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Abstract
Heterogeneous	 treatment	 effect	 (HTE)	 analysis	 focuses	 on	 examining	 varying	
treatment	effects	for	individuals	or	subgroups	in	a	population.	For	example,	an	
HTE-	informed	 understanding	 can	 critically	 guide	 physicians	 to	 individualize	
the	medical	treatment	for	a	certain	disease.	However,	HTE	analysis	has	not	been	
widely	recognized	and	used,	even	given	the	explosive	increase	of	data	availability	
attributed	to	the	arrival	of	the	Big	Data	era.	Part	of	the	reason	behind	its	underuse	
is	that	data	are	often	of	high	dimension	and	high	complexity,	which	pose	signifi-
cant	challenges	for	applying	conventional	HTE	analysis	methods.	To	meet	these	
challenges,	a	newly	developed	causal	forest	HTE	method	has	been	derived	from	
the	random	forest	machine-	learning	algorithm.	We	conducted	a	systematic	per-
formance	evaluation	for	the	causal	forest	method	against	the	conventional	two-	
step	method	by	simulating	scenarios	with	different	levels	of	complexity	for	the	
analysis.	Our	results	show	that	causal	forest	outperforms	the	conventional	HTE	
method	 in	 assessing	 treatment	 effect,	 especially	 when	 data	 are	 complex	 (e.g.,	
nonlinear)	and	high	dimensional,	suggesting	that	causal	forest	is	a	promising	tool	
for	real-	world	applications	of	HTE	analysis.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
The	arrival	of	the	Big	Data	era	brings	explosive	increases	of	data	availability,	but	
also	 imposes	 significant	 challenges	 for	 conventional	 heterogeneous	 treatment	
effect	 (HTE)	 analysis	 because	 of	 the	 equally	 increased	 data	 complexity.	 HTE	
methods	 based	 on	 machine-	learning	 (ML)	 that	 have	 superior	 performance	 in	
handling	complex	data	have	not	been	introduced	to	the	clinical	pharmacology	
community.
WHAT	QUESTION DID THIS STUDY ADDRESS?
What	advantages	can	ML-	based	methods	bring	for	HTE	analysis	when	compared	
with	 conventional	 HTE	 methods?	 Conventional	 HTE	 methods	 construct	 sepa-
rate	models	 for	different	 treatment	groups	and	 then	estimate	 treatment	effects	
by	calculating	the	difference	in	the	predicted	responses	from	the	separately	built	
models.
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INTRODUCTION

Treatment	effect	refers	to	the	causal	effect	of	a	treatment	or	
intervention	(e.g.,	administering	an	anticancer	drug)	on	an	
outcome	of	 interest	(e.g.,	health	or	disease	progression	of	
the	patient)	based	on	 the	counterfactuals	 (e.g.,	difference	
in	outcomes	with/without	using	 the	drug).	Treatment	ef-
fects	are	rarely	perfectly	homogeneous	over	the	population.	
For	instance,	a	new	treatment	may	perform	similarly	to	an	
existing	treatment	in	the	overall	population	but	may	be	ex-
tremely	beneficial	 to	a	 subgroup	of	 subjects	with	 specific	
characteristics.	Thus,	it	can	be	difficult	to	apply	the	average	
treatment	effect	to	address	questions	concerning	individual	
outcome,	for	example,	for	personalized	medicine.1	As	the	
arrival	of	the	Big	Data	era	brought	dramatically	increased	
data	volume	and	complexity	(e.g.,	nonlinear	and/or	high-	
dimensional	data),	handling	complex	data	has	become	an	
important	 research	 topic	 across	 multiple	 disciplines.2–	6	
Recently,	the	analysis	of	the	heterogeneous	treatment	effect	
(HTE),	conducted	to	reflect	the	nonrandom	variation	in	a	
treatment	effect	over	a	population,	has	drawn	growing	at-
tention	in	a	variety	of	fields	from	economics	to	medicine.7,8	
It	is	worth	noting	that	although	the	response	analysis	pre-
dicts	the	outcome	itself,	HTE	analysis	focuses	on	estimating	
the	expected	change	in	outcome	as	a	result	of	the	treatment	
for	individuals.9	For	example,	a	tree	service	company	wants	
to	 identify	a	 subgroup	of	 customers	who	will	 sign	a	con-
tract	after	receiving	a	phone	call	advertising	the	service	but	
would	take	no	action	without	the	phone	call.	Considering	
phone	advertising	and	signing	a	contract	as	the	treatment	
and	outcome,	respectively,	HTE	analysis	can	provide	infor-
mation	to	identify	the	subgroup	of	interest,	which	will	im-
prove	the	marketing	strategy	in	terms	of	cost-	effectiveness	
with	 regard	 to	 the	 fact	 that	 it	would	not	be	cost-	effective	
to	keep	advertising	 to	a	group	who	will	 sign	 the	contract	
regardless	of	receiving	the	phone	advertising.

Although	HTE	analysis	has	also	been	applied	to	drug	
development,	 including	 clinical	 trials,10	 study	 design,11	
and	 personalized	 medicine,12	 conducting	 HTE	 analysis	

