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Abstract: Porous shape memory alloys (SMAs), including NiTi and Ni-free Ti-based alloys,
are unusual materials for hard-tissue replacements because of their unique superelasticity (SE),
good biocompatibility, and low elastic modulus. However, the Ni ion releasing for porous NiTi
SMAs in physiological conditions and relatively low SE for porous Ni-free SMAs have delayed their
clinic applications as implantable materials. The present article reviews recent research progresses
on porous NiTi and Ni-free SMAs for hard-tissue replacements, focusing on two specific topics:
(i) synthesis of porous SMAs with optimal porous structure, microstructure, mechanical, and
biological properties; and, (ii) surface modifications that are designed to create bio-inert or bio-active
surfaces with low Ni releasing and high biocompatibility for porous NiTi SMAs. With the advances
of preparation technique, the porous SMAs can be tailored to satisfied porous structure with porosity
ranging from 30% to 85% and different pore sizes. In addition, they can exhibit an elastic modulus of
0.4–15 GPa and SE of more than 2.5%, as well as good cell and tissue biocompatibility. As a result,
porous SMAs had already been used in maxillofacial repairing, teeth root replacement, and cervical
and lumbar vertebral implantation. Based on current research progresses, possible future directions
are discussed for “property-pore structure” relationship and surface modification investigations,
which could lead to optimized porous biomedical SMAs. We believe that porous SMAs with optimal
porous structure and a bioactive surface layer are the most competitive candidate for short-term and
long-term hard-tissue replacement materials.

Keywords: shape memory alloy; NiTi; β type Ni-free Ti alloy; porous material; surface
modification; biocompatibility

1. Introduction

The average life-span of modern person has been greatly elongated by the advanced medical
technology and living condition. Thus, the population of aged people (60 years old or above) has
increased tremendously in recent decades all around the world, especially in the United States (US),
Europe, Japan, and China. It had been reported that the population of older persons is 962 million,
which is 13% of the world population in 2017, and it is estimated to reach 2.1 billion in 2050 [1].
It is well known that 90% of the aged population, even including those people of age 40–59, easily
suffers from all kinds of degenerative diseases, such as osteoporosis or arthritis [2]. Until now, the
best solution of curing these degenerative diseases is surgical restoration or replacement while using
artificial biomaterials, such as replacement implants in hips, knees, spine, shoulders, and dental
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structures [3,4]. Thus, there is a tremendous demand in those artificial biomaterials, especially, the
long-term implantable biomaterials due to longer life expectancy or the surgeries in young men.

Among those current hard-tissue implantable biomaterials, commercially pure titanium or
titanium alloys are considered as the best choice because of their good load-bearing capability, high
specific strength, excellent corrosion resistance, and biocompatibility [5]. Moreover, a kind of novel Ti
alloys (Shape Memory Alloys, SMAs) with unique shape memory effect (SME) or superelasticity (SE),
including NiTi and β type Ni-free Ti-based SMAs, have been attracted more attentions in recent half
a century. The unique SE of SMAs near ambient temperature is similar to the mechanical behaviors
of some hard-tissues, such as human bones or tendons, as shown in Figure 1 [6]. In addition to SE
and SME, SMAs exhibit excellent mechanical properties, including high strength and fatigue life, as
well as a relatively low elastic modulus [5]. All of these make SMAs become a kind of superior alloys
for various hard-tissue implantations, including dental devices, joint replacements, spine fracture
fixations, etc. [6,7].
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The SME was first found in an Au-Cd alloy in 1951 by Chang and Read [8], and then, in Cu-Zn,
In-Tl, and Cu-Al-Ni alloys. However, it was until the discovery of SME in equiatomic Ni-Ti alloys
by Buehler et al. in 1963 [9], SMAs have attracted great attentions as smart materials and applied
in actuators, sensors, etc. Since the early 1980s, NiTi SMAs have been introduced to medicine and
dentistry due to their excellent SME, SE, mechanical stability, corrosion resistance, and biocompatibility.
They have been widely recognized and accepted for medical applications in dentistry and orthopaedics.
Moreover, the excellent malleability and ductility of NiTi SMAs allow for them to be manufactured
in the forms of wires, tubes, or sheets, and providing a wide spectrum of vascular interventions
applications. Thus, biomedical applications have already become one of the important targets
nowadays [6].

