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Abstract

Purpose: Deep learning has achieved major breakthroughs during the past decade in almost
every field. There are plenty of publicly available algorithms, each designed to address a differ-
ent task of computer vision in general. However, most of these algorithms cannot be directly
applied to images in the medical domain. Herein, we are focused on the required preprocessing
steps that should be applied to medical images prior to deep neural networks.

Approach: To be able to employ the publicly available algorithms for clinical purposes, we must
make a meaningful pixel/voxel representation from medical images which facilitates the learning
process. Based on the ultimate goal expected from an algorithm (classification, detection,
or segmentation), one may infer the required pre-processing steps that can ideally improve the
performance of that algorithm. Required pre-processing steps for computed tomography (CT)
and magnetic resonance (MR) images in their correct order are discussed in detail. We further
supported our discussion by relevant experiments to investigate the efficiency of the listed
preprocessing steps.

Results: Our experiments confirmed how using appropriate image pre-processing in the right
order can improve the performance of deep neural networks in terms of better classification and
segmentation.

Conclusions: This work investigates the appropriate pre-processing steps for CTandMR images
of prostate cancer patients, supported by several experiments that can be useful for educating
those new to the field (https://github.com/NIH-MIP/Radiology_Image_Preprocessing_for_
Deep_Learning).
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1 Introduction

In recent years, artificial intelligence (AI) has achieved substantial progress in medical imaging
field where clinical decisions often rely on imaging data, e.g., radiology, pathology, dermatol-
ogy, and ophthalmology.1 Within radiology, AI has shown promising results in quantitative
interpretation of certain radiological tasks such as classification (diagnosis), segmentation,
and quantification (severity analysis). It is usually a time-intensive, error-prone, and non-
reproducible procedure when a radiologist evaluates scans visually to report findings and make
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diagnostic decisions.2 Alternatively, AI algorithms outperform the conventional qualitative
approaches with faster pattern recognition, quantitative assessments, and improved
reproducibility.1–4 More specifically, the advent of deep neural networks along with the recent
extensive computational capacity enabled AI to stand out by learning complex nonlinear
relationships in complicated radiology problems. As a result, deep learning-based AI has met
and even surpassed human-level performance in certain tasks. However, training these usually
large models, requires massive amounts of data, which can be limited in medical imaging appli-
cations due to the concerns over data privacy as well as the paucity of annotation (labels)
in supervised learning. With a continuing trend for developing universal data anonymization
protocols in addition to open data sharing policies, larger clinical datasets have started to
become available. Thus, training on massive dataset composed of different sources (institutions
with different scanners, image qualities, and standards) is an ongoing potential pathway.
Nonetheless, in cases with inevitable limited data, possible solutions are to use simpler designs
or to employ transfer learning strategies based on giant datasets of clinical or natural images.5

Either scenario, training on a big dataset or adopting transfer learning, are only two other impor-
tant reasons that resonate the demand for a series of preliminary pre-processing steps prior to
training; however, the nature of radiology images intrinsically necessities the preprocessing
phase by itself.

Radiology images are acquired in a different way from natural pictures. Distinctive features
of radiology images in each modality [i.e., computed tomography (CT) and magnetic resonance
imaging (MRI)] are directly correlated with technical parameters used to generate these images.
The detected (measured) signal within a scanner constitute the raw data that is reconstructed
into an image in digital imaging and communications in medicine (DICOM) format as a stan-
dard in clinical medicine.6 DICOM files contain “metadata” in addition to the “pixel data,”
which consists of image acquisition parameters, scanner information, and individual patient
identification data. For clinical assessment, radiologists usually import this information as
an image using the “picture archiving and communication system” (PACS).7 In some of their
modality-specific and organ-specific workflows to fulfill a certain task, radiologists practice
further adjustments to images often provided through a variety of third-party software pro-
grams embedded in PACS. These likely image modifications should be imitated as potential
image pre-processing steps before training an AI system.

In the event that a massive dataset is built upon the data obtained from different patients,
scanners, or multiple institutions, there are usually slight variations in the image quality, field of
view, and resolution, which should be taken into consideration through a few pre-processing
steps to create an integrated dataset.

In case of transfer learning, a model usually pre-trained on natural images is fine-tuned using
radiology images. Natural images are obtained, stored, and loaded into memory with globally
meaningful range of intensity values. However, based on the setting, clinical images are often
acquired in multiple different ways with certain interpretation for their intensity values. Thus,
to enable a robust transfer learning from the natural images into a dataset of radiology images,
it is beneficial to apply several pre-processing steps.