can	 be	 a	 challenging	 task.	 One	 unique	 challenge	 is	 that	
the	quantity	to	be	estimated	(i.e.,	treatment	effect)	is	often	
unknown	 on	 given	 data,	 as	 each	 subject	 can	 often	 only	
be	exposed	to	one	condition	of	treatments,	which	is	also	
known	as	the	fundamental	problem	of	causal	inference.13	
Previously,	an	intuitive	two-	step	model	was	developed	to	
conduct	 HTE	 analysis.	 The	 two-	step	 model	 first	 builds	
separate	models	for	different	treatment	groups	(e.g.,	treat-
ment	vs.	control),	and	the	treatment	effect	for	each	indi-
vidual	 is	 then	 estimated	 by	 calculating	 the	 difference	 in	
the	predicted	responses	from	the	separately	built	models.	
However,	despite	its	intuitiveness	and	simplicity,	the	two-	
step	 model	 suffers	 from	 several	 drawbacks.14	 The	 most	
important	 drawback	 is	 that	 the	 difference	 between	 two	
independent,	accurate	models	does	not	necessarily	result	
in	 an	 accurate	 model.	 In	 addition,	 the	 separately	 built	
models	 are	 often	 based	 on	 ordinary	 regression	 models,	
and	thus	the	model	performance	of	the	two-	step	method	
could	be	compromised	when	dealing	with	nonlinear	and/
or	high-	dimensional	data.	Alternatively,	to	assess	HTE,	a	
regression	 model	 could	 be	 built	 containing	 prespecified	
interactions	between	treatment	and	covariate(s),	consider-
ing	that	the	interaction	has	been	acknowledged	as	a	major	
source	contributing	to	HTE.15	However,	to	implement	this	
method,	sufficient	knowledge	is	needed	to	predefine	po-
tential	interactions,	and	it	is	an	almost	impossible	task	in	
the	 case	 of	 high-	dimensional	 data.16	 Recently,	 machine-	
learning	 (ML)	 methodologies	 have	 been	 employed	 in	
HTE	 analysis,	 especially	 with	 tree-	based	 approaches.	
Tree-	based	models	refer	to	a	family	of	ML	models	based	
on	 binary	 trees	 obtained	 with	 the	 classification	 and	 re-
gression	 tree	algorithm.17	 In	 such	 trees,	binary	 splits	 re-
cursively	 partition	 a	 full	 data	 set	 into	 homogeneous	 or	
near-	homogeneous	subsets	(dubbed	as	“leaf”	of	tree).	As	
such,	tree-	based	models	can	serve	as	a	natural	solution	to	
estimate	HTE	if	appropriate	split	criteria	can	be	designed	
to	reflect	population	subgroups	in	terms	of	treatment	ef-
fect.9,14	Causal	 forest,	an	HTE	method	based	on	random	
forest,	 is	 one	 of	 the	 most	 recent	 advances	 in	 tree-	based	

WHAT	DOES THIS STUDY ADD TO OUR KNOWLEDGE?
ML-	based	HTE	methods	were	introduced	to	the	community	and	showed	supe-
rior	performance	over	the	conventional	HTE	method	in	(i)	estimating	treatment	
effects	when	covariates	manifest	nonlinear	relationships	and	(ii)	identifying	in-
fluential	variables	of	high-	dimensional	data	with	less	sensitivity	to	data	sizes	and	
noise	level.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
ML-	based	HTE	methods	are	a	promising	tool	to	assess	and	predict	heterogeneity	
for	 treatment	effect	 for	 real-	world	applications,	 such	as	personalized	medicine	
and	policy	making.
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HTE	method.	It	has	been	developed	to	overcome	potential	
issues	observed	in	HTE	analysis	with	the	use	of	the	single-	
tree	method.18	More	important,	causal	forest	is	ML	based	
and	has	no	assumption	on	the	data	(e.g.,	 linear	relation-
ship	between	covariates)	and	thus	has	flexibility	to	handle	
complex	practical	problems.10

Overall,	 the	 treatment	 effect	 information	 obtained	 by	
HTE	analysis	can	significantly	improve	the	trial	study	design	
in	the	drug	development	process	and	potentially	guide	per-
sonalized	medicine.19	This	study	has	the	following	two	main	
aims:	 (1)	 highlight	 the	 advantageous	 benefits	 associated	
with	HTE	analysis	over	the	conventional	response	analysis	
on	average	effects	and	(2)	perform	a	systematic	performance	
analysis	for	the	conventional	two-	step	and	causal	forest	HTE	
methods.	To	the	best	of	our	knowledge,	no	comprehensive	
performance	evaluation	has	been	conducted	for	these	meth-
ods.	We	therefore	simulated	scenarios	with	different	levels	of	
complexity	in	terms	of	HTE	to	fully	characterize	the	ability	of	
the	two	methods	to	identify	effect	heterogeneity.	The	simula-
tion	approach	was	used	because	it	allows	the	explicit	specifi-
cation	of	HTE	and	maintains	ground	truth	information	for	
a	 model	 performance	 check.	 Of	 note,	 unfoundedness	 (i.e.,	
randomized	treatment	assignment)	was	one	key	assumption	
when	causal	forest	was	developed	for	HTE	analysis.9	For	ob-
servational	studies	that	often	retain	confounding	factors,	data	
adjustment	 for	 case-	control	 comparisons	 (e.g.,	 matching)20	
that	adjust	original	observational	data	to	obtain	a	relatively	
balanced	treatment	assignment,	as	expected	in	a	randomized	
study,	can	be	applied	before	conducting	HTE	analysis	using	
causal	forest.	In	this	study,	one	simulation	was	provided	to	
mimic	 observational	 studies	 with	 confounding	 factors	 to	
demonstrate	the	use	of	causal	forest	for	observational	data.

METHODS

In	 this	 section,	 after	 describing	 the	 basic	 principle	 of	
treatment	 effect,	 we	 introduce	 the	 concept	 of	 HTE	 and	

graphically	 illustrate	 the	 differences	 between	 no	 treat-
ment	heterogeneity	and	HTE.	Subsequently,	we	report	the	
methodology	development	for	HTE	analysis	from	the	con-
ventional	two-	step	method	through	a	tree-	based	approach	
to	 the	 causal	 forest.	 Lastly,	 we	 describe	 the	 simulation	
models	and	performance	evaluation	methods.

Heterogeneous treatment effect

Treatment	effect	refers	to	counterfactual	effect	of	a	treat-
ment	on	an	outcome.	Without	loss	of	generality,	for	indi-
vidual	i,	define	Ti	as	the	binary	treatment	indicator	(e.g.,	
1	=	 treatment;	0	=	control)	and	Yi	 as	 the	outcome	(e.g.,	
real	 values).	 That	 is,	Yi(0)	 and	Yi(1)	 correspond	 to	 the	
outcomes	from	different	treatments	(0	or	1,	respectively).	
Thus,	 the	 treatment	 effect	 for	 individual	 i	 can	 be	 repre-
sented	as	Yi(1) − Yi (0) ,	and	the	average	treatment	effect	is	
denoted	as	E

[
Yi (1) − Yi(0)

]
.

