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Abstract
Heterogeneous treatment effect (HTE) analysis focuses on examining varying 
treatment effects for individuals or subgroups in a population. For example, an 
HTE-informed understanding can critically guide physicians to individualize 
the medical treatment for a certain disease. However, HTE analysis has not been 
widely recognized and used, even given the explosive increase of data availability 
attributed to the arrival of the Big Data era. Part of the reason behind its underuse 
is that data are often of high dimension and high complexity, which pose signifi-
cant challenges for applying conventional HTE analysis methods. To meet these 
challenges, a newly developed causal forest HTE method has been derived from 
the random forest machine-learning algorithm. We conducted a systematic per-
formance evaluation for the causal forest method against the conventional two-
step method by simulating scenarios with different levels of complexity for the 
analysis. Our results show that causal forest outperforms the conventional HTE 
method in assessing treatment effect, especially when data are complex (e.g., 
nonlinear) and high dimensional, suggesting that causal forest is a promising tool 
for real-world applications of HTE analysis.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
The arrival of the Big Data era brings explosive increases of data availability, but 
also imposes significant challenges for conventional heterogeneous treatment 
effect (HTE) analysis because of the equally increased data complexity. HTE 
methods based on machine-learning (ML) that have superior performance in 
handling complex data have not been introduced to the clinical pharmacology 
community.
WHAT QUESTION DID THIS STUDY ADDRESS?
What advantages can ML-based methods bring for HTE analysis when compared 
with conventional HTE methods? Conventional HTE methods construct sepa-
rate models for different treatment groups and then estimate treatment effects 
by calculating the difference in the predicted responses from the separately built 
models.
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INTRODUCTION

Treatment effect refers to the causal effect of a treatment or 
intervention (e.g., administering an anticancer drug) on an 
outcome of interest (e.g., health or disease progression of 
the patient) based on the counterfactuals (e.g., difference 
in outcomes with/without using the drug). Treatment ef-
fects are rarely perfectly homogeneous over the population. 
For instance, a new treatment may perform similarly to an 
existing treatment in the overall population but may be ex-
tremely beneficial to a subgroup of subjects with specific 
characteristics. Thus, it can be difficult to apply the average 
treatment effect to address questions concerning individual 
outcome, for example, for personalized medicine.1 As the 
arrival of the Big Data era brought dramatically increased 
data volume and complexity (e.g., nonlinear and/or high-
dimensional data), handling complex data has become an 
important research topic across multiple disciplines.2–6 
Recently, the analysis of the heterogeneous treatment effect 
(HTE), conducted to reflect the nonrandom variation in a 
treatment effect over a population, has drawn growing at-
tention in a variety of fields from economics to medicine.7,8 
It is worth noting that although the response analysis pre-
dicts the outcome itself, HTE analysis focuses on estimating 
the expected change in outcome as a result of the treatment 
for individuals.9 For example, a tree service company wants 
to identify a subgroup of customers who will sign a con-
tract after receiving a phone call advertising the service but 
would take no action without the phone call. Considering 
phone advertising and signing a contract as the treatment 
and outcome, respectively, HTE analysis can provide infor-
mation to identify the subgroup of interest, which will im-
prove the marketing strategy in terms of cost-effectiveness 
with regard to the fact that it would not be cost-effective 
to keep advertising to a group who will sign the contract 
regardless of receiving the phone advertising.

Although HTE analysis has also been applied to drug 
development, including clinical trials,10 study design,11 
and personalized medicine,12 conducting HTE analysis 