Different pre-processing steps can also be viewed as a quality check for radiology images,
which is beyond the embedded image quality filters at the scanner-level. To be more accurate,
what is described in this paper is called post-processing according to medical physicists, and
pre-processing according to image analysts. With that in mind, attaining a desired level of
image quality in the training dataset can improve the succeeding quantification with deep
learning.6

The nature of the pre-processing procedure strongly depends on the specific aim of the fol-
lowing processing algorithm and the image type. In practice, medical images can be provided in
either formats of DICOM, analyze, Nifti, and Minc. Herein, our codes are based on the standard
DICOM format;6,8 however, they can all be easily extended to any other format supported by the
SimpleITK library.9 We also restrict our discussion to core pre-processing steps for anatomical
MR and CT images with the aim of classification-, detection-, or segmentation-based applica-
tions using deep neural networks utilizing our institutional dataset of prostate cancer patients.
Similar pre-processing methods can be extended to other imaging modalities or other medical
research projects. Hence, we leave the choice of methods to users, with emphasis on the
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particular order that these methods should be applied to minimize the “uncertainties” coming
from the data and enhance the performance of deep learning methods.10

1.1 What Do Medical Images Tell Us?

The clinical goal of medical imaging is to provide anatomical and functional information. The
most common modalities include CT, x-ray imaging, MRI, ultrasound, and positron emission
tomography (PET). Each modality undergoes certain acquisition conditions that are essential for
quantitative assessment. CT scans are acquired by measuring x-ray attenuation through a rotating
energy source that produces cross-sectional images. CT imaging provides anatomical informa-
tion due to differences in tissue composition (i.e., density). The nature of CT acquisition results
in a quantitative measurement of tissue density relative to water, known as Hounsfield unit (HU).
Voxel HU values in CT images are largely considered reproducible with slight differences across
different scanners and patients following the standard temperature and pressure specifications.
While CT provides strong contrast of major anatomical landmarks, it is not the preferred modal-
ity in some clinical settings due to ionizing radiation and its limited soft-tissue contrast. Instead
MR imaging provides excellent resolution and contrast of soft-tissue components. MR images
represent the radio-frequency energy released after re-alignment of the protons in the presence of
a strong magnetic field. Since MR acquisition results in voxel values obtained relative to each
other, these images are subject to significant variations even when the same scanner is used to
scan the same patient or the same organ (Fig. 1).

2 Methods

In this section, we go through the details of pre-processing steps for CT and MR images, respec-
tively. Considering the deep networks’ task, the pre-processing may need to be applied at a
certain level. For instance, data normalization may be performed using the image statistics at the
slice-level (each single slice within an image), image-level, patient-level, scanner-level, institution-
level, or an overall training data-level (Fig. 2). It is common to use the patient-level pre-processing
in most studies, but there may be applications for which other methods are better suited.

2.1 Pre-Processing the CT Images

In case of CT images, potential sequence of pre-processing steps may be listed in order as denois-
ing, interpolation, registration, organ windowing followed by normalization, and potentially
zero-padding to improve the quality of training for deep learning algorithms.

Fig. 1 (a) and (b) represent the MR images of the same anatomical slice in two different patients
obtained within the same scanner, where inhomogeneity and intensity non-standardness are very
well demonstrated. (c) and (d) show the same slices after bias field correction.
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2.1.1 CT data denoising

There are several sources of disturbance in CT images, which mainly include beam hardening,
patient movements, scanner malfunction, low resolution, intrinsic low dose radiation, and metal
implants (Fig. 3). Each of these disturbances is addressed individually in the literature.11,12

Generally, images can be denoised within two domains: (i) spatial and (ii) frequency, which
are comprehensively discussed in the literature.13

2.1.2 CT data interpolation

As it is usually the case for object detection and segmentation, there is a preference to have equal
physical spacing for the input images. Maintaining the same resolution is desired to avoid center-
specific or reconstruction-dependent findings. Images are usually interpolated in the xy plane
and/or in z direction based on the desired physical spacing or ultimate number of the voxels.
Function ResampleImageFilter() from the SimpleITK library performs this task with different
interpolation methods. Cubic-spline and B-spline are generally better convolving functions to
resample images as they perform close to an ideal low-pass filter.14 An inappropriate resampling
step can negatively affect the subsequent registration and actual processing, such as degrading
the resolution below the anticipated size of the detectable objects.15

2.1.3 Registration of CT Data

Image registration implies a spatial transformation to align an area of interest in a floating image
with a reference image. Medical image registration in radiology is interpreted in two different
ways: (i) slice-level registration in an image due to patient movements during the scan and
(ii) image-level registration to have comparbaly aligned images in a training dataset. The first

Fig. 3 Images show left hip prosthesis related diffuse streak artifacts obscuring the CT image
quality after (a) soft tissue; (b) bone; (c) lung; and (d) liver windows.

