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Abstract

miRNAs are a class of small noncoding RNAs that are associated with a variety of

complex biological processes. Increasing studies have shown that miRNAs have

close relationships with many human diseases. The prediction of the associations

between miRNAs and diseases has thus become a hot topic. Although traditional

experimental methods are reliable, they could only identify a limited number of

associations as they are time‐consuming and expensive. Consequently, great efforts

have been made to effectively predict reliable disease‐related miRNAs based on

computational methods. In this study, we present a novel approach to predict the

potential microRNA‐disease associations based on sparse neighbourhood. Specifi-

cally, our method takes advantage of the sparsity of the miRNA‐disease association

network and integrates the sparse information into the current similarity matrices

for both miRNAs and diseases. To demonstrate the utility of our method, we

applied global LOOCV, local LOOCV and five-fold cross‐validation to evaluate our

method, respectively. The corresponding AUCs are 0.936, 0.882 and 0.934. Three

types of case studies on five common diseases further confirm the performance of

our method in predicting unknown miRNA‐disease associations. Overall, results

show that SNMDA can predict the potential associations between miRNAs and dis-

eases effectively.
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1 | INTRODUCTION

miRNAs are a class of small noncoding RNAs which are associated

with a variety of complex biological processes.1 Increasing studies

have shown that miRNAs play a vital role in various biological pro-

cesses which are essential for human life, including cell proliferation,

differentiation, ageing and apoptosis.2-5 In the meanwhile, evidence

have demonstrated that miRNAs are related with a number of com-

mon neoplasms, such as breast neoplasms,6 lung neoplasms7 and

prostate neoplasms.8 Therefore, the research on prediction of poten-

tial associations between miRNAs and diseases provides new

opportunities to study the molecular mechanisms of diseases. During

the past few years, a large number of associations have been con-

firmed by traditional experiments.9,10 Although reliable, experimental

methods are generally time‐consuming and expensive. As a result,

effective computational methods are urgently needed to uncover

potential associations between miRNAs and diseases.

Recently, a great number of computational methods have been

proposed to identify miRNA‐disease associations. Under the assump-

tion that miRNAs with similar functions are tend to be related with

phenotypically similar diseases and vice versa,11 Jiang et al12 pro-

posed the first computational model to predict miRNA‐disease
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associations by integrating the disease phenotype similarity network,

miRNA functional similarity network and known phenome‐micro-

RNAome network to build a heterogeneous network. Based on

weighted K most similar neighbours, Xuan et al13 presented HDMP

to predict the associations between miRNAs and diseases. The

miRNA functional similarity was calculated by disease terms and the

disease phenotype similarity. Considering the fact that the accuracy

of local network similarity measures is lower than that of global net-

work similarity measures,14-17 Chen et al18 presented the first global

method named RWRMDA by adopting random walk on the miRNA

functional similarity network. However, RWRMDA cannot be applied

to diseases without any known related miRNAs. Since then, many

classical methods based on random walk were proposed to predict

the latent miRNA‐disease associations. The main difference of these

methods lies in the constructed networks on which the random walk

was applied. Shi et al19 adopted random walk model to identify

miRNA‐disease associations by integrating miRNA‐target relationship,
disease‐genes in protein‐protein network. Later, Liu et al20 first cal-

culated miRNA similarity based on the miRNA‐target and miRNA‐
IncRNA associations, and they then constructed a heterogeneous

network by integrating the semantic and functional similarities of

disease, miRNA similarity and known miRNA‐disease associations.

Similarly, Luo et al21 also constructed a heterogeneous network by

integrating miRNA similarity, disease semantic similarity and known

miRNA‐disease associations. However, they used an imbalanced

birandom walk to identify miRNA‐related diseases. Chen et al22 pro-

posed WBSMDA which integrates the Gaussian Interaction profile

into the construction of similarity matrices. Specifically, WBSMDA

calculated a within‐score and a between score, and combined them

together to obtain a final score for miRNA‐disease associations pre-

diction. Using the same data, they further proposed another method

named HGIMDA.23 They first constructed a heterogeneous graph,

and then implemented an iterative process on the graph to discover

the relationships between miRNAs and diseases. HGIMDA was

proved to be fast and effective compared to the aforementioned

methods.

Recently, many path‐based methods were proposed to predict

miRNA‐disease associations. Based on the lengths of different walks,

the KATZ model was originally used in the social networks. Zou et

al24 and Qu et al25 skillfully applied KATZ to predict the potential

miRNA‐disease associations and achieved reliable results. You et al26

presented an effective method based on paths of different lengths.

They constructed a heterogeneous network and applied depth‐first
search algorithm to uncover the potential associations between miR-

NAs and disease. By taking the network topological structure into

account, PBMDA achieved remarkable performance. Nevertheless,

the searching process for paths of a certain length could be extre-

mely time‐consuming in large networks. Recently, Chen et al27 pro-

posed a method GIMDA to predict miRNA‐disease associations, in

which the related score of a miRNA to a disease was calculated by

measuring the graphlet interactions between two miRNAs or two

diseases. They also28 proposed another model called NDAMDA

based on network distance to predict miRNA‐disease associations. In

this study, they considered not only the direct distance between

two miRNAs (diseases), but also the average distance to other miR-

NAs (diseases).

Several machine learning‐based models were also developed to

predict potential miRNA‐disease associations. Jiang et al29 trained a

support vector machine classifier to distinguish positive miRNA‐dis-
ease associations from negative ones. Chen et al30 constructed a

continuous classification function based on regularized least squares

to reflect the probability of each miRNA related to a given disease.

Subsequently, Luo et al31 presented an effective method KRLSM,

which integrated different omics data and applied regularized least

squares to discover the relationship between miRNAs and diseases.