can be a challenging task. One unique challenge is that 
the quantity to be estimated (i.e., treatment effect) is often 
unknown on given data, as each subject can often only 
be exposed to one condition of treatments, which is also 
known as the fundamental problem of causal inference.13 
Previously, an intuitive two-step model was developed to 
conduct HTE analysis. The two-step model first builds 
separate models for different treatment groups (e.g., treat-
ment vs. control), and the treatment effect for each indi-
vidual is then estimated by calculating the difference in 
the predicted responses from the separately built models. 
However, despite its intuitiveness and simplicity, the two-
step model suffers from several drawbacks.14 The most 
important drawback is that the difference between two 
independent, accurate models does not necessarily result 
in an accurate model. In addition, the separately built 
models are often based on ordinary regression models, 
and thus the model performance of the two-step method 
could be compromised when dealing with nonlinear and/
or high-dimensional data. Alternatively, to assess HTE, a 
regression model could be built containing prespecified 
interactions between treatment and covariate(s), consider-
ing that the interaction has been acknowledged as a major 
source contributing to HTE.15 However, to implement this 
method, sufficient knowledge is needed to predefine po-
tential interactions, and it is an almost impossible task in 
the case of high-dimensional data.16 Recently, machine-
learning (ML) methodologies have been employed in 
HTE analysis, especially with tree-based approaches. 
Tree-based models refer to a family of ML models based 
on binary trees obtained with the classification and re-
gression tree algorithm.17 In such trees, binary splits re-
cursively partition a full data set into homogeneous or 
near-homogeneous subsets (dubbed as “leaf” of tree). As 
such, tree-based models can serve as a natural solution to 
estimate HTE if appropriate split criteria can be designed 
to reflect population subgroups in terms of treatment ef-
fect.9,14 Causal forest, an HTE method based on random 
forest, is one of the most recent advances in tree-based 

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
ML-based HTE methods were introduced to the community and showed supe-
rior performance over the conventional HTE method in (i) estimating treatment 
effects when covariates manifest nonlinear relationships and (ii) identifying in-
fluential variables of high-dimensional data with less sensitivity to data sizes and 
noise level.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
ML-based HTE methods are a promising tool to assess and predict heterogeneity 
for treatment effect for real-world applications, such as personalized medicine 
and policy making.
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HTE method. It has been developed to overcome potential 
issues observed in HTE analysis with the use of the single-
tree method.18 More important, causal forest is ML based 
and has no assumption on the data (e.g., linear relation-
ship between covariates) and thus has flexibility to handle 
complex practical problems.10

Overall, the treatment effect information obtained by 
HTE analysis can significantly improve the trial study design 
in the drug development process and potentially guide per-
sonalized medicine.19 This study has the following two main 
aims: (1) highlight the advantageous benefits associated 
with HTE analysis over the conventional response analysis 
on average effects and (2) perform a systematic performance 
analysis for the conventional two-step and causal forest HTE 
methods. To the best of our knowledge, no comprehensive 
performance evaluation has been conducted for these meth-
ods. We therefore simulated scenarios with different levels of 
complexity in terms of HTE to fully characterize the ability of 
the two methods to identify effect heterogeneity. The simula-
tion approach was used because it allows the explicit specifi-
cation of HTE and maintains ground truth information for 
a model performance check. Of note, unfoundedness (i.e., 
randomized treatment assignment) was one key assumption 
when causal forest was developed for HTE analysis.9 For ob-
servational studies that often retain confounding factors, data 
adjustment for case-control comparisons (e.g., matching)20 
that adjust original observational data to obtain a relatively 
balanced treatment assignment, as expected in a randomized 
study, can be applied before conducting HTE analysis using 
causal forest. In this study, one simulation was provided to 
mimic observational studies with confounding factors to 
demonstrate the use of causal forest for observational data.

METHODS

In this section, after describing the basic principle of 
treatment effect, we introduce the concept of HTE and 

graphically illustrate the differences between no treat-
ment heterogeneity and HTE. Subsequently, we report the 
methodology development for HTE analysis from the con-
ventional two-step method through a tree-based approach 
to the causal forest. Lastly, we describe the simulation 
models and performance evaluation methods.

Heterogeneous treatment effect

Treatment effect refers to counterfactual effect of a treat-
ment on an outcome. Without loss of generality, for indi-
vidual i, define Ti as the binary treatment indicator (e.g., 
1 = treatment; 0 = control) and Yi as the outcome (e.g., 
real values). That is, Yi(0) and Yi(1) correspond to the 
outcomes from different treatments (0 or 1, respectively). 
Thus, the treatment effect for individual i can be repre-
sented as Yi(1) − Yi (0) , and the average treatment effect is 
denoted as E

[
Yi (1) − Yi(0)

]
.