It	is	well	known	that	outcomes	of	a	treatment	are	de-
pendent	 on	 the	 individual	 characteristics	 (covariates),	
such	as	a	patient's	medical	history	and	demographic	 in-
formation	 (e.g.,	 sex,	 age,	 and	 ethnicity).	 It	 is	 natural	 to	
infer	that	the	treatment	effect	is	usually	not	homogeneous	
among	individuals.	As	a	demonstration	of	the	HTE	con-
cept,	 Figure  1  shows	 illustrative	 examples	 of	 homoge-
neous	 treatment	effect	 (Figure 1a)	and	HTE	(Figure 1b)	
among	 the	 population.	 In	 the	 homogeneous	 treatment	
effect,	 although	 the	 outcomes	 show	 variation	 across	 the	
individuals	for	each	treatment	group	and	diverge	between	
treatment	groups	(T = 1	vs.	T = 0),	 the	treatment	effect	
Yi (1) − Yi(0)	is	the	same	for	every	individual	and	identical	
to	 the	 average	 treatment	 effect	 (Figure  1a).	 In	 HTE,	 the	
population	shows	significant	heterogeneity	in	response	to	
treatments,	 with	 some	 individuals	 benefiting	 more	 (i.e.,	
responders),	some	less,	and	some	not	benefiting	at	all	(i.e.,	
nonresponders)	 from	 the	 treatment	 (Figure  1b).	 Thus,	
the	average	treatment	effect	is	of	limited	value	to	provide	

F I G U R E  1  (a)	Homogenous	treatment	effect	(no	treatment	heterogeneity):	the	outcome	of	the	treatment	shows	variation	across	the	
individuals	and	between	treatment	groups,	but	the	treatment	effect	(i.e.,	the	difference	of	the	outcomes	depicted	by	the	dotted	lines	between	
the	two	treatment	outcome	curves)	is	the	same	for	every	individual.	(b)	Heterogeneous	treatment	effect	(HTE):	treatment	effect	varies	
among	individuals.	Some	individuals	benefit	more,	some	less,	and	some	might	not	benefit	at	all	from	the	treatment
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information	for	 individuals,	and	HTE	analysis	 is	needed	
to	understand	how	the	treatment	effects	vary	among	the	
whole	population.

For	many	applications,	HTE	analysis	shares	the	same	
fundamental	challenge	with	the	causal	inference	method,	
as	 only	 one	 of	 two	 potential	 outcomes—	either	Yi(0)	 or	
Yi(1)—	is	observable	for	individuals;	that	is,	the	treatment	
effect	(Yi (1) − Yi(0))	is	not	explicitly	provided	by	the	orig-
inal	data.	As	such,	because	of	the	unique	challenge,	HTE	
analysis	 methods	 must	 be	 specifically	 developed	 to	 ad-
dress	such	issues.

Methods to estimate HTE

Two-	step	method

One	of	the	commonly	used	approaches	to	estimate	HTE	
is	a	two-	step	method,21	which	builds	separate	regression	
models	for	the	treatment	and	control	groups.	This	coun-
terfactual	model	consisting	of	the	two	constructed	regres-
sion	 models	 is	 then	 used	 to	 estimate	 the	 counterfactual	
differences	in	individual	outcomes	to	infer	the	individual	
treatment	effects.	Specifically,	for	an	individual	with	dis-
tinct	covariate	values,	each	regression	model	can	project	
outcome	values,	and	the	difference	between	the	two	out-
comes	will	 represent	 the	predicted	 treatment	effect.	The	
two-	step	method	has	been	conventionally	used	 in	many	
fields,	such	as	econometrics,22	social	science,23	epidemiol-
ogy,24	and	medical	science.25	Despite	being	intuitive	and	
straightforward	 to	 implement,	 this	 method	 can	 be	 con-
strained	by	the	nature	of	linear	regression,	which	imposes	
linear	 relationships	 unless	 more	 complex	 relationships	
are	 explicitly	 predefined	 in	 the	 model.	 As	 such,	 its	 per-
formance	 can	 be	 significantly	 compromised	 in	 the	 pres-
ence	of	model	misspecification	for	complex	relationships.	
Another	intrinsic	drawback	is	that	the	difference	between	
the	 two	 independent	 “accurate”	 models	 does	 not	 neces-
sarily	lead	to	an	accurate	HTE	estimate.

ML	method:	causal	forest

Several	ML	approaches	have	been	developed	to	estimate	
HTE.14,26–	29	 Among	 them,	 the	 decision	 tree–	based	 HTE	
method	 was	 first	 developed	 and	 has	 been	 widely	 recog-
nized.30,31	 The	 essence	 of	 a	 decision	 tree,	 featured	 by	
partitioning	 full	 data	 into	 subgroups,	 makes	 it	 perfectly	
suitable	for	HTE	analysis	aiming	to	find	subgroups	(or	in-
dividuals)	with	a	distinct	treatment	effect.

One	milestone	for	the	method	development	of	decision	
trees	is	the	emergence	of	the	random	forest	algorithm.32	
Considering	the	greedy	nature	of	one-	step-	at-	a-	time	node	

