.7E-6 1.5

50 3 6,656 0.025 3.8E-6 6,656 34,145 0.309 7.6E-6 2.0

1 3 4,590 4.115 896.5E-6 4,590 6,511 70.806 6.4E-3 3.8

2 3 76,901 10.466 136.1E-6 76,901 186,971 221.353 838.7E-6 6.2

D00555 3 3 221,492 14.952 67.5E-6 221,492 770,625 317.488 320.0E-6 4.7

C11H18N2O3 16 4 3 348,335 16.381 47.0E-3 348,335 1,307,167 347.379 209.8E-6 4.5

5 3 458,635 16.837 36.7E-3 458,635 1,976,544 357.252 146.7E-6 4.0

50 3 556,272 17.090 30.7E-3 556,272 3,544,713 363.743 88.7E-6 2.9

1 3 ≥1,134,806 T.O. 1.6E-3 ≥21,048 ≥0 T.O. 85.5E-3 53.4

2 3 ≥3,917,059 T.O. 459.5E-6 ≥0 ≥0 T.O. – –

D00079 3 3 ≥86,360 T.O. 20.8E-3 ≥28,187 ≥0 T.O. 64.6E-3 3.1

C20H32O5 25 4 3 ≥1,469,428 T.O. 1.2E-3 ≥61,929 ≥229 T.O. 29.0E-3 24.2

5 3 ≥5,118,134 T.O. 351.7E-6 ≥19,900 ≥1,726 T.O. 83.2E-3 236.6

50 3 ≥216,008,008 T.O. 8.3E-6 ≥0 ≥0 T.O. – –

2-augmented trees, 3-augmented trees, and 4-augmented
trees, respectively. In this paper, we used the assump-
tion that chemical graphs we treat contain only atoms
with valence at most 4 (except benzene rings) in order
to define the parent of a 1-augmented tree G as a 0-
augmented tree T that is obtained by removing an edge
corresponding to a single bond in G. However, it is not
difficult to extend our enumeration algorithm for chem-
ical graphs possibly with atoms with valence more than
4 just by modifying the definition so that the parent of
a 1-augmented tree G is allowed to be a 0-augmented
tree T obtained by removing an edge that corresponds
to a double or triple bond in G. Although benzene rings
have already been treated as virtual atoms of valence 6,
regioisomers are ignored in the proposed algorithm. As
mentioned in “Experimental and results” section, an effi-
cient algorithm for generating all possible regioisomers of
a given 0-augmented tree structure with virtual atoms b
has been developed [36]. Therefore, combination of the
proposed algorithm with that algorithm is left as future

work as well as further extensions for including atoms
with valence more than 4 and furan and more general
structures.
Although we do not aim to develop enumeration algo-

rithms that are directly applicable to drug design, this
is a future target of our research. In order to apply
enumeration algorithms to drug design, considering fea-
tures based on the path frequency is far from suffi-
cient. Factors such as hydrogen bond donors, hydrogen
bond acceptors, positive charges, negative charges, and
hydrophobic centers should be taken into account. In
addition, the binding site information of the target
molecule and geometric information such as the occur-
rence of rotatable bonds should be reflected. In order
to include these factors in enumeration algorithms, we
should develop efficient methods that can relate chemical
graphs with such physico-chemical and geometric fac-
tors. However, such a development is not an easy task
even for one type of factor and thus is long-term future
work.
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Additional file

Additional file 1: Proofs of Lemmas and Theorems. Proofs of Lemma 1,
Theorem 2, Lemma 3, and Lemma 4, descriptions of the 2-phase algorithm
and the main algorithm, and some figures for chemical graphs and upper
and lower feature vectors used in the computational experiment are given
in this supplement.
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