It is well known that outcomes of a treatment are de-
pendent on the individual characteristics (covariates), 
such as a patient's medical history and demographic in-
formation (e.g., sex, age, and ethnicity). It is natural to 
infer that the treatment effect is usually not homogeneous 
among individuals. As a demonstration of the HTE con-
cept, Figure  1  shows illustrative examples of homoge-
neous treatment effect (Figure 1a) and HTE (Figure 1b) 
among the population. In the homogeneous treatment 
effect, although the outcomes show variation across the 
individuals for each treatment group and diverge between 
treatment groups (T = 1 vs. T = 0), the treatment effect 
Yi (1) − Yi(0) is the same for every individual and identical 
to the average treatment effect (Figure  1a). In HTE, the 
population shows significant heterogeneity in response to 
treatments, with some individuals benefiting more (i.e., 
responders), some less, and some not benefiting at all (i.e., 
nonresponders) from the treatment (Figure  1b). Thus, 
the average treatment effect is of limited value to provide 

F I G U R E  1   (a) Homogenous treatment effect (no treatment heterogeneity): the outcome of the treatment shows variation across the 
individuals and between treatment groups, but the treatment effect (i.e., the difference of the outcomes depicted by the dotted lines between 
the two treatment outcome curves) is the same for every individual. (b) Heterogeneous treatment effect (HTE): treatment effect varies 
among individuals. Some individuals benefit more, some less, and some might not benefit at all from the treatment
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information for individuals, and HTE analysis is needed 
to understand how the treatment effects vary among the 
whole population.

For many applications, HTE analysis shares the same 
fundamental challenge with the causal inference method, 
as only one of two potential outcomes—either Yi(0) or 
Yi(1)—is observable for individuals; that is, the treatment 
effect (Yi (1) − Yi(0)) is not explicitly provided by the orig-
inal data. As such, because of the unique challenge, HTE 
analysis methods must be specifically developed to ad-
dress such issues.

Methods to estimate HTE

Two-step method

One of the commonly used approaches to estimate HTE 
is a two-step method,21 which builds separate regression 
models for the treatment and control groups. This coun-
terfactual model consisting of the two constructed regres-
sion models is then used to estimate the counterfactual 
differences in individual outcomes to infer the individual 
treatment effects. Specifically, for an individual with dis-
tinct covariate values, each regression model can project 
outcome values, and the difference between the two out-
comes will represent the predicted treatment effect. The 
two-step method has been conventionally used in many 
fields, such as econometrics,22 social science,23 epidemiol-
ogy,24 and medical science.25 Despite being intuitive and 
straightforward to implement, this method can be con-
strained by the nature of linear regression, which imposes 
linear relationships unless more complex relationships 
are explicitly predefined in the model. As such, its per-
formance can be significantly compromised in the pres-
ence of model misspecification for complex relationships. 
Another intrinsic drawback is that the difference between 
the two independent “accurate” models does not neces-
sarily lead to an accurate HTE estimate.

ML method: causal forest

Several ML approaches have been developed to estimate 
HTE.14,26–29 Among them, the decision tree–based HTE 
method was first developed and has been widely recog-
nized.30,31 The essence of a decision tree, featured by 
partitioning full data into subgroups, makes it perfectly 
suitable for HTE analysis aiming to find subgroups (or in-
dividuals) with a distinct treatment effect.