splitting	 in	binary	 trees,	 random	forest	attempts	 to	mit-
igate	 the	 “overfitting”	 issue	 (i.e.,	 inability	 to	 generalize	
unseen	 data)	 of	 a	 single	 binary	 tree	 by	 implementing	 a	
randomization	procedure.	Randomization	is	carried	out	
in	the	following	two	forms:	(1)	a	collection	of	binary	deci-
sion	trees	that	independently	grew	based	on	the	bootstrap	
sample	of	 the	original	data	and	(2)	a	randomly	selected	
subset	of	variables	that	are	chosen	as	candidate	variables	
for	splitting	at	each	node	of	the	tree.32	The	random	forest	
combines	hundreds	or	thousands	of	trained	decision	trees	
and	makes	 its	 final	predictions	by	averaging	the	predic-
tions	of	each	individual	tree.	Recently,	random	forest	has	
also	been	extended	to	HTE	analysis,	specifically	with	the	
causal	 forest	 method.9	 Briefly,	 the	 causal	 forest	 method	
keeps	 the	 main	 structure	 of	 random	 forest	 such	 as	 the	
recursive	partitioning,	subsampling,	and	random	split	se-
lection,	but	the	tree-	splitting	criteria	are	modified	to	suit	
the	goal	of	HTE	analysis,	 that	 is,	maximizing	 the	 treat-
ment	 effect	 heterogeneity—	the	 difference	 of	 estimated	
treatment	 effect	 between	 daughter	 nodes.	 It	 is	 worth	
mentioning	that,	although	named	as	causal	forest	by	the	
method	 developers,9	 this	 method	 performs	 HTE	 analy-
sis	based	on	the	estimated	counterfactuals	within	nodes	
rather	than	carrying	out	a	standard	causal	inference	that	
requires	specific	designs	of	questions,	studies,	and	anal-
ysis.13	 Because	 of	 the	 word	 limit,	 detailed	 descriptions	
of	 the	 causal	 forest	 are	 provided	 in	 the	 Supplementary	
Information.

Models for simulation

Interactions	 between	 treatment	 and	 covariates	 of	 sub-
jects	can	lead	to	HTE	among	the	study	population,	which	
lays	the	basis	for	our	simulations.	Define	Xi = (xi1,⋯, xik)	
as	 a	 vector	 of	 observable	 covariates	 for	 subject	 i	 and	
� (x) = �

[
Yi (1) − Yi(0)|Xi = x

]
	as	the	treatment	effect	for	

a	given	set	of	covariates	x.	The	HTE	scenario	can	be	simu-
lated	by	developing	models,16	such	as:

where	 f ( ⋅ )	 refers	 to	 the	 direct	 impact	 of	 covariates	 (with	
no	interaction	with	treatment	indicator)	on	the	outcome	Yi	,	
g( ⋅ )	 is	a	 function	of	covariates	Xi	 that	 interact	with	treat-
ment,	and	the	interaction	term	g(Xi)T	specifies	the	HTE.

For	 the	 scenario	with	homogeneous	 treatment	effect,	
the	data	can	be	simulated	by	denoting	outcome	(Y)	as:

where	the	treatment	effect	of	each	individual	is	the	same	as	
E
[
Yi (1) − Yi(0)

]
= δ,	independent	of	the	covariates.

(1)Yi (T) = f (Xi) + g(Xi)T + �

(2)Yi (T) = f (Xi) + �T + �
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Equation  (2)	 is	a	 special	case	of	Equation  (1)	with-
out	 interactions	 between	 treatment	 and	 covariates.	 As	
such,	Equation (1)	can	simulate	different	HTE	scenar-
ios	by	varying	the	form	of	the	function	g.	In	this	study,	
we	 developed	 the	 following	 four	 models	 with	 increas-
ing	 complexity	 of	 HTE	 (Table  1):	 (I)	 no	 heterogeneity	
covariates	 (i.e.,	no	HTE),	 that	 is,	all	observations	have	
the	same	treatment	effect;	(II)	a	linear	relationship	be-
tween	 heterogeneity	 covariates;	 (III)	 a	 nonlinear	 rela-
tionship	 between	 heterogeneity	 covariates;	 and	 (IV)	
high-	dimensional	 data	 where	 the	 number	 of	 covari-
ates	 exceeds	 the	 number	 of	 individuals/observations.	
For	 each	 simulation	 model,	 the	 covariate	 of	 the	 indi-
viduals	Xi	were	generated	randomly	from	a	mean-	zero	
multivariate	 normal	 distribution	 with	 covariance	 ma-
trix	(1 − �) Ik + �1T1.	Treatments	T ∈ { − 1, 1}	were	ran-
domly	 assigned	 to	 the	 whole	 population,	 and	 random	
errors	were	defined	as	ϵ ∼ N

(
0, �2

0

)
	.	No	correlation	was	

assumed	among	the	covariates,	that	is,	covariance	� = 0	
and	�0 = 0.5	 for	the	noise	level.	We	set	the	sample	size	
as	n	=	2000	and	the	number	of	covariates	as	k	=	10	in	
Models	I,	 II,	and	III,	and	n	=	500	and	k	=	1000	in	the	
high-	dimensional	case	of	Model	IV.

Using	these	simulated	scenarios,	we	conducted	a	sys-
tematic	 performance	 evaluation	 for	 causal	 forest	 and	
compared	 it	 with	 the	 two-	step	 method.	 For	 each	 sce-
nario	 (Models	 I–	IV),	 we	 independently	 generated	 200	
data	 sets.	 Each	 data	 set	 consisted	 of	 training	 and	 test-
ing	data	independently	generated	from	the	given	model.	
The	 training	 data	 were	 used	 to	 build	 the	 predictive	
HTE	model	using	the	two-	step	method	or	causal	forest,	
whereas	the	testing	data	were	used	to	examine	the	pre-
dictive	 ability	 of	 the	 established	 model.	 Given	 the	 pre-
dicted	 and	 true	 treatment	 effects,	 the	 predictive	 ability	
was	evaluated,	and	the	performance	evaluation	metrics	
were	averaged	over	the	200 simulation	replications.	Both	
the	 root	mean	square	error	 (RMSE)	and	 the	 incremen-
tal	 gains	 curve14	 were	 used	 to	 evaluate	 model	 perfor-
mance	(see	the	Supplementary	Information	for	detailed	
descriptions).

Moreover,	for	observational	studies	where	the	uncon-
foundedness	assumption	may	be	violated,	the	approach	of	
using	estimated	propensity	scores33,34	can	be	applied	with	

causal	forest	for	its	robustness	to	confounding.	A	scenario	
with	 confounding	 factors	 was	 simulated	 to	 demonstrate	
the	 use	 of	 causal	 forest	 for	 observational	 data	 (see	 the	
Supplementary	Information).