Fig. 2 Depending on the ultimate task of deep neural network, pre-processing is performed at
a certain level of a dataset employing the respective statistics.
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registration type may be required only in certain CT images that are the product of slow scan-
ning, prior to denoising and interpolation. The latter type of image registration can ease the
learning process of space-variant features for classification or segmentation using conventional
machine learning tools. We emphasize that registration as pre-processing is not as critical for
object recognition based on deep learning as it used to be for conventional methods. Deep learn-
ing algorithms can be trained to learn features invariant to affine transformation or even different
viewpoints and illuminations.16 Yet, to facilitate training in complicated problems, registration
may prove useful. In addition, there could be scenarios demanding registered images as the input
for deep neural networks. For instance, the quality of synthetic CT generation is negatively
affected by poorly registered pairs of MR and CT scans in training.17 Figure 4 shows 3D
CT images of two patients captured within the same scanner where we care to have registered
anatomical field of view as the input. Limiting the field of view for various purposes during the
image acquisition, data curation, and through image pre-processing can improve the processing
results in terms of fewer false positives in general. There exists a wide spectrum of methods from
simple thresholding to segmentation for image registration in the literature which are beyond
the scope of this work.18,19

2.1.4 Windowing in CT data

As mentioned earlier, CT images are originally acquired in 12- or 16-bit DICOM format to
present measures of tissue density in HU which are integer numbers within an interval of
(−1024 Hu, 4000 Hu). These values may change to real numbers after potential denoising, inter-
polation, and registration. There is a limit to direct presentation of these values as an image to a
radiologist. According to perception literature, the human eye can only distinguish 100 shades of
gray simultaneously while it can discriminate several thousand colors.20 Thus, for radiologists to
be able to parse the complex images both faster and easier, one can incorporate color in clinical
images or use image windowing to increase the contrast across a region of interest. In practice,
the latter is commonly used where CT image values are clipped around a certain band of HU
values for each organ, following unique standards from a texture-based dictionary described in
Table 1. Obviously, computers are not limited by such a restriction, so windowing is not neces-
sary if one is using the l6-bit images for training although they are not always supported by all

Fig. 4 Registered field of view in CT data of patients A and B (Appendix A1).
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deep learning libraries designed for 8-bit portable network graphics (PNG) or joint photographic
experts group (JPEG) images.21 We believe storing images using l6-bit (either uintl6 or float
numbers) could improve the results. To demonstrate this principle, we designed an experiment
to explore the effect of windowing and the format of image storage on the validation accuracy of
a visual geometry group-16 (VGG-16) binary bone lesion classification (benign versus malig-
nant). The pre-trained VGG-16 network on ImageNet was trained and evaluated using the lesion
patches extracted from staging CT images of prostate cancer patients. Further details about this
experiment are provided in Appendix B1. The obtained results are shown in Table 2 which vary
over a limited interval of (76.99%� 0.8%). One can observe that bone windowing certainly
improved the accuracy while keeping data in float format led to the best comparative perfor-
mance. Hence, if not limited by format, float and uint16 are generally preferred over the 8-bit
images. In case of the 8-bit images, CTwindowing is generally advised to avoid a non-revertible
compression of visual details, where CT data are clipped to fit in an interval of WL �WW∕2
(where WL and WW are the window level/center and window width, respectively, following
Table 1). Otherwise, it is a good idea to perform CT windowing within a wide interval of
(−1350 Hu, 2000 Hu) to remove the extreme values caused by metal artifacts as shown in
Fig. 3(b).