One milestone for the method development of decision 
trees is the emergence of the random forest algorithm.32 
Considering the greedy nature of one-step-at-a-time node 

splitting in binary trees, random forest attempts to mit-
igate the “overfitting” issue (i.e., inability to generalize 
unseen data) of a single binary tree by implementing a 
randomization procedure. Randomization is carried out 
in the following two forms: (1) a collection of binary deci-
sion trees that independently grew based on the bootstrap 
sample of the original data and (2) a randomly selected 
subset of variables that are chosen as candidate variables 
for splitting at each node of the tree.32 The random forest 
combines hundreds or thousands of trained decision trees 
and makes its final predictions by averaging the predic-
tions of each individual tree. Recently, random forest has 
also been extended to HTE analysis, specifically with the 
causal forest method.9 Briefly, the causal forest method 
keeps the main structure of random forest such as the 
recursive partitioning, subsampling, and random split se-
lection, but the tree-splitting criteria are modified to suit 
the goal of HTE analysis, that is, maximizing the treat-
ment effect heterogeneity—the difference of estimated 
treatment effect between daughter nodes. It is worth 
mentioning that, although named as causal forest by the 
method developers,9 this method performs HTE analy-
sis based on the estimated counterfactuals within nodes 
rather than carrying out a standard causal inference that 
requires specific designs of questions, studies, and anal-
ysis.13 Because of the word limit, detailed descriptions 
of the causal forest are provided in the Supplementary 
Information.

Models for simulation

Interactions between treatment and covariates of sub-
jects can lead to HTE among the study population, which 
lays the basis for our simulations. Define Xi = (xi1,⋯, xik) 
as a vector of observable covariates for subject i and 
� (x) = �

[
Yi (1) − Yi(0)|Xi = x

]
 as the treatment effect for 

a given set of covariates x. The HTE scenario can be simu-
lated by developing models,16 such as:

where f ( ⋅ ) refers to the direct impact of covariates (with 
no interaction with treatment indicator) on the outcome Yi , 
g( ⋅ ) is a function of covariates Xi that interact with treat-
ment, and the interaction term g(Xi)T specifies the HTE.

For the scenario with homogeneous treatment effect, 
the data can be simulated by denoting outcome (Y) as:

where the treatment effect of each individual is the same as 
E
[
Yi (1) − Yi(0)

]
= δ, independent of the covariates.

(1)Yi (T) = f (Xi) + g(Xi)T + �

(2)Yi (T) = f (Xi) + �T + �
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Equation  (2) is a special case of Equation  (1) with-
out interactions between treatment and covariates. As 
such, Equation (1) can simulate different HTE scenar-
ios by varying the form of the function g. In this study, 
we developed the following four models with increas-
ing complexity of HTE (Table  1): (I) no heterogeneity 
covariates (i.e., no HTE), that is, all observations have 
the same treatment effect; (II) a linear relationship be-
tween heterogeneity covariates; (III) a nonlinear rela-
tionship between heterogeneity covariates; and (IV) 
high-dimensional data where the number of covari-
ates exceeds the number of individuals/observations. 
For each simulation model, the covariate of the indi-
viduals Xi were generated randomly from a mean-zero 
multivariate normal distribution with covariance ma-
trix (1 − �) Ik + �1T1. Treatments T ∈ { − 1, 1} were ran-
domly assigned to the whole population, and random 
errors were defined as ϵ ∼ N

(
0, �2

0

)
 . No correlation was 

assumed among the covariates, that is, covariance � = 0 
and �0 = 0.5 for the noise level. We set the sample size 
as n = 2000 and the number of covariates as k = 10 in 
Models I, II, and III, and n = 500 and k = 1000 in the 
high-dimensional case of Model IV.

Using these simulated scenarios, we conducted a sys-
tematic performance evaluation for causal forest and 
compared it with the two-step method. For each sce-
nario (Models I–IV), we independently generated 200 
data sets. Each data set consisted of training and test-
ing data independently generated from the given model. 
The training data were used to build the predictive 
HTE model using the two-step method or causal forest, 
whereas the testing data were used to examine the pre-
dictive ability of the established model. Given the pre-
dicted and true treatment effects, the predictive ability 
was evaluated, and the performance evaluation metrics 
were averaged over the 200 simulation replications. Both 
the root mean square error (RMSE) and the incremen-
tal gains curve14 were used to evaluate model perfor-
mance (see the Supplementary Information for detailed 
descriptions).

Moreover, for observational studies where the uncon-
foundedness assumption may be violated, the approach of 
using estimated propensity scores33,34 can be applied with 

causal forest for its robustness to confounding. A scenario 
with confounding factors was simulated to demonstrate 
the use of causal forest for observational data (see the 
Supplementary Information).