Recently, Chen et al32 proposed DRMDA using stacked auto‐
encoder, greedy layer‐wise unsupervised pretraining algorithm and

SVM to identify miRNA related with diseases. They also proposed

another two machine learning‐based methods MKRMDA and

EGBMMDA.33,34 Specifically, MKRMDA could automatically optimize

the combination of multiple kernels for disease and miRNA based on

Kronecker regularized least squares. In EGBMMDA, a model of

extreme gradient boosting machine was applied to identify miRNA‐
disease associations. EGBMMDA achieved a high prediction accuracy

in the framework of cross‐validation.
Although existing computational methods have made outstanding

contributions in this filed, there is still room for further improvement.

In this study, we present a reliable method based on Sparse Neigh-

borhood to predict the MiRNA‐Disease Associations (SNMDA).

SNMDA mainly consists of three steps. First, we use the sparse

reconstruction to obtain the reconstructed similarity matrices both

for miRNA and disease by considering the neighbourhood informa-

tion. Second, we integrated similarity information to construct a sim-

ilarity network for miRNAs and diseases, respectively. Third, we

predicted the potential miRNA‐disease associations through label

propagation35-37 on the miRNA similarity network as well as disease

similarity network to obtain the final prediction result. To

demonstrate the effectiveness of our method, we applied global

LOOCV, local LOOCV and 5‐fold cross‐validation to evaluate the

performance of our method, respectively. The corresponding AUCs

are 0.936, 0.882 and 0.934, which in all cases outperform the four

state‐of‐the‐art methods (HGIMDA,23 PBMDA,26 EGBMMDA 34 and

MKRMDA33). Moreover, three types of case studies on five common

neoplasms further validated the effectiveness of our method. Taken

together, these results demonstrated that our method can effectively

discover the underlying miRNA‐disease associations.

2 | MATERIALS AND METHODS

2.1 | Known miRNA‐disease associations

The human miRNA‐disease associations (HMDD)38 is a database

containing experimentally verified miRNA‐disease associations. The

known associations used in this paper were downloaded from the

latest version HMDD v2.0 (http://www.cuilab.cn/hmdd). After filter-

ing, 5430 associations between 383 diseases and 495 miRNAs were
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obtained. For convenience, we define an adjacency matrix A to

describe the known miRNA‐disease associations. For a given disease

i and a miRNA j, A(i, j) = 1 if i is related to j, and A(i, j) = 0 otherwise.

Our goal is to confirm the uncertain associations between miRNAs

and diseases.

2.2 | miRNA functional similarity

According to previous study,39 the miRNA functional similarity was

calculated based on the assumption that functionally similar miRNAs

tend to be associated with similar diseases. Benefitting from their

results, here we directly downloaded the miRNA functional similarity

from http://www.cuilab.cn/files/images/cuilab/misim.zip. An adja-

cency matrix MFS was built to represent the similarity of miRNAs,

where MFS(i, j) represents the similarity score between miRNA i and

miRNA j. The larger the MFS(i, j) is, the closer their associations will

be.

2.3 | Disease semantic similarity

Mesh database provides a strict classification system for disease.

Each disease can be described as a directed acyclic graph

(DAG).39 DAG is made up of points and links. For a given disease

d, DAG = (d, T(d), E(d)), where T(d) represents its ancestor nodes

and itself, and E(d) is the set of links of d. Disease t is one of T

(d), and the contribution to disease d can be calculated as

follows25:

Dd dð Þ ¼ 1
Dd tð Þ ¼ max 0:5 � Dd t0ð Þ t0 ∈ child of tjf gif t≠d

�
(1)

We define the contribution to itself is 1 while others are 0.5. There-

fore, we can use the following formula to calculate the semantic

value of d.

DV dð Þ ¼ ∑T ∈ Td
Dd tð Þ (2)

Then, we calculate the semantic similarity between disease a and

disease b through the following formula.

S a; bð Þ ¼ ∑T ∈ Ta∩Tb Da tð Þ þ Db tð Þð Þ
DV að Þ þDV bð Þ (3)

Dd(t) represents the contribution of disease t to disease a while Db(t)

represents the contribution of disease t to disease b. From Equa-

tion (3), we found that the semantic similarity for a and b depend on

the number of their common diseases. The larger the number is, the

greater the similarity will be. By calculating the semantic similarity of

each disease pair according to Equation (3), we could obtain an

F IGURE 1 . An overall workflow of
SNMDA to predict miRNA‐disease
associations
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adjacency matrix DSS. DSS(i,j) represents the semantic similarity

between disease i and disease j.

2.4 | SNMDA

As described in the first section, SNMDA could be divided into

three steps and the first step was the key to our approach.

Specifically, we reconstructed miRNA similarity (RMS) and disease

similarity (RDS) by taking the sparse neighbourhood into account.

An overall workflow was illustrated in Figure 1. The details of

SNMDA are as follows.

2.4.1 | Feature representation

In general, the sparse neighbourhood representation is constructed

based on feature vectors. Therefore, the miRNAs and diseases are

required to be in the form of feature vectors. Here, “interaction pro-

file”36,37 is adopted to describe the feature vectors according to the

known miRNA‐disease associations. An example is given in Figure 2.

As shown in Figure 2, the miRNA‐disease interaction network

consists of 5 miRNAs and 5 diseases, where M1;M2;M3;M4;M5gf
and D1;D2;D3;D4;D5gf represent the miRNA set and disease set,

respectively. If miRNA M1 is known to be related with disease D1,

the value in the corresponding adjacency matrix of the interaction

network is 1, and 0 otherwise. Each column represents the feature

vector of one miRNA, and each row represents the feature vector of

one disease. For example, the feature vector of M1 can be repre-

sented as (1, 1, 0, 1, 0) and that of D1 is represented as (1, 0, 1, 0,

0).