2.1.5 Normalization of CT data

To stretch or squeeze the CT data intensity values so that they efficiently fit into the provided
range of input images (8 or 16 bits) monotonically, we simply use a linear transformation,

Table 1 Average Intensity Intervals in CT data that belong
to different organs in four major areas of the body.20

Region Organ Intensity interval

Head and neck Brain (40� 80∕2)

Subdural (75� 430∕2)

Stroke (36� 24∕2)

Temporal bones (600� 280∕2)

Soft tissues (375� 40∕2)

Chest Lungs (−600� 1500∕2)

Mediastinum (50� 350∕2)

Abdomen Soft tissue (50� 400∕2)

Liver (30� 150∕2)

Spine Soft tissue (50� 250∕2)

Bone (400� 1800∕2)

Table 2 Evaluating the effect of windowing and storage on
binary bone lesion classification of CT images in terms of val-
idation accuracy. Bolded values indicate the improved results.

Windowing interval Uint8 (%) Uint16 (%) Float32 (%)

(400� 2000∕2) 76.50 77.34 78.17

(0� 4000∕2) 75.63 77.38 76.90
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enforcing two critical points (smallest and largest values) to be mapped to (0, 255) or (0, 65,535)
respectively. Usually, we perform normalization at an institution-level or dataset level (utilizing
the minimum and maximum pixel values among all the patients). A simple rule of thumb for
implementing this is to use the windowing cut-off values ofWL �WW∕2 as the image extremes.
Alternatively, one may normalize CT images at a patient-level, or even a slice-level for certain
applications.

2.2 Pre-Processing the MR Images

While MR imaging is advantageous due to its superior soft-tissue contrast and non-ionizing
radiation, these images are usually more challenging to be displayed or analyzed due to the
lack of a standard image intensity scale. Additionally, MR imaging may be degraded by artifacts
arising from different sources that should be considered prior to any processing. Inhomogeneity,
motion and scanner-specific variations are among the major artifacts seen with the MRI.
Figures 1(a) and 1(b) show how one similar anatomical slice in two different patients, obtained
using the same scanner, have totally different intensity values. More importantly, Fig. 1 shows
how the intensity values across the same organ within the same patient [for instance fat tissue in
Fig 1(a)] vary in different locations. Potential steps to prepare MR images for further processing
respectively include: denoising, bias field correction, registration, and standardization.22

2.2.1 Denoising of MR data

Traditionally, denoising was an inevitable step to pre-process contaminated images. However,
this phase is usually embedded within the current MR scanners, making acquired MR images to
rarely suffer from direct noise distortion. In practice, additive Gaussian, Rician, and Speckle
noise, respiratory and body movements and aliasing may still be major sources of contaminating
noise in these images that should be addressed prior to any diagnosis. Motion can be avoided
through several imaging protocols in this regard. There is also a long history of conventional
methods proposed in the literature for motion artifact removal in MR images.23–35 Reliability of
the derived diagnosis can be degraded by noisy image, which challenges both radiologists and
automated computer-aided systems. To avoid false interpretations, it is critical to identify and
exclude such poor images prior to any algorithmic analysis or inspection by the radiologists.

2.2.2 MR bias field correction

“Bias field” distortion is a low-frequency non-uniformity that is present in the MR data, causing
the MR intensity values to vary across the images obtained from the same scanner, same patient,
and even for the same tissue.36 Figure 5(a) shows this effect in an MR image obtained
from the pelvic area. It is critical to perform bias correction on MR images prior to any
registration.36,37 The accuracy of image registration not only depends on spatial and geometric
similarity but also on the similarity of the intensity values of the same tissue across different
images. There are segmentation-based methods that estimate the bias field as an image parameter
using expectation–maximization (EM) algorithm.38–40 Other approaches are involved with
image features instead, where N-4 ITK is the most commonly used method among them.9,41

Fig. 5 (a) and (b) represent the same MR slice with Bias field and after bias removal. (c) and (d)
are the absolute difference and heat map of the respective bias field.
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This approach was first proposed by Tustison et al.,41 and is available in SimpleITK library.
We have shown the results of bias field removal in Figs. 5(c), and 5(d).