RESULTS

Case example

In this section, a case example with nonlinear HTE was sim-
ulated to demonstrate HTE analysis conducted by causal 
forest and the two-step method. By stipulating Equation (1), 
the example case was simulated based on the model 
Y = �0 +

∑10
k=1 �kxk + (�0 + �1x1

5 + �2e
x2 + �12 x1x2)T + � , 

where �0 = 0.4, �k = 0.5, and heterogeneity covari-
ates x1 and x2 have interactions with the treatment 
(T) in a nonlinear form, �0 + �1x1

5 + �2e
x2 + �12 x1x2

(�0 = 0.8, �1 = �12 = 1.6, �2 = − 0.64). As such, a nonlin-
ear relationship between treatment effects and covariates 
was created in the model. Figure 2a illustrates the distribu-
tion of the model-defined true treatment effects as a func-
tion of covariates x1 and x2 (x and y axes). In Figure 2a, 
a color gradient corresponding to the values of treatment 
effects is used, with red indicating the highest treatment 
effect (lower right corner) and blue indicating the most 
unexpected treatment effects (the leftmost region in the 
middle). A nonlinear transition from the highest to the 
lowest treatment effect can be observed.

Both causal forest and the two-step methods were ap-
plied to the simulated data for HTE analysis. Specifically, 
for the two-step method, a separate regression models 
were established for the treatment and control groups. 
When predicting treatment effect for an individual, the 
data of this individual were fed into the two separately 
established models, and the difference between the es-
timated outcomes was calculated to represent the treat-
ment effect. For the causal forest, each tree grew (split) 
according to the splitting criteria. The established causal 
forest model can then provide the predicted treatment 
effect for individuals. Figure  2b displays the distribu-
tion of treatment effects as estimated by the causal for-
est method, which almost matches the true treatment 

T A B L E  1   Summary of the four simulation mathematical models generated with increasing heterogeneous treatment effect complexity

Model
Description of relationships between 
heterogeneity covariates Outcome model

I No heterogeneous treatment effect Yi = �0 +
∑p

j=1
�kxik + �T + �

II Linear Yi = �0 +
∑p

k=1
� ixik +

�
�0 +

∑p

k=1
�kxik

�
T + �

III Nonlinear + interactive Yi=�0 +
∑p

k=1
�kXi +

�
�0 + �1x

3
i1
+ �23cos(xi2)xi3

�
T + �

IV High-dimensional covariates Model II
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effects shown in Figure 2a. In contrast, Figure 2c shows 
the biased treatment effect estimation with a linear 
pattern provided by the two-step method, which is re-
stricted by its explicitly linear additive regression model. 
Although the estimation reflects the general trend of the 
true treatment effects, the nonlinear pattern between the 
treatment and covariate cannot be recovered (Figure 2c). 
These results demonstrate that the causal forest method 
can detect the underlying HTE even when a complex in-
teraction relationship exists between the treatment and 
covariates.

Simulations based on mathematical 
Models I–IV

To conduct a systematic performance check on the causal 
forest and the conventional two-step method for HTE 
analysis, we simulated four scenarios based on hypo-
thetical mathematical models with various relationships 
among the covariates and treatment effect with progres-
sively increasing complexity of HTE (see the Methods sec-
tion and Table 1). Model I was intended as a “baseline” 
case without interaction between the covariates and treat-
ment, and therefore no HTE. In Model II, two covariates 
interacted with treatment in a linear form. Model III as-
sumed a case where the covariates interacted with the 
treatment in a nonlinear form. We designed Model IV to 
represent the high-dimensional data scenario, in which 
1000 covariates were sampled from multivariate normal 
distribution with 500 observations. In this model, the 1000 
covariates followeda linear additive relationship with re-
spect to treatment effect, and the covariate coefficients 
were set to zero except for the first 5 covariates. This al-
lowed us to examine if an HTE model can correctly de-
scribe such high-dimensional data and offer insights into 
the preset important covariates even when they are sparse 
(i.e., 5/1000).