2.4.2 | Reconstruction of similarity for miRNAs and
diseases

Generally, the functional similarity of miRNAs as well as the seman-

tic similarity of diseases is used to predict the relationships between

miRNAs and diseases directly. However, they are still far from com-

plete since many of the associations are uncovered yet. To solve this

limitation, we first carried out a degree distribution analysis for the

constructed miRNA‐disease association network (Figure 3). Obvi-

ously, power‐law distributions for both known disease‐associated
miRNAs and known miRNA‐associated diseases were observed. In

other words, most diseases as well as miRNAs only have very few

known associations, which results in a very sparse heterogeneous

network constructed by the known miRNA‐disease associations.

F IGURE 2 . An example of feature
representation
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Therefore, how to take advantage of this sparsity and further

improve the prediction accuracy of the associations between miR-

NAs and diseases is a meaningful task.

In this section, we present a novel method to integrate the

sparse information into the existing similarity information by recon-

structing the miRNA similarity and disease similarity with sparse rep-

resentation. Sparse representation has received extensive attention

in pattern recognition and machine learning.40-42 Before calculating

the reconstructed similarity, we first briefly introduce the definition

of sparse neighbourhood and sparse reconstruction.

Sparse neighbourhood

The sparse neighbourhood of the sample xi (i = 1, 2,…, n) is defined

as follows. First, set a parameter ε (ε > 0) as the threshold. Then,

compare the reconstructed coefficients with parameter ε. If recon-

struction coefficient αj > ε, (i≠j), we say xj is one of the sparse neigh-

bourhoods of samples xi. Otherwise, it does not belong to the sparse

neighbourhoods of xi.
35

Sparse reconstruction

Suppose we have an uncertain linear equation x = Dα (i = 1, 2,…,

n), where sample x is an n‐dimensional vector to be reconstructed,

and D represents an over complete dictionary. α is a coeffi-

cient vector whose entries represent the correlation scores of

sample x with other samples. Our motivation is to calculate the

vector α. We can solve this problem by optimizing the following

formula:
min
α

jjαjj0 s.t.x ¼ Dα (4)

L0‐norm is the number of nonzero elements in the vector. However,

it is known as a NP‐hard problem to find the sparsest solution for

L0‐norm. As L1‐norm is the closest convex form to L0‐norm,43 a

common approach to solve this problem is to replace the L0‐norm
with the L1‐norm.43 Consequently, the problem is equal to minimize

the following optimizing problem:

min
α

jjαjj1s.t.x ¼ Dα (5)

L1‐norm represents the sum of the absolute values of each element

in a vector. D represents a dictionary. We can obtain a relevance

score matrix by solving Equation (6). Considering that many scores in

the matrix are very small, we only selected the sparse neighbour-

hood for each sample to reconstruct each sample by Equation (6).

min
w

jjwjj1s.t.x ¼ Dw (6)

Eventually, we obtained a new matrix which is reconstructed by the

sparse neighbourhood of each sample.

We have introduced sparse neighbourhood and sparse reconstruc-

tion. Next, we will introduce how to compute the reconstructed miRNA

similarity and disease similarity. In the previous section, miRNAs and dis-

eases have been represented as feature vectors and were regarded as

points which were projected into a feature space, respectively. In our

method, we assume that points are linearly arranged in the feature

space, and every point can be reconstructed by other points.

2.4.3 | Integration of similarity information

After RDS and RMS were obtained, we integrated them into existing

similarity matrices. The final miRNA similarity matrix (FMS) and final

disease similarity matrix (FDS) were then used to predict the
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potential miRNA‐disease associations. Specifically, given a miRNA x

and a miRNA y, if MFS(x, y)=0, then FMS(x, y) = RDS(x, y); otherwise,

FMS(x, y) = (RMS(x, y) + MFS(x, y))/2. The FDS was calculated in the

same way. The formulas are as follows:

FMS x; yð Þ ¼ RMS x; yð Þ; ifMFS x; yð Þ ¼ 0
RMS x;yð ÞþMFS x;yð Þ

2 ;otherwise

(
(7)

FDS x; yð Þ ¼ RDS x; yð Þ; if DSS x; yð Þ ¼ 0
RDS x;yð ÞþDSS x;yð Þ

2 ; otherwise

(
(8)

According to Equation (7), we constructed a miRNA similarity net-

work where nodes are miRNAs and edges represent their similarity.

A disease similarity network was constructed in the same way

according to Equation (8).

2.4.4 | Label propagation

Label propagation was applied on both miRNA and disease net-

works to obtain the prediction results. The labels were initiated

with the known miRNA‐disease associations and were updated

through label propagation. First, labels were propagated in the

miRNA similarity network. In the process of label propagation,

each point retains the information from its neighbours and

receives its initial label information. Parameter α (0 < α < 1) is

used to control the rate of retaining the information from its

neighbours while 1‐α represents the probability of receiving its ini-

tial label information. Therefore, the iteration equation can be

written as follows:

F tþ 1ð Þ ¼ α � FMS � F tð Þ þ 1� αð Þ � Y (9)

According to previous studies,44,45 Equation (9) is guaranteed to con-

verge if FMS is properly normalized by Equation (10):

MS ¼ D�1=2 � FMS � D1=2 (10)

where D is a diagonal matrix with its (i, i)‐th element equal to the

sum of i‐th row in FMS. We used the same way to deal with FDS.