2.2.3 Registration of MR data

Similar to CT, MR scanning may leads to mis-aligned images that require image registration.
In fact, since MR scanning is much slower than CT, MR slices within the same image sequence
are more likely to be offset from one another. While slice-level registration is required when
processing 3D images within one channel, image-level registration becomes also essential
while processing various modalities all together.42,43 A critical example could be applications
where image fusion or domain adaptation is aimed between MR and CT images obtained using
different fields of view during separate retrospective studies.16

2.2.4 MR data standardization

To have comparable intensity values in MR images, we must enforce image standardization so
that for the same MR protocol within the same body region, a particular intensity value repre-
sents a certain tissue across all different slices and patients. Many studies in the literature use the
standardization method proposed by Nyul and Udupa44 to alleviate this problem. However, prior
to Nyul pre-processing, we may: (i) shift the intensity values into a positive range of numbers,
and (ii) use the probability distribution function (PDF) of the image intensity values to cut off the
upper or lower narrow tails of the histogram. The latter can potentially help to remove very rare
incidents of a certain intensity values caused by noise. Afterward, images can be standardized
through a two-step Nyul pre-processing method which illustration is shown in Figs. 6 and 7.

Fig. 6 (a), (b), and (c) represent the foreground PDF with standard landmarks, original PDF, and
the resulted mapped PDF associated with Fig. 7.

Fig. 7 (a) and (b) represent the sameMR slice before and after Nyul preprocessing using 10 green
landmarks in Fig. 6.
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The first step implies the learning phase where parameters of the standardizing transformation
are learned from images in the training set. Next is the transforming phase where the intensity
values of all images (training, validation, and validation) are mapped into new values using
the standardizing transformation computed during the learning phase. Doing so, the PDF
of each image would match a standard PDF. It is worthy to note that such standard PDF
for MR data is approximated by a bi-modal distribution where the first bump usually
represents the background. In practice, the Nyul method is focused on mapping the foreground
or the second bump in histogram using a certain number of the landmarks [10 landmarks
in Fig. 6(c)].

2.3 Demonstration

Finally, to demonstrate the efficacy of the aforementioned pre-processing methods in improving
the performance of deep neural network algorithms, we performed four experiments with the aim
of classification and segmentation in CT and MR images, i.e., two experiments for each image
modality. These tasks can be described as (1) binary bone lesion classification (benign versus
malignant) of 2-D lesion patches extracted from the CT data of proven prostate cancer patients;
(2) binary 2-D slice-level classification (class 0 implies containing lesion of at most PIRADS 1,2
and class 1 describes slices with higher risk lesions PIRADS 3,4,5) of T2-weighted MR scans of
prostate cancer patients from ProstateX dataset;45 (3) visceral fat segmentation of 2-D slices from
abdominal CT-scans; and (4) whole prostate segmentation in 2-D slices of T2-weighted MR
images from ProstateX dataset.45 For classification and segmentation purposes, we used two
popular algorithms, VGG-16, and U-net, respectively. Our classifiers are trained taking advan-
tage of transfer learning on the ImageNet, while U-net was trained from scratch in each case.
More details are provided in Appendix B.

The results with and without the pre-processing are shown in Table 3 that confirm the
necessity of appropriate pre-processing steps in the suggested order. While classification
accuracy in both patch-level (CT) and slice-level (MRI) has increased significantly, the
profound effect of pre-processing on segmentation performance is acutely presented both in
terms of mean absolute error and dice score. The results in Table 3 also signify the demand
for pre-processing in MRI images compared to CT images. Figure 8 shows an example of
T2-MR slice where pre-processing could prevent under-segmentation of the whole prostate
by U-net.

3 Discussion and Conclusions

Certainly, one major area in which AI is ascendant is the field of radiology. Conventionally,
radiologists have exploited their scientific knowledge and visual ability to interpret medical
images for diagnostic decisions. While such tasks are laborious and time-intensive, the results

Table 3 Evaluating the effect of pre-processing on classification and Segmentation tasks in terms
of validation accuracy. Bolded values indicate the improved results.

Task Image type Criteria With pre-processing (%) No pre-processing (%)

Classification MR Accuracy 73.30 68.74

CT Accuracy 82.28 77.72

Segmentation MR Mean Abs. Err. 2.73 47.64

Dice 98.64 81.74

CT Mean Abs. Err. 3.68 19.99

Dice 98.25 95.25
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are excessively error-prone.2 Current shortcomings necessitate an alternative solution. With the
advent of deep neural networks, certain radiologist’s tasks can be assigned to pre-trained
machines instead. However, such a revolutionary substitution toward automation highly depends
on how radiologists can understand the potentials of these algorithms. Currently, visual com-
putation tasks in radiology addressed with deep neural networks mainly include but are not
limited to detection, classification, and segmentation. In due time, it is critical for every radi-
ologist to learn to: (1) define a problem with regards to the capabilities of deep learning algo-
rithms; (2) collect and label the relevant data consistent with the algorithm to address the
problem; (3) perform the necessary pre- processing steps to prepare the input data; and (4) choose
an appropriate algorithm which will be trained on the provided data to solve the problem. There
is a lack of thorough references available to educate radiologists on pre-processing as the first
step. It is necessary for both radiologists and data scientists to understand these preprocessing
steps so they can work effectively together to create ideal solutions. We hope this compilation of
codes from the public domain will be useful.