Performance evaluation

For each scenario (Models I–IV), we generated 200 data 
sets, each of which include one training and one testing 
data independently generated from the given model. The 
training data were used to build the predictive HTE model 
using the two-step or causal forest method, whereas the 
testing data were used to examine the predictive ability 
of the established model. Given the predicted and true 
treatment effects, the predictive ability was then evalu-
ated by the RMSE and the incremental gains curve (see 
the Methods section).

Figure 3 shows the RMSE results calculated from each 
testing data for the four scenarios. The figure shows the 
mean and standard deviation of RMSE values across 
200 simulation replications. No significant difference can 
be seen in the prediction performance between the causal 
forest and the two-step method for Model I (no HTE) and 
Model II (linear interaction between treatment and co-
variates). For these two scenarios, the two-step method 
is the correct modeling method and is thus expected to 
provide accurate predictions. However, the causal forest 
method performs equally well as the two-step method for 
these scenarios. For Model III (nonlinear or additive in-
teraction between treatment and covariates), causal forest 
provides a more accurate treatment effect prediction than 
the two-step method, reflected by the significantly lower 
RMSE (p < 0.01). Such a finding further highlights that 
causal forest can be used to conduct an analysis for com-
plex/real questions.

The difference in RMSE is most prominent in Model 
IV (p < 0.01) (Figure 3). The two-step method fails to yield 
a reasonable treatment effect estimation because of the 
parameter identifiability issue, considering that the num-
ber of observations (500) is less than the number (1000) of 
covariates. Causal forest achieves more than fivefold im-
provement over the two-step method in terms of RMSE. 
Importantly, causal forest is also able to capture influential 

F I G U R E  2   Treatment effect in a data set where the relationship between the two covariates ×1 and treatment effect is nonlinear. The 
(a) “true” treatment effect with varying values of ×1 and ×2 and the predicted treatment effect using (b) causal forest and (c) the two-step 
method. The treatment effect is denoted by color from blue (low) to red (high)
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covariates based on the variable importance, measured by 
a simple weighted sum of the number of times that the 
covariate of interest was split at each depth in the forest. 
Higher importance values indicate corresponding covari-
ates with high predictive power, whereas lower to zero 
values indicate variables with low predictive power. Note 
that the variable importance as defined for causal forest is 
different from that for random forest (i.e., variable impor-
tance),35 which is calculated by prediction error change 
after noising up a variable. Causal forest can provide cal-
culated variable importance values. However, it does not 
include a criterion that can be used to identify whether 
variable importance values are statistically meaningful or 
just obtained from randomness. Therefore, we developed 
a permutation-based statistical significance test to iden-
tify statistically meaningful important covariates (refer to 
the Supplemental Information for a detailed description). 
The results from the significance test show that only the 
first 5 covariates have statistically meaningful variable im-
portance values, consistent with the simulation by design 
(Figure 4).

In addition to RMSE, we also applied the incremental 
gains curve as another model assessment tool and calcu-
lated the corresponding Qini coefficient (Figure 5) based 
on the simulated data representing a population of in-
dividuals with HTE. Figure  5 illustrates the cumulative 
number of incremental responses relative to the cumula-
tive number of targets (both expressed as a percentage of 
the total targets): the x-axis shows the fraction of individu-
als in the population in which the treatment is performed, 
and the y-axis shows the incremental number of positive 
outcomes between the treatment and control groups ex-
pressed as percentage of the size of the target (treated) 
population. The dashed diagonal line in the figure denotes 
the benchmark. The Qini coefficient (marked on each 

panel) is a single estimate of model performance. Relative 
Qini values should be compared within the same data set 
rather than comparing absolute values among different 
data sets. Given that there is no HTE designed in Model I, 
the incremental gains curves of the causal forest and the 
two-step method overlap with the benchmark line. For 
Model II (linear HTE), both methods can capture equally 
well the HTE information and can regroup subjects based 
on the better treatment effect gain rather than the ran-
dom regrouping (benchmark). For Model III (nonlinear), 
causal forest performs better than the two-step method for 