Therefore, Equation (9) was rewritten in the following form:

FM tþ 1ð Þ ¼ α �MS � FM tð Þ þ 1� αð Þ � Y (11)

Equation (11) was then used to update the label information for

each miRNA until convergence. FM(t + 1) represents the label matrix

in the (t + 1)‐th iteration. Y is the initial label matrix and F(0) = Y.

When the iterative formula converges, FM(t + 1) was treated as the

final correlation score matrix. Similarly, when labels are propagated

miRNA (1‐25) Evidence miRNA (26‐50) Evidence

hsa‐mir‐150 dbDEMC; PhenomiR hsa‐mir‐181d dbDEMC; PhenomiR

hsa‐mir‐106a dbDEMC; PhenomiR hsa‐mir‐552 dbDEMC

hsa‐mir‐130a dbDEMC; PhenomiR hsa‐mir‐494 dbDEMC; PhenomiR

hsa‐mir‐192 dbDEMC; PhenomiR hsa‐mir‐330 dbDEMC; PhenomiR

hsa‐mir‐15b dbDEMC; PhenomiR hsa‐mir‐198 dbDEMC; PhenomiR

hsa‐mir‐142 PhenomiR hsa‐mir‐376a dbDEMC; PhenomiR

hsa‐mir‐30e PhenomiR hsa‐mir‐211 dbDEMC; PhenomiR

hsa‐mir‐98 dbDEMC; PhenomiR hsa‐mir‐1299 dbDEMC

hsa‐mir‐92b dbDEMC hsa‐mir‐455 PhenomiR

hsa‐mir‐372 dbDEMC; PhenomiR hsa‐mir‐144 dbDEMC; PhenomiR

hsa‐mir‐151 dbDEMC; PhenomiR hsa‐mir‐181c dbDEMC; PhenomiR

hsa‐mir‐32 dbDEMC; PhenomiR hsa‐mir‐381 dbDEMC; PhenomiR

hsa‐mir‐130b dbDEMC; PhenomiR hsa‐mir‐432 dbDEMC; PhenomiR

hsa‐mir‐99b dbDEMC; PhenomiR hsa‐mir‐660 dbDEMC

hsa‐mir‐28 dbDEMC; PhenomiR hsa‐mir‐331 PhenomiR

hsa‐mir‐449b dbDEMC hsa‐mir‐363 dbDEMC; PhenomiR

hsa‐mir‐95 dbDEMC; PhenomiR hsa‐mir‐382 dbDEMC

hsa‐mir‐186 dbDEMC; PhenomiR hsa‐mir‐154 dbDEMC; PhenomiR

hsa‐mir‐196b dbDEMC; PhenomiR hsa‐mir‐663b dbDEMC; PhenomiR

hsa‐mir‐449a dbDEMC; PhenomiR hsa‐mir‐484 dbDEMC; PhenomiR

hsa‐mir‐451 dbDEMC; PhenomiR hsa‐mir‐520e dbDEMC; PhenomiR

hsa‐mir‐491 PhenomiR hsa‐mir‐575 dbDEMC

hsa‐mir‐99a dbDEMC; PhenomiR hsa‐mir‐663 dbDEMC; PhenomiR

hsa‐mir‐424 dbDEMC; PhenomiR hsa‐mir‐507 unconfirmed

hsa‐mir‐212 dbDEMC; PhenomiR hsa‐mir‐136 dbDEMC; PhenomiR

TABLE 1 . The top 50 predicted
miRNAs associated with breast neoplasms
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in the disease similarity network, the iteration equation on the dis-

ease similarity network could be written as follows:

FD tþ 1ð Þ ¼ α �DS � FD tð Þ þ 1� αð Þ � Y 0 (12)

Taken together, the final correlation score matrix is calculated

by:

F ¼ βFM þ 1� βð ÞFD 0 (13)

here, β was set to 0.5.

The complete process of SNMDA was outlined in Algorithm 1.

2.4.5 | Implementation details

SNMDA was implemented in MATLAB under the MATLAB R2016b

programming environment. Specifically, the L1‐norm optimization

problem was solved by the l1_ls MATLAB software package. All the

experiments were performed on a desktop with an i7‐6700
3.40 GHz CPU and 16G RAM. The source code and data sets used

in this work could be freely downloaded at https://github.com/mis

itequ/SNMDA.

3 | RESULTS

3.1 | Evaluation

We applied leave‐one‐out cross‐validation (LOOCV), and 5‐fold
cross‐validation to test the prediction ability of our method. LOOCV

can be conducted in two different ways: global and local LOOCV. In

the framework of global LOOCV, each known miRNA‐disease associ-

ation was left out in turn as the test sample and the other known

associations were regarded as training samples.46 After each predic-

tion, the ranking of the test sample was compared with all the

unconfirmed miRNA‐disease associations. If the ranking of the test

sample was higher than a given threshold, it was marked as a suc-

cessful prediction. In comparison, in the framework of local LOOCV,

each known miRNA associated with a given disease was left out in

turn as the test sample and the ranking of that test sample was only

compared with the unconfirmed associations of this specific dis-

ease.26 Both frameworks were repeated 5430 times. In addition, 5‐
fold cross‐validation was also implemented to evaluate our method.