RESULTS

Case example

In	this	section,	a	case	example	with	nonlinear	HTE	was	sim-
ulated	to	demonstrate	HTE	analysis	conducted	by	causal	
forest	and	the	two-	step	method.	By	stipulating	Equation (1),	
the	 example	 case	 was	 simulated	 based	 on	 the	 model	
Y = �0 +

∑10
k=1 �kxk + (�0 + �1x1

5 + �2e
x2 + �12 x1x2)T + �	,	

where	 �0 = 0.4, �k = 0.5,	 and	 heterogeneity	 covari-
ates	 x1	 and	 x2	 have	 interactions	 with	 the	 treatment	
(T)	 in	 a	 nonlinear	 form,	 �0 + �1x1

5 + �2e
x2 + �12 x1x2

(�0 = 0.8, �1 = �12 = 1.6, �2 = − 0.64).	As	such,	a	nonlin-
ear	relationship	between	treatment	effects	and	covariates	
was	created	in	the	model.	Figure 2a	illustrates	the	distribu-
tion	of	the	model-	defined	true	treatment	effects	as	a	func-
tion	of	covariates	 x1	and	 x2	 (x	and	y	axes).	 In	Figure 2a,	
a	color	gradient	corresponding	to	the	values	of	treatment	
effects	is	used,	with	red	indicating	the	highest	treatment	
effect	 (lower	 right	 corner)	 and	 blue	 indicating	 the	 most	
unexpected	 treatment	 effects	 (the	 leftmost	 region	 in	 the	
middle).	 A	 nonlinear	 transition	 from	 the	 highest	 to	 the	
lowest	treatment	effect	can	be	observed.

Both	causal	forest	and	the	two-	step	methods	were	ap-
plied	to	the	simulated	data	for	HTE	analysis.	Specifically,	
for	 the	 two-	step	 method,	 a	 separate	 regression	 models	
were	 established	 for	 the	 treatment	 and	 control	 groups.	
When	predicting	 treatment	effect	 for	an	 individual,	 the	
data	of	 this	 individual	were	 fed	 into	 the	 two	separately	
established	 models,	 and	 the	 difference	 between	 the	 es-
timated	outcomes	was	calculated	to	represent	the	treat-
ment	effect.	For	the	causal	forest,	each	tree	grew	(split)	
according	to	the	splitting	criteria.	The	established	causal	
forest	 model	 can	 then	 provide	 the	 predicted	 treatment	
effect	 for	 individuals.	 Figure  2b	 displays	 the	 distribu-
tion	of	 treatment	effects	as	estimated	by	the	causal	 for-
est	 method,	 which	 almost	 matches	 the	 true	 treatment	

T A B L E  1 	 Summary	of	the	four	simulation	mathematical	models	generated	with	increasing	heterogeneous	treatment	effect	complexity

Model
Description of relationships between 
heterogeneity covariates Outcome model

I No	heterogeneous	treatment	effect Yi = �0 +
∑p

j=1
�kxik + �T + �

II Linear Yi = �0 +
∑p

k=1
� ixik +

�
�0 +

∑p

k=1
�kxik

�
T + �

III Nonlinear	+	interactive Yi=�0 +
∑p

k=1
�kXi +

�
�0 + �1x

3
i1
+ �23cos(xi2)xi3

�
T + �

IV High-	dimensional	covariates Model	II
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effects	shown	in	Figure 2a.	In	contrast,	Figure 2c	shows	
the	 biased	 treatment	 effect	 estimation	 with	 a	 linear	
pattern	 provided	 by	 the	 two-	step	 method,	 which	 is	 re-
stricted	by	its	explicitly	linear	additive	regression	model.	
Although	the	estimation	reflects	the	general	trend	of	the	
true	treatment	effects,	the	nonlinear	pattern	between	the	
treatment	and	covariate	cannot	be	recovered	(Figure 2c).	
These	results	demonstrate	that	the	causal	forest	method	
can	detect	the	underlying	HTE	even	when	a	complex	in-
teraction	relationship	exists	between	the	 treatment	and	
covariates.

Simulations based on mathematical 
Models I– IV

To	conduct	a	systematic	performance	check	on	the	causal	
forest	 and	 the	 conventional	 two-	step	 method	 for	 HTE	
analysis,	 we	 simulated	 four	 scenarios	 based	 on	 hypo-
thetical	 mathematical	 models	 with	 various	 relationships	
among	 the	covariates	and	 treatment	effect	with	progres-
sively	increasing	complexity	of	HTE	(see	the	Methods	sec-
tion	and	Table 1).	Model	 I	was	 intended	as	a	 “baseline”	
case	without	interaction	between	the	covariates	and	treat-
ment,	and	therefore	no	HTE.	In	Model	II,	two	covariates	
interacted	with	treatment	 in	a	 linear	 form.	Model	III	as-
sumed	 a	 case	 where	 the	 covariates	 interacted	 with	 the	
treatment	in	a	nonlinear	form.	We	designed	Model	IV	to	
represent	 the	 high-	dimensional	 data	 scenario,	 in	 which	
1000	 covariates	 were	 sampled	 from	 multivariate	 normal	
distribution	with	500	observations.	In	this	model,	the	1000	
covariates	 followeda	 linear	additive	relationship	with	re-
spect	 to	 treatment	 effect,	 and	 the	 covariate	 coefficients	
were	set	 to	zero	except	 for	 the	 first	5	covariates.	This	al-
lowed	 us	 to	 examine	 if	 an	 HTE	 model	 can	 correctly	 de-
scribe	such	high-	dimensional	data	and	offer	insights	into	
the	preset	important	covariates	even	when	they	are	sparse	
(i.e.,	5/1000).

Performance evaluation

For	each	scenario	(Models	 I–	IV),	we	generated	200	data	
sets,	each	of	which	include	one	training	and	one	testing	
data	independently	generated	from	the	given	model.	The	
training	data	were	used	to	build	the	predictive	HTE	model	
using	 the	 two-	step	or	causal	 forest	method,	whereas	 the	
testing	 data	 were	 used	 to	 examine	 the	 predictive	 ability	
of	 the	 established	 model.	 Given	 the	 predicted	 and	 true	
treatment	 effects,	 the	 predictive	 ability	 was	 then	 evalu-
ated	by	 the	RMSE	and	 the	 incremental	gains	curve	 (see	
the	Methods	section).