4 Appendix A: Registration Details

4.1 Registration of CT data

As it can be seen in Fig. 3, both patients in Fig. 3 are adjusted to have the same axial view in
512 × 512 axial plane which results in different x and y spacing. On the other hand, with similar
z-spacing (slice thickness) of 1 mm, images (a) and (b) are turn out to have a different number of
slices, 663 and 778, respectively, while presenting a similar view in the z direction. With all these
considerations, due to slight differences in measurement specification and organ-specific spatial
organization of the patients, (x; y; z) physical spacing can not be used as a reference for
registration.

5 Appendix B: Implementation Details

5.1 Bone lesion classification in CT scans

A dataset of 2879 annotated bone lesions from CT scans of 114 patients diagnosed with prostate
cancer from the National Cancer Institute, National Institutes of Health was used for this experi-
ment. We utilized 85 cases with 2224 lesions to train a pre-trained VGG-16 classifier and vali-
dated our results on 29 cases with 655 lesions. We used lesion annotations in terms of their labels
of either being benign or malignant to define the classification task. Through 80 epochs of train-
ing, we used ADAM optimizer to minimize our binary cross-entropy loss function, initiated from
the base learning rate of 3e − 3 with 0.2 iterative drop, in learning rate in every 5 epochs.

Fig. 8 An example of whole prostate Segmentation (a) without pre-processing (mean absolute
error of 28.4%) and (b) with pre-processing (mean absolute error of 4.3%).
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5.2 PI-RADS classification of T2-weighted MR images from ProstateX
dataset

We used whole prostate segmentation of 347 patients from publicly available Prostate X data-
set including the T2-weighted MR scans along with internal annotation for lesions using
5-scale PI-RADS categorizations. We extracted 2D slices (N ¼ 2866) from T2-weighted
MR images where each 2D slice is assigned a class 0 (N ¼ 1394) or 1 (N ¼ 1472). In our
dataset, class 0 implies that lesions of at most PI-RADS 2 are contained within the 2D slice
while 2D slices with class 1 carry higher risk lesions with at least PI-RADS 3. The data were
split into a training cohort of 300 patients and 47 patients for evaluation. We defined our loss
function based on categorical cross-entropy, minimized it during 60 epochs of training, using
ADAM optimizer with a base learning rate of 1e − 3 along with 0.2 iterative drop in every
7 epochs.

5.3 Visceral fat segmentation in CT-scans of abdominal area

We used CT scans (from the abdomen region) of 131 patients obtained from multiple centers
(Mayo clinic) with their respective visceral fat labels for segmentation. We randomly split
these patients into two groups of train (N ¼ 115) and validation (N ¼ 16) to respectively train
and validate our U Net-based segmentation network. To facilitate the training for the compli-
cated task of visceral fat segmentation, we extended the limited number of the annotated CT
slices, using augmentation methods such as image translation (width and height), reflection
(horizontal flip), and zooming to increase (by 4 folds) our set of training images. Defining a
pixel-wise binary cross-entropy as our loss function, we used SGD to increase the general-
izability of our model with the base learning rate of 5e − 4 and iterative decrease in learning
rate. Through 100 epochs for training, we maintained 8 multiples of the learning rate in every
12 epochs.

5.4 Whole prostate segmentation on T2-weighted MR images from
ProstateX dataset

We used 99 cases of publicly available T2-weighted MR scans from Radboud University
Medical Center in Nijmegen, Netherlands, with internal annotation for whole prostate segmen-
tation. We extracted 2D slices (N ¼ 2866) from T2-weighted MR images. The data were split
into a training cohort of 85 patients for training and 14 patients for evaluation. We forced training
by 100 epochs for minimization of pixel-wise binary cross-entropy using SGD optimizer with
base learning rate of 5e − 4 and 0.2 iterative drop every 15 epochs.
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