In 5‐fold cross‐validation, all the known miRNA‐disease associations

were divided into five disjoint subsets. Each subset was taken as test

TABLE 2 The top 50 predicted
miRNAs associated with lung neoplasms miRNA (1‐25) Evidence

miRNA
(26‐50) Evidence

hsa‐mir‐16 dbDEMC; PhenomiR hsa‐mir‐193b dbDEMC; PhenomiR

hsa‐mir‐106b dbDEMC; PhenomiR hsa‐mir‐302d dbDEMC; PhenomiR

hsa‐mir‐429 dbDEMC; PhenomiR hsa‐mir‐99b dbDEMC; PhenomiR

hsa‐mir‐141 dbDEMC; PhenomiR hsa‐mir‐28 dbDEMC; PhenomiR

hsa‐mir‐15a dbDEMC; PhenomiR hsa‐mir‐153 dbDEMC; PhenomiR

hsa‐mir‐20b dbDEMC; PhenomiR hsa‐mir‐488 dbDEMC; PhenomiR

hsa‐mir‐195 dbDEMC; PhenomiR hsa‐mir‐10a dbDEMC

hsa‐mir‐92b dbDEMC; PhenomiR hsa‐mir‐451 dbDEMC; PhenomiR

hsa‐mir‐15b dbDEMC; PhenomiR hsa‐mir‐129 dbDEMC; PhenomiR

hsa‐mir‐130a dbDEMC; PhenomiR hsa‐mir‐196b dbDEMC; PhenomiR

hsa‐mir‐302c dbDEMC; PhenomiR hsa‐mir‐452 dbDEMC; PhenomiR

hsa‐mir‐302a dbDEMC; PhenomiR hsa‐mir‐299 PhenomiR

hsa‐mir‐296 PhenomiR hsa‐mir‐383 dbDEMC; PhenomiR

hsa‐mir‐302b dbDEMC; PhenomiR hsa‐mir‐449a dbDEMC; PhenomiR

hsa‐mir‐372 dbDEMC; PhenomiR hsa‐mir‐516a unconfirmed

hsa‐mir‐23b dbDEMC; PhenomiR hsa‐mir‐424 dbDEMC; PhenomiR

hsa‐mir‐194 dbDEMC; PhenomiR hsa‐mir‐139 dbDEMC; PhenomiR

hsa‐mir‐373 dbDEMC; PhenomiR hsa‐mir‐342 dbDEMC; PhenomiR

hsa‐mir‐520b dbDEMC hsa‐mir‐449b dbDEMC; PhenomiR

hsa‐mir‐204 dbDEMC; PhenomiR hsa‐mir‐99a dbDEMC; PhenomiR

hsa‐mir‐339 dbDEMC; PhenomiR hsa‐mir‐491 dbDEMC

hsa‐mir‐367 dbDEMC; PhenomiR hsa‐mir‐181d dbDEMC; PhenomiR

hsa‐mir‐215 dbDEMC; PhenomiR hsa‐mir‐149 dbDEMC; PhenomiR

hsa‐mir‐130b dbDEMC; PhenomiR hsa‐mir‐340 dbDEMC; PhenomiR

hsa‐mir‐151 PhenomiR hsa‐mir‐301b dbDEMC
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samples in turn while the rests were considered as training samples.

To avoid the bias caused by sample divisions, we repeated 5‐fold
cross‐validation 20 times and the final result is given by averaging

the results from the 20 repetitions. Furthermore, the receiver oper-

ating characteristic (ROC) curves were plotted by calculating false‐
positive rate (FPR) and true‐positive rate (TPR) at varying thresholds.

The area under curve (AUC) was then calculated for comprehensive

performance evaluations.

As a result, SNMDA achieved reliable AUCs of 0.936, 0.882 and

0.934 for global LOOCV, local LOOCV and 5‐fold cross‐validation,
respectively (Figure 4). To further prove the performance of

SNMDA, we compared our method with four state‐of‐the‐art meth-

ods (HGIMDA,23 PBMDA,26 EBMMDA34 and MKRMDA33). As

shown in Figure 4. In global LOOCV, HGIMDA, EBMMDA, PBMDA

and MKRMDA achieved AUCs of 0.875, 0.922, 0.912 and 0.904,

respectively, and the AUC obtained by SNMDA was higher than the

other four methods by 0.061, 0.014, 0.024 and 0.032. In the frame-

work of local LOOCV, the AUCs of HGIMDA, EBMMDA, PBMDA

and MKRMDA were 0.823, 0.853, 0.807 and 0.827, all of which

were lower than that of SNMDA. In five-fold cross‐validation, the
corresponding AUCs of the four methods were 0.867, 0.916, 0.904

and 0.88, respectively, where the performance of SNMDA consis-

tently outperformed the other four alternatives. In conclusion, the

cross‐validation results verified the superior ability of SNMDA in

prediction the underlying associations between miRNAs and dis-

eases.

3.2 | Case study

In this section, we carried out three types of case studies to further

validate the effectiveness of SNMDA. For the first type of case stud-

ies, we applied SNMDA to predict novel miRNA‐disease associations

for three selected diseases based on the known associations from

HMDD v2.0, that is breast neoplasms, lung neoplasms and prostate

neoplasms. The prediction results for each disease were verified by

two databases PhenomiR47 and dbDEMC,48 both of which provide

differentially expressed miRNAs for certain diseases.