Figure 3 shows	the	RMSE	results	calculated	from	each	
testing	data	 for	 the	 four	scenarios.	The	 figure	shows	the	
mean	 and	 standard	 deviation	 of	 RMSE	 values	 across	
200 simulation	replications.	No	significant	difference	can	
be	seen	in	the	prediction	performance	between	the	causal	
forest	and	the	two-	step	method	for	Model	I	(no	HTE)	and	
Model	 II	 (linear	 interaction	 between	 treatment	 and	 co-
variates).	 For	 these	 two	 scenarios,	 the	 two-	step	 method	
is	 the	 correct	 modeling	 method	 and	 is	 thus	 expected	 to	
provide	 accurate	 predictions.	 However,	 the	 causal	 forest	
method	performs	equally	well	as	the	two-	step	method	for	
these	scenarios.	For	Model	 III	 (nonlinear	or	additive	 in-
teraction	between	treatment	and	covariates),	causal	forest	
provides	a	more	accurate	treatment	effect	prediction	than	
the	two-	step	method,	reflected	by	the	significantly	lower	
RMSE	(p	<	0.01).	Such	a	 finding	 further	highlights	 that	
causal	forest	can	be	used	to	conduct	an	analysis	for	com-
plex/real	questions.

The	difference	 in	RMSE	 is	most	prominent	 in	Model	
IV	(p	<	0.01)	(Figure 3).	The	two-	step	method	fails	to	yield	
a	 reasonable	 treatment	 effect	 estimation	 because	 of	 the	
parameter	identifiability	issue,	considering	that	the	num-
ber	of	observations	(500)	is	less	than	the	number	(1000)	of	
covariates.	Causal	forest	achieves	more	than	fivefold	im-
provement	over	the	two-	step	method	in	terms	of	RMSE.	
Importantly,	causal	forest	is	also	able	to	capture	influential	

F I G U R E  2  Treatment	effect	in	a	data	set	where	the	relationship	between	the	two	covariates	×1	and	treatment	effect	is	nonlinear.	The	
(a)	“true”	treatment	effect	with	varying	values	of	×1	and	×2	and	the	predicted	treatment	effect	using	(b)	causal	forest	and	(c)	the	two-	step	
method.	The	treatment	effect	is	denoted	by	color	from	blue	(low)	to	red	(high)
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covariates	based	on	the	variable	importance,	measured	by	
a	 simple	weighted	sum	of	 the	number	of	 times	 that	 the	
covariate	of	interest	was	split	at	each	depth	in	the	forest.	
Higher	importance	values	indicate	corresponding	covari-
ates	 with	 high	 predictive	 power,	 whereas	 lower	 to	 zero	
values	indicate	variables	with	low	predictive	power.	Note	
that	the	variable	importance	as	defined	for	causal	forest	is	
different	from	that	for	random	forest	(i.e.,	variable	impor-
tance),35	 which	 is	 calculated	 by	 prediction	 error	 change	
after	noising	up	a	variable.	Causal	forest	can	provide	cal-
culated	variable	importance	values.	However,	it	does	not	
include	 a	 criterion	 that	 can	 be	 used	 to	 identify	 whether	
variable	importance	values	are	statistically	meaningful	or	
just	obtained	from	randomness.	Therefore,	we	developed	
a	 permutation-	based	 statistical	 significance	 test	 to	 iden-
tify	statistically	meaningful	important	covariates	(refer	to	
the	Supplemental	Information	for	a	detailed	description).	
The	results	from	the	significance	test	show	that	only	the	
first	5	covariates	have	statistically	meaningful	variable	im-
portance	values,	consistent	with	the	simulation	by	design	
(Figure 4).

In	addition	to	RMSE,	we	also	applied	the	incremental	
gains	curve	as	another	model	assessment	tool	and	calcu-
lated	the	corresponding	Qini	coefficient	(Figure 5)	based	
on	 the	 simulated	 data	 representing	 a	 population	 of	 in-
dividuals	 with	 HTE.	 Figure  5	 illustrates	 the	 cumulative	
number	of	incremental	responses	relative	to	the	cumula-
tive	number	of	targets	(both	expressed	as	a	percentage	of	
the	total	targets):	the	x-	axis	shows	the	fraction	of	individu-
als	in	the	population	in	which	the	treatment	is	performed,	
and	the	y-	axis	shows	the	incremental	number	of	positive	
outcomes	between	 the	 treatment	and	control	groups	ex-
pressed	 as	 percentage	 of	 the	 size	 of	 the	 target	 (treated)	
population.	The	dashed	diagonal	line	in	the	figure	denotes	
the	 benchmark.	 The	 Qini	 coefficient	 (marked	 on	 each	

panel)	is	a	single	estimate	of	model	performance.	Relative	
Qini	values	should	be	compared	within	the	same	data	set	
rather	 than	 comparing	 absolute	 values	 among	 different	
data	sets.	Given	that	there	is	no	HTE	designed	in	Model	I,	
the	incremental	gains	curves	of	the	causal	forest	and	the	
two-	step	 method	 overlap	 with	 the	 benchmark	 line.	 For	
Model	II	(linear	HTE),	both	methods	can	capture	equally	
well	the	HTE	information	and	can	regroup	subjects	based	
on	 the	 better	 treatment	 effect	 gain	 rather	 than	 the	 ran-
dom	regrouping	(benchmark).	For	Model	III	(nonlinear),	
causal	forest	performs	better	than	the	two-	step	method	for	

F I G U R E  3  Comparison	of	the	performance	of	the	causal	forest	and	two-	step	methods.	Results	are	based	on	200	replicated	simulations.	
Mean	(bar	height)	and	standard	deviation	(error	bar)	of	the	root	mean	square	error	(RMSE)	are	displayed