F I G U R E  3   Comparison of the performance of the causal forest and two-step methods. Results are based on 200 replicated simulations. 
Mean (bar height) and standard deviation (error bar) of the root mean square error (RMSE) are displayed

F I G U R E  4   The variable importance determined by causal 
forest for high-dimensional simulated data based on Model IV. The 
preset significant covariates are shown in orange. The five preset 
important covariates were identified, as their variable importance 
values are greater than the significance threshold (dashed). 
Please refer to Supplementary Information for a description of the 
statistical significance test
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up to 80% of the target population. For Model IV (high 
dimensionality), causal forest shows overall better perfor-
mance at every level (percentage) of the target population 
(Figure  5). For both Models III and IV, the incremen-
tal gains curves of the causal forest appear closer to the 
curves for model-defined true treatment effect compared 
with the two-step method. The Qini coefficients reflect 
the previously described observations. Consistent with 
the RMSE results, the Qini coefficient from causal forest 
is higher than that from the two-step method in Models III 
and IV (p < 0.01), with an even larger relative difference 
exhibited in Model IV (high dimensionality).

The overall findings from our simulation studies 
clearly show that the ML-based causal forest method can 
outperform the linear regression-based two-step method 
for HTE analysis with nonlinear and high-dimensional 

data. In addition, data sensitivity testing was conducted 
to examine the robustness of the ML-based causal forest 
method to the sample size and noise level of data (see the 
Supplementary Information).

In addition, results from the simulation with con-
founding factors shows improved predictability of causal 
forests using estimated propensity scores, indicating that 
it can be useful in observational studies with confounding 
factors (see the Supplementary Information).

DISCUSSION

This study introduced an ML-based HTE analysis and pre-
sented a systematic evaluation of HTE analysis methods. 
HTE analysis demonstrated its ability to address questions 

F I G U R E  5   Incremental gains curves (or Qini curves) from each model. This curve shows the cumulative number of incremental 
individuals with positive treatment effect relative to the cumulative number of the targeted population. The dashed diagonal line depicts the 
theoretical incremental individuals with positive treatment effect from random targeting, whereas the gray line refers to the true treatment 
effect. For each mode, the incremental gain curves shown are the average of all the curves from 200 simulation replications. The Qini 
coefficients displayed on each panel are the average values from 200 simulation replications
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on the individualized counterfactual treatment effects. 
Thus, HTE analysis can be employed in a wide range of 
applications, including those related to clinical trial design 
and personalized medicine. The HTE analysis method 
has evolved to meet the challenges posed by the diverse 
data sources with increased data volume and complex-
ity accompanying the Big Data era. In this study, causal 
forest, a recently developed HTE method that is based on 
a well-established ML-method random forest, was intro-
duced to the clinical pharmacology community, and its 
performance was systematically assessed by predicting 
treatment effects under several simulated scenarios. Our 
results showed that causal forest outperforms the conven-
tional two-step HTE method, especially for nonlinear or 
high-dimensional data.

Causal forest can be considered as an extension of ran-
dom forest for HTE analysis, and as such inherits several 
appealing properties from random forest. Causal forest 
(1) imposes a minimal assumption on data, rendering 
it suitable for handling complex data; (2) uses data par-
tition as the training process, making it a natural candi-
date for HTE analysis; and (3) is capable of processing 
“large feature” data, where the number of covariates is 
much greater than the number of observations. During 
the training process of causal forest (i.e., generation of 
decision trees), the tree grows from the root (whole data 
set) to leaves (subsets), with each leaf determined through 
a series of binary splitting. For each splitting, a covariate 
is selected from the current node to maximize the dif-
ference of treatment effects of daughter nodes. As such, 
each leaf represents a subgroup with a distinct treatment 
effect featured by a certain set of covariates. Through the 
training process, relationships between treatment effect 
and covariates are revealed, and thus HTE analysis can 
be conducted. Theoretically, the training process could 
be compromised if a considerable number of subjects 
share similar covariates but exhibit significantly different 
responses. The response difference may derive from sys-
tematic randomness, measurement error, or unobserved 
influential covariates that were not included in the study. 
If the aforementioned phenomenon occurs only for a few 
subjects, the training process should be still sufficient, 
partly because subjects sharing the same set of covariates 
may still be in the same node and the dominating treat-
ment effect will still be reflected against the particular 
covariates selected for node splitting. Furthermore, this 
limitation is reasonably likely to affect HTE analysis based 
on a single decision tree more severely than the HTE anal-
ysis based on causal forest, as the latter retains data bag-
ging and covariate random selection processes.32