Breast neoplasms is a common disease in women and also a seri-

ous threat to the health of women.49,50 In the early years, the mor-

tality of breast neoplasms is just inferior to lung neoplasms. With

the development of comprehensive treatment of breast neoplasms,

the mortality rate has been significantly reduced. Researchers have

miRNA
(1‐25) Evidence

miRNA
(26‐50) Evidence

hsa‐mir‐21 dbDEMC; PhenomiR hsa‐mir‐223 dbDEMC; PhenomiR

hsa‐mir‐155 dbDEMC; PhenomiR hsa‐mir‐29a dbDEMC; PhenomiR

hsa‐mir‐17 dbDEMC; PhenomiR hsa‐mir‐203 dbDEMC; PhenomiR

hsa‐mir‐146a PhenomiR hsa‐mir‐100 dbDEMC; PhenomiR

hsa‐mir‐20a dbDEMC; PhenomiR hsa‐mir‐29b dbDEMC; PhenomiR

hsa‐mir‐34a dbDEMC; PhenomiR hsa‐mir‐31 dbDEMC; PhenomiR

hsa‐mir‐126 dbDEMC; PhenomiR hsa‐mir‐146b dbDEMC; PhenomiR

hsa‐mir‐92a dbDEMC; PhenomiR hsa‐let‐7d dbDEMC; PhenomiR

hsa‐let‐7a dbDEMC; PhenomiR hsa‐mir‐29c dbDEMC; PhenomiR

hsa‐mir‐200b dbDEMC; PhenomiR hsa‐mir‐205 dbDEMC; PhenomiR

hsa‐mir‐200c dbDEMC; PhenomiR hsa‐mir‐214 dbDEMC; PhenomiR

hsa‐mir‐143 dbDEMC; PhenomiR hsa‐mir‐222 dbDEMC; PhenomiR

hsa‐mir‐200a dbDEMC; PhenomiR hsa‐mir‐182 dbDEMC; PhenomiR

hsa‐mir‐16 dbDEMC; PhenomiR hsa‐mir‐133b dbDEMC; PhenomiR

hsa‐mir‐221 dbDEMC; PhenomiR hsa‐mir‐375 dbDEMC; PhenomiR

hsa‐mir‐1 dbDEMC; PhenomiR hsa‐mir‐101 dbDEMC; PhenomiR

hsa‐mir‐18a dbDEMC; PhenomiR hsa‐mir‐34b PhenomiR

hsa‐let‐7b dbDEMC; PhenomiR hsa‐mir‐210 dbDEMC; PhenomiR

hsa‐mir‐199a dbDEMC; PhenomiR hsa‐mir‐218 dbDEMC; PhenomiR

hsa‐mir‐15a dbDEMC; PhenomiR hsa‐mir‐9 PhenomiR

hsa‐mir‐141 dbDEMC; PhenomiR hsa‐mir‐142 PhenomiR

hsa‐mir‐19a dbDEMC; PhenomiR hsa‐mir‐27a dbDEMC; PhenomiR

hsa‐mir‐19b dbDEMC; PhenomiR hsa‐mir‐133a dbDEMC; PhenomiR

hsa‐mir‐34c unconfirmed hsa‐let‐7e dbDEMC; PhenomiR

hsa‐let‐7c dbDEMC; PhenomiR hsa‐mir‐486 unconfirmed

TABLE 3 . The top 50 predicted
miRNAs associated with prostate
neoplasms
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found that many miRNAs are associated with breast neoplasms by

clinical experiments, such as mir‐155 and mir‐21.6 We used our

method to predict the candidate miRNAs for breast neoplasms, and

we listed the top 50 predicted candidate miRNAs (Table 1). As a

result, 49 of the top 50 candidate miRNAs were successfully veri-

fied. For example, hsa‐mir‐150 (1st in Table 1) and hsa‐mir‐130a are

closely related to breast neoplasms. Hsa‐mir‐150 can promote

human breast neoplasms growth51 while hsa‐mir‐130a (3rd in

Table 1) could suppress breast neoplasms cell migration and inva-

sion.52 The only unconfirmed miRNA was hsa‐mir‐507. As a matter

of fact, Jia et al53 have reported that hsa‐mir‐507 inhibits the migra-

tion and invasion of human breast neoplasms cells. Our prediction

results provided new evidence for its role in the pathogenesis of

breast neoplasms.

Lung neoplasms is a malignant tumour that has the greatest

threat to the health and life for people. It is also one of the fastest

growing neoplasms in the incidence and mortality rate.7 Increasing

evidence has suggested that miRNAs can not only be utilized to clas-

sify lung cancer, but also has the potential to be biomarkers for early

diagnosis and clinical treatments. As shown in the table (Table 2), 49

of the top 50 the predicted candidates were verified to be associ-

ated with lung neoplasms. For example, previous research

demonstrated that hsa‐mir‐106a and hsa‐mir‐106b (2nd in Table 2)

can affect the growth and metastasis of lung neoplasms. The result

further proved that our method could effectively predict miRNA‐dis-
ease associations in lung neoplasms.

Prostate neoplasms is also one of the common diseases in men.

It is estimated that one in six men in the United States will be diag-

nosed with prostate cancer in their lifetime, with the likelihood

increasing with age.54 Studies have shown that miR‐182‐5p can be

used as a marker for the diagnosis of prostate neoplasms and miR‐
20 plays a vital role in the occurrence of prostate cancer.55 There-

fore, identifying miRNAs related with prostate neoplasms is of great

importance. As shown in Table 3, 48 candidate miRNAs were veri-

fied to be correctly related with prostate neoplasms. Only two miR-

NAs, hsa‐mir‐34c and hsa‐mir‐486, were not recorded in the two

databases. As a matter of fact, studies have revealed that hsa‐mir‐
34c together with hsa-mir-34a and hsa-mir-34b are the most fre-