F I G U R E  4  The	variable	importance	determined	by	causal	
forest	for	high-	dimensional	simulated	data	based	on	Model	IV.	The	
preset	significant	covariates	are	shown	in	orange.	The	five	preset	
important	covariates	were	identified,	as	their	variable	importance	
values	are	greater	than	the	significance	threshold	(dashed).	
Please	refer	to	Supplementary	Information	for	a	description	of	the	
statistical	significance	test
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up	 to	 80%	 of	 the	 target	 population.	 For	 Model	 IV	 (high	
dimensionality),	causal	forest	shows	overall	better	perfor-
mance	at	every	level	(percentage)	of	the	target	population	
(Figure  5).	 For	 both	 Models	 III	 and	 IV,	 the	 incremen-
tal	gains	curves	of	 the	causal	 forest	appear	closer	 to	 the	
curves	for	model-	defined	true	treatment	effect	compared	
with	 the	 two-	step	 method.	 The	 Qini	 coefficients	 reflect	
the	 previously	 described	 observations.	 Consistent	 with	
the	RMSE	results,	the	Qini	coefficient	from	causal	forest	
is	higher	than	that	from	the	two-	step	method	in	Models	III	
and	IV	(p	<	0.01),	with	an	even	larger	relative	difference	
exhibited	in	Model	IV	(high	dimensionality).

The	 overall	 findings	 from	 our	 simulation	 studies	
clearly	show	that	the	ML-	based	causal	forest	method	can	
outperform	the	 linear	 regression-	based	 two-	step	method	
for	 HTE	 analysis	 with	 nonlinear	 and	 high-	dimensional	

data.	 In	 addition,	 data	 sensitivity	 testing	 was	 conducted	
to	examine	the	robustness	of	the	ML-	based	causal	forest	
method	to	the	sample	size	and	noise	level	of	data	(see	the	
Supplementary	Information).

In	 addition,	 results	 from	 the	 simulation	 with	 con-
founding	factors	shows	improved	predictability	of	causal	
forests	using	estimated	propensity	scores,	indicating	that	
it	can	be	useful	in	observational	studies	with	confounding	
factors	(see	the	Supplementary	Information).

DISCUSSION

This	study	introduced	an	ML-	based	HTE	analysis	and	pre-
sented	a	systematic	evaluation	of	HTE	analysis	methods.	
HTE	analysis	demonstrated	its	ability	to	address	questions	

F I G U R E  5  Incremental	gains	curves	(or	Qini	curves)	from	each	model.	This	curve	shows	the	cumulative	number	of	incremental	
individuals	with	positive	treatment	effect	relative	to	the	cumulative	number	of	the	targeted	population.	The	dashed	diagonal	line	depicts	the	
theoretical	incremental	individuals	with	positive	treatment	effect	from	random	targeting,	whereas	the	gray	line	refers	to	the	true	treatment	
effect.	For	each	mode,	the	incremental	gain	curves	shown	are	the	average	of	all	the	curves	from	200 simulation	replications.	The	Qini	
coefficients	displayed	on	each	panel	are	the	average	values	from	200 simulation	replications
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on	 the	 individualized	 counterfactual	 treatment	 effects.	
Thus,	HTE	analysis	can	be	employed	in	a	wide	range	of	
applications,	including	those	related	to	clinical	trial	design	
and	 personalized	 medicine.	 The	 HTE	 analysis	 method	
has	evolved	 to	meet	 the	challenges	posed	by	 the	diverse	
data	 sources	 with	 increased	 data	 volume	 and	 complex-
ity	accompanying	the	Big	Data	era.	 In	 this	study,	causal	
forest,	a	recently	developed	HTE	method	that	is	based	on	
a	well-	established	ML-	method	random	forest,	was	intro-
duced	 to	 the	 clinical	 pharmacology	 community,	 and	 its	
performance	 was	 systematically	 assessed	 by	 predicting	
treatment	effects	under	several	simulated	scenarios.	Our	
results	showed	that	causal	forest	outperforms	the	conven-
tional	 two-	step	HTE	method,	especially	 for	nonlinear	or	
high-	dimensional	data.

Causal	forest	can	be	considered	as	an	extension	of	ran-
dom	forest	for	HTE	analysis,	and	as	such	inherits	several	
appealing	 properties	 from	 random	 forest.	 Causal	 forest	
(1)	 imposes	 a	 minimal	 assumption	 on	 data,	 rendering	
it	 suitable	 for	 handling	 complex	 data;	 (2)	 uses	 data	 par-
tition	as	 the	 training	process,	making	 it	a	natural	candi-
date	 for	 HTE	 analysis;	 and	 (3)	 is	 capable	 of	 processing	
“large	 feature”	 data,	 where	 the	 number	 of	 covariates	 is	
much	 greater	 than	 the	 number	 of	 observations.	 During	
the	 training	 process	 of	 causal	 forest	 (i.e.,	 generation	 of	
decision	trees),	the	tree	grows	from	the	root	(whole	data	
set)	to	leaves	(subsets),	with	each	leaf	determined	through	
a	series	of	binary	splitting.	For	each	splitting,	a	covariate	
is	 selected	 from	 the	 current	 node	 to	 maximize	 the	 dif-
ference	of	 treatment	effects	of	daughter	nodes.	As	such,	
each	leaf	represents	a	subgroup	with	a	distinct	treatment	
effect	featured	by	a	certain	set	of	covariates.	Through	the	
training	 process,	 relationships	 between	 treatment	 effect	
and	 covariates	 are	 revealed,	 and	 thus	 HTE	 analysis	 can	
be	 conducted.	 Theoretically,	 the	 training	 process	 could	
be	 compromised	 if	 a	 considerable	 number	 of	 subjects	
share	similar	covariates	but	exhibit	significantly	different	
responses.	The	response	difference	may	derive	 from	sys-
tematic	 randomness,	 measurement	 error,	 or	 unobserved	
influential	covariates	that	were	not	included	in	the	study.	
If	the	aforementioned	phenomenon	occurs	only	for	a	few	
subjects,	 the	 training	 process	 should	 be	 still	 sufficient,	
partly	because	subjects	sharing	the	same	set	of	covariates	
may	still	be	 in	 the	same	node	and	the	dominating	treat-
ment	 effect	 will	 still	 be	 reflected	 against	 the	 particular	
covariates	 selected	 for	 node	 splitting.	 Furthermore,	 this	
limitation	is	reasonably	likely	to	affect	HTE	analysis	based	
on	a	single	decision	tree	more	severely	than	the	HTE	anal-
ysis	based	on	causal	forest,	as	the	latter	retains	data	bag-
ging	and	covariate	random	selection	processes.32