When the causal forest was developed, “unconfound-
edness” was a key assumption for implementing HTE 
analysis,9 which indicates that treatments in a study are 

randomly/unbiasedly assigned to different experiment 
groups with matched covariates, as expected in a random-
ized experiment. However, in observational studies, con-
founding can influence both outcomes and treatments, 
thus resulting in unbalanced treatment assignments. 
Uncontrolled confounding can lead to biased analysis. 
Data adjustment for case-control comparison (e.g., match-
ing) is the common practice to address confounding.20 In 
general, matching methods adjust original data to miti-
gate differences in the distributions of covariates between 
treatment groups, leading to a relatively balanced treat-
ment assignment to approximate a randomized experi-
ment. For observational data where confounding often 
exists, the data-matching process is warranted before 
conducting HTE analysis by causal forest. Although an 
approach of using estimated propensity scores has been 
proposed for causal forest,33,34 there is a diversity of other 
applicable matching methods,20 including ML-based 
methodologies.36

In addition to the two-step and causal forest methods, 
other HTE analysis methods have been proposed and 
assessed using linear models based on transformed co-
variates,16 adapted support vector machines,27 Bayesian 
trees,26,29 and forests.37 Among them, the uplift model14,38 
was developed to maximize the return on investment (e.g., 
for marketing) by essentially conducting an HTE analy-
sis with more application focus. In business settings, a 
random forest–based uplift model has been commonly 
to optimize the selection of insurance policies14 and per-
sonalized marketing interventions.39 Compared with the 
uplift model, causal forest can implement honest forest 
(also see the Supplementary Information)9 and reduce the 
potential estimation bias and therefore provide credible 
confidence interval estimations for the model-predicted 
treatment effects. Overall, both approaches are based on 
the random forest model and aim to address similar HTE 
questions (e.g., both can be used for survival analysis40–43). 
Although our study focused on HTE analysis with a sin-
gle treatment, it is worth noting that the uplift model and 
causal forest are applicable in circumstances with multi-
ple possible treatments.44–46

Part of the recognized merit associated with HTE anal-
ysis is that it makes the treatment effect not only measur-
able but also actionable. A variety of domains can benefit 
from the knowledge of treatment effects over the popu-
lation of interest. For example, a retail store can make a 
more cost-effective plan to offer sales (i.e., treatment) to 
the identified target subpopulation to maximize transac-
tions (i.e., outcome), and an oncologist can individualize 
treatment plans based on HTE results. In a regulatory 
setting, an agency can use HTE analysis to inform pol-
icy making and regulatory action to maximize the inter-
est of the public. For example, one critical mission of the 
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Office of Generic Drug (OGD) at the U.S. Food and Drug 
Administration is to facilitate the generic drug develop-
ment and increase drug accessibility for the US public.47 
OGD regularly releases product-specific guidance (PSG) 
to share the OGD's current thinking and recommenda-
tions on the development of a generic product following 
new drug approval.48 The PSG release, if considered as a 
treatment, can be evaluated quantitatively for its impact 
on the timing and the number of Abbreviated New Drug 
Application submissions by the HTE analysis. This effort 
will be discussed in a separate article emphasizing real-
world applications.

CONCLUSION

Given its resilience in handling complex data (e.g., nonlin-
ear and/or high-dimensional data), the causal forest HTE 
method, an ML approach derived from a random forest 
algorithm, provides a unique opportunity for scientists to 
assess and predict heterogeneity for treatment effect for 
real-world applications. Further research is warranted to 
extrapolate its applications to support decision making for 
both medical and regulatory practices.
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