quently reported epigenetically dysregulated miRNAs.56 Our predic-

tion was also in accordance with this result and provided new

evidence for its association with prostate cancer. Besides, several

studies have confirmed that hsa‐mir‐486 plays a important part in

prostate cancer through negative regulation of multiple tumour sup-

pressor pathways.57

TABLE 4 . The top 50 predicted
miRNAs associated with pancreatic
neoplasms

miRNA (1‐25) Evidence miRNA (26‐50) Evidence

hsa‐mir‐21 dbDEMC; PhenomiR;HMDD hsa‐mir‐31 dbDEMC; PhenomiR;HMDD

hsa‐mir‐155 dbDEMC; PhenomiR;HMDD hsa‐mir‐19b dbDEMC; PhenomiR

hsa‐mir‐146a dbDEMC; PhenomiR;HMDD hsa‐mir‐19a dbDEMC; PhenomiR

hsa‐mir‐125b dbDEMC; PhenomiR;HMDD hsa‐mir‐141 dbDEMC; PhenomiR

hsa‐mir‐145 dbDEMC; PhenomiR;HMDD hsa‐mir‐195 dbDEMC; PhenomiR

hsa‐mir‐17 dbDEMC; PhenomiR;HMDD hsa‐mir‐199a dbDEMC; PhenomiR;HMDD

hsa‐mir‐34a dbDEMC; PhenomiR;HMDD hsa‐mir‐29c dbDEMC; PhenomiR

hsa‐mir‐221 dbDEMC; PhenomiR;HMDD hsa‐mir‐9 dbDEMC; PhenomiR

hsa‐mir‐16 dbDEMC; PhenomiR;HMDD hsa‐let‐7c dbDEMC; PhenomiR;HMDD

hsa‐mir‐126 dbDEMC; PhenomiR;HMDD hsa‐mir‐210 dbDEMC; PhenomiR;HMDD

hsa‐mir‐20a dbDEMC; PhenomiR;HMDD hsa‐mir‐375 dbDEMC; PhenomiR;HMDD

hsa‐mir‐29a dbDEMC; PhenomiR hsa‐mir‐181a dbDEMC; PhenomiR

hsa‐let‐7a dbDEMC; PhenomiR;HMDD hsa‐mir‐133b dbDEMC; PhenomiR;HMDD

hsa‐mir‐200b dbDEMC; PhenomiR;HMDD hsa‐mir‐26a dbDEMC; PhenomiR;HMDD

hsa‐mir‐29b dbDEMC; PhenomiR;HMDD hsa‐mir‐122 dbDEMC; PhenomiR;HMDD

hsa‐mir‐92a dbDEMC; PhenomiR;HMDD hsa‐mir‐133a dbDEMC; PhenomiR

hsa‐mir‐222 dbDEMC; PhenomiR;HMDD hsa‐mir‐34c HMDD

hsa‐mir‐200c dbDEMC; PhenomiR;HMDD hsa‐let‐7d dbDEMC; PhenomiR;HMDD

hsa‐mir‐1 dbDEMC; PhenomiR hsa‐let‐7e dbDEMC; PhenomiR;HMDD

hsa‐mir‐15a dbDEMC; PhenomiR;HMDD hsa‐mir‐182 dbDEMC; PhenomiR;HMDD

hsa‐mir‐200a dbDEMC; PhenomiR;HMDD hsa‐mir‐203 dbDEMC; PhenomiR;HMDD

hsa‐mir‐18a dbDEMC; PhenomiR;HMDD hsa‐mir‐142 HMDD

hsa‐let‐7b dbDEMC; PhenomiR;HMDD hsa‐let‐7i dbDEMC; PhenomiR;HMDD

hsa‐mir‐143 dbDEMC; PhenomiR;HMDD hsa‐mir‐30b dbDEMC; PhenomiR

hsa‐mir‐223 dbDEMC; PhenomiR;HMDD hsa‐let‐7f dbDEMC; PhenomiR;HMDD
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The second type of case study mainly aims to prove the ability

of our method in predicting new associations for diseases without

any known related miRNAs. To this end, we selected another disease

pancreatic neoplasms for the following analysis. Pancreatic neo-

plasms is a malignant tumour of the digestive tract that is highly

malignant and difficult to diagnose and treat in the world.58 Many

studies have found that the differential expression of miRNAs in

pancreatic neoplasms is closely related to the occurrence of tumours.

Here, we first removed all known entries associated with pancreatic

neoplasms in HMDD v2.0, and thus, all 495 miRNAs were consid-

ered as candidate miRNAs. Then, we used our model to prioritize

these candidate miRNAs and obtained their corresponding rankings

associated with pancreatic neoplasms. We found that all the top 50

predicted miRNAs were confirmed either by dbDEMC, PhenomiR or

HMDD v2.0 (Table 4). The result proved that our method could be

applied to predict potential associations for disease without any

known related miRNAs.

Finally, we conducted the last type of case study by taking the

associations from older version of HMDD as input and test whether

SNMDA could uncover those newly added associations in the latest

version of HMDD. The older version of HMDD contained 1395

associations between 271 miRNAs and 137 diseases.30 Colorectal

neoplasms were selected as the investigated disease. As a result, 49

of the top 50 predicted miRNAs have been confirmed to be related

with colorectal neoplasms by HMDD 2.0, PhenomiR and dbDEMC

(Table 5). The only unconfirmed miRNA was hsa‐mir‐205. However,

studies have indicated that hsa‐mir‐205 is also associated with col-

orectal neoplasms.59 Taken together, all case studies have shown

that SNMDA can effectively and reliably uncover the potential asso-

ciations between miRNAs and diseases.