When	the	causal	forest	was	developed,	“unconfound-
edness”	 was	 a	 key	 assumption	 for	 implementing	 HTE	
analysis,9	which	 indicates	 that	 treatments	 in	a	study	are	

randomly/unbiasedly	 assigned	 to	 different	 experiment	
groups	with	matched	covariates,	as	expected	in	a	random-
ized	experiment.	However,	in	observational	studies,	con-
founding	 can	 influence	 both	 outcomes	 and	 treatments,	
thus	 resulting	 in	 unbalanced	 treatment	 assignments.	
Uncontrolled	 confounding	 can	 lead	 to	 biased	 analysis.	
Data	adjustment	for	case-	control	comparison	(e.g.,	match-
ing)	is	the	common	practice	to	address	confounding.20	In	
general,	 matching	 methods	 adjust	 original	 data	 to	 miti-
gate	differences	in	the	distributions	of	covariates	between	
treatment	 groups,	 leading	 to	 a	 relatively	 balanced	 treat-
ment	 assignment	 to	 approximate	 a	 randomized	 experi-
ment.	 For	 observational	 data	 where	 confounding	 often	
exists,	 the	 data-	matching	 process	 is	 warranted	 before	
conducting	 HTE	 analysis	 by	 causal	 forest.	 Although	 an	
approach	 of	 using	 estimated	 propensity	 scores	 has	 been	
proposed	for	causal	forest,33,34	there	is	a	diversity	of	other	
applicable	 matching	 methods,20	 including	 ML-	based	
methodologies.36

In	addition	to	the	two-	step	and	causal	forest	methods,	
other	 HTE	 analysis	 methods	 have	 been	 proposed	 and	
assessed	 using	 linear	 models	 based	 on	 transformed	 co-
variates,16	 adapted	 support	 vector	 machines,27	 Bayesian	
trees,26,29	and	forests.37	Among	them,	the	uplift	model14,38	
was	developed	to	maximize	the	return	on	investment	(e.g.,	
for	 marketing)	 by	 essentially	 conducting	 an	 HTE	 analy-
sis	 with	 more	 application	 focus.	 In	 business	 settings,	 a	
random	 forest–	based	 uplift	 model	 has	 been	 commonly	
to	optimize	the	selection	of	insurance	policies14	and	per-
sonalized	marketing	 interventions.39	Compared	with	the	
uplift	 model,	 causal	 forest	 can	 implement	 honest	 forest	
(also	see	the	Supplementary	Information)9	and	reduce	the	
potential	 estimation	 bias	 and	 therefore	 provide	 credible	
confidence	 interval	 estimations	 for	 the	 model-	predicted	
treatment	effects.	Overall,	both	approaches	are	based	on	
the	random	forest	model	and	aim	to	address	similar	HTE	
questions	(e.g.,	both	can	be	used	for	survival	analysis40–	43).	
Although	our	study	focused	on	HTE	analysis	with	a	sin-
gle	treatment,	it	is	worth	noting	that	the	uplift	model	and	
causal	forest	are	applicable	in	circumstances	with	multi-
ple	possible	treatments.44–	46

Part	of	the	recognized	merit	associated	with	HTE	anal-
ysis	is	that	it	makes	the	treatment	effect	not	only	measur-
able	but	also	actionable.	A	variety	of	domains	can	benefit	
from	 the	 knowledge	 of	 treatment	 effects	 over	 the	 popu-
lation	of	 interest.	For	example,	a	retail	store	can	make	a	
more	cost-	effective	plan	 to	offer	 sales	 (i.e.,	 treatment)	 to	
the	identified	target	subpopulation	to	maximize	transac-
tions	(i.e.,	outcome),	and	an	oncologist	can	individualize	
treatment	 plans	 based	 on	 HTE	 results.	 In	 a	 regulatory	
setting,	 an	 agency	 can	 use	 HTE	 analysis	 to	 inform	 pol-
icy	making	and	regulatory	action	to	maximize	the	 inter-
est	of	the	public.	For	example,	one	critical	mission	of	the	
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Office	of	Generic	Drug	(OGD)	at	the	U.S.	Food	and	Drug	
Administration	 is	 to	 facilitate	 the	 generic	 drug	 develop-
ment	and	increase	drug	accessibility	for	the	US	public.47	
OGD	 regularly	 releases	 product-	specific	 guidance	 (PSG)	
to	 share	 the	 OGD's	 current	 thinking	 and	 recommenda-
tions	on	the	development	of	a	generic	product	following	
new	drug	approval.48	The	PSG	release,	if	considered	as	a	
treatment,	can	be	evaluated	quantitatively	 for	 its	 impact	
on	the	timing	and	the	number	of	Abbreviated	New	Drug	
Application	submissions	by	the	HTE	analysis.	This	effort	
will	 be	 discussed	 in	 a	 separate	 article	 emphasizing	 real-	
world	applications.

CONCLUSION

Given	its	resilience	in	handling	complex	data	(e.g.,	nonlin-
ear	and/or	high-	dimensional	data),	the	causal	forest	HTE	
method,	 an	 ML	 approach	 derived	 from	 a	 random	 forest	
algorithm,	provides	a	unique	opportunity	for	scientists	to	
assess	 and	 predict	 heterogeneity	 for	 treatment	 effect	 for	
real-	world	applications.	Further	research	is	warranted	to	
extrapolate	its	applications	to	support	decision	making	for	
both	medical	and	regulatory	practices.
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