4 | DISCUSSION

As it is unrealistic to make a large scale of prediction based on tradi-

tional experimental methods, identifying the associations buried in

miRNAs and diseases based on computational models is still a hot

topic, and it remains a challenging task to discover such associations

accurately and efficiently. Therefore, we proposed a novel method

based on sparse neighbourhood to predict miRNA‐disease associa-

tions. First, sparse reconstruction was used to obtain a reconstructed

miRNA similarity and a disease similarity. Second, similarity informa-

tion was integrated to construct a similarity network for miRNA and

disease, respectively. Finally, label propagation was applied on the

miRNA similarity network as well as disease similarity network to

obtain the relevance scores for each miRNA‐disease association.

miRNA (1‐25) Evidence miRNA (26‐50) Evidence

hsa‐mir‐221 dbDEMC; PhenomiR; HMDD hsa‐mir‐126 dbDEMC; PhenomiR; HMDD

hsa‐mir‐155 dbDEMC; PhenomiR; HMDD hsa‐mir‐24 dbDEMC; PhenomiR

hsa‐let‐7a dbDEMC; PhenomiR; HMDD hsa‐mir‐199a PhenomiR; HMDD

hsa‐mir‐19a dbDEMC; PhenomiR; HMDD hsa‐mir‐127 PhenomiR; HMDD

hsa‐mir‐222 dbDEMC; PhenomiR; HMDD hsa‐mir‐106b dbDEMC; PhenomiR

hsa‐let‐7b dbDEMC; PhenomiR; HMDD hsa‐mir‐30c dbDEMC; PhenomiR

hsa‐mir‐19b dbDEMC; PhenomiR; HMDD hsa‐mir‐191 dbDEMC; PhenomiR

hsa‐let‐7e dbDEMC; PhenomiR; HMDD hsa‐mir‐15a dbDEMC; PhenomiR

hsa‐let‐7d dbDEMC; PhenomiR hsa‐mir‐214 dbDEMC; PhenomiR

hsa‐mir‐146a dbDEMC; PhenomiR; HMDD hsa‐mir‐9 dbDEMC; PhenomiR; HMDD

hsa‐let‐7f dbDEMC; PhenomiR hsa‐mir‐146b PhenomiR; HMDD

hsa‐let‐7c dbDEMC; PhenomiR; HMDD hsa‐mir‐101 dbDEMC; PhenomiR

hsa‐mir‐223 dbDEMC; PhenomiR hsa‐mir‐125a dbDEMC; PhenomiR

hsa‐mir‐200b dbDEMC; PhenomiR; HMDD hsa‐mir‐25 dbDEMC; PhenomiR; HMDD

hsa‐let‐7i dbDEMC; PhenomiR hsa‐mir‐29a dbDEMC; PhenomiR; HMDD

hsa‐mir‐125b dbDEMC; PhenomiR; HMDD hsa‐mir‐20b dbDEMC; PhenomiR

hsa‐mir‐34a dbDEMC; PhenomiR; HMDD hsa‐mir‐200a dbDEMC; PhenomiR; HMDD

hsa‐let‐7 g dbDEMC; PhenomiR hsa‐mir‐150 dbDEMC; PhenomiR; HMDD

hsa‐mir‐92a dbDEMC; PhenomiR; HMDD hsa‐mir‐205 unconfuirmed

hsa‐mir‐29b dbDEMC; PhenomiR hsa‐mir‐34c PhenomiR; HMDD

hsa‐mir‐16 dbDEMC; PhenomiR; HMDD hsa‐mir‐133a dbDEMC; PhenomiR; HMDD

hsa‐mir‐132 dbDEMC; PhenomiR hsa‐mir‐107 dbDEMC; PhenomiR; HMDD

hsa‐mir‐141 dbDEMC; PhenomiR; HMDD hsa‐mir‐32 dbDEMC; PhenomiR

hsa‐mir‐1 dbDEMC; PhenomiR; HMDD hsa‐mir‐93 dbDEMC; PhenomiR; HMDD

hsa‐mir‐106a dbDEMC; PhenomiR; HMDD hsa‐mir‐429 dbDEMC; PhenomiR

TABLE 5 . The top 50 predicted
miRNAs associated with colorectal
neoplasms
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Besides, we applied global LOOCV, local LOOCV and 5‐fold cross‐
validation to test the prediction performance and SNMDA achieved

remarkable results in all the three cross‐validation frameworks. In

addition, we compared SNMDA with four state‐of‐the‐art methods

and the results demonstrated the superior performance of SNMDA.

The prediction ability of our method was further verified by three

types of case studies on five common diseases.

The success of our model could be mainly attributed to two rea-

sons. First, the reconstructed miRNA similarities and disease similari-

ties based on the sparse neighbourhood have greatly compensated

for the incompleteness of current data sets due to the inherent spar-

sity of the constructed miRNA‐disease network. Second, the label

propagation process on both miRNA and disease networks ensured

that the known labels were reliably propagated according to the

reconstructed similarities. Nonetheless, the performance of SNMDA

was sensitive to the quality of the miRNA similarity network and dis-

ease similarity network. More data sources should be integrated into

our model to further improve the prediction accuracy of our model.

Moreover, we simply combined the reconstructed similarity matrices

with the precalculated similarity matrices by adding them together

with equal weights, which might be a suboptimal result for the over-

all similarity. In conclusion, we believe that SNMDA could serve as a

powerful tool for the prediction of miRNA‐disease associations.
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ALGORITHM 1: SNMDA algor i thm

Input: Matrices Yn × m, MFSn × n, DSSm × m, parameter α, β

Output: Predicted associations matrix F.

1: For i ← 1 to n do

2: Select the sparse neighborhood for miRNA i by Equation (5).

3: End for

4: Obtain a reconstructed miRNA similarity matrix by Equation (6).

5: For j ← 1 to m do

6: Select the sparse neighborhood for disease j by Equation (5).

7: End for

8: Obtain a reconstructed disease similarity matrix by Equation (6).

9: Integrate similarity information by Equations (7) and (8).

10: Repeat

11: FM tþ 1ð Þ ¼ α �MS � FM tð Þ þ 1� αð Þ � Y
12: Until convergence

13: Repeat

14: FD tþ 1ð Þ ¼ α � DS � FD tð Þ þ 1� αð Þ � Y 0

15: Until convergence

16: F ¼ βFM þ 1� βð ÞFD 0

17: Return F
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