However, the high modulus of bulk NiTi SMAs when comparing with human bones can lead to
some problems, such as local osteoporosis, in the orthopaedic implantation application, because
the load can not be transferred from the implants to the adjacent bone tissues, it called “stress
shielding” phenomenon which leads to bone resorption around the implants. Thus, porous NiTi
SMAs become the research focus of hard-tissue implantable or replacement materials because of their
low modulus and additional benefits, such as lowering and matching elastic modulus with various
hard-tissues, promoting cells adhesion and in-growth, and allowing for body fluid exchanging [10].
Many works [11–15] have been dedicated to the fabrication, mechanical, and biological performances
of porous SMAs. For example, porous NiTi SMAs have been fabricated successfully by various
methods already, such as vacuum sintering, self-propagating high temperature synthesis (SHS), and
capsule-free hot isostatic pressing (CF-HIP). Porous NiTi SMAs with 30% porosity can reach as high as
4% SE at room temperature (RT), moreover, they exhibit better biocompatibility than the dense forms.
The porous NiTi SMAs have shown great advantages in biomedical applications [10,14].
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In the present article, we review recent progress on the mechanical and biological properties of
porous SMAs in relation to their porous structures and microstructures in three sections. It covers
(1) the brief description on the fundamentals of SME and SE; (2) the fabrication methods and pore
structure controlling, mechanical and biological performances of porous NiTi SMAs in relation to
their porous structure and microstructure, surface modification, and biomedical applications; and,
(3) the mechanical and biological properties of dense and porous Ni-free Ti-based SMAs. Finally, this
review summarizes past works and gives a future prospect. It should be mentioned that several review
articles have been published with an emphasis on different aspects of the porous NiTi or Ti-based
SMAs [10,16,17]. The reader can refer to those reviews for more information.

2. Fundamentals of Shape Memory Alloys (SMAs)

SMAs are one kind of alloys, which can exhibit SME originated from the thermoelastic martensitic
transformation (MT), which is an important displacive solid phase transformation and it has been
widely studied in the steels, non-ferrous alloys, and ceramics for its great influence on their
properties [18]. Several behaviors that are related to SME may be presented in the SMAs, which
undergo different thermo-mechanical treatments or external conditions, including one-way SME,
two-way SME, all-round SME, rubber-like behavior, and magnetic SME [17]. One-way that SME is the
most frequently utilized behavior in various applications, especially in medical applications. It refers
to the phenomenon that an alloy is deformed in its cold state (i.e., in martensite phase, below Ms
temperature, as shown in Figure 2) and holds its shape, and then it would recover its original shape
upon heating to above a transition temperature of Af temperature, as shown in Figure 2 (now in the
high-temperature state, called parent phase). That means the SMA can remember its original shape.
The MT temperature can be directly determined through many techniques, including differential
scanning calorimetry (DSC) and electrical resistivity measurement as a function of temperature.
Figure 2 presents the determination of MT temperature in a NiTi SMA via a DSC curve through the
typically tangential method [19].
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Figure 2. Schematic determination of MT temperature in a NiTi SMA via a differential scanning
calorimetry (DSC) plot [19].

The SME can be simply understood from the crystallographic reversibility of MT. As well known,
MT is a first order phase transformation, a certain strain arises around the martensite when it is formed
from parent phase due to the lattice volume difference between martensite and parent phase. When
the strain is too big to be released elastically, high density of defects would produce in both martensite
and parent phase, and make the interface unmovable. However, the strain is small in thermoelastic MT
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and it can be accommodated by forming a self-accommodated martensite. That is, the parent phase
with high symmetry transforms to several “martensite variants” and each variant has a unique but
crystallographically equivalent orientation relationship to the parent phase [17,18]. The number of
variants is only determined by the symmetry of the parent phase and the martensite. In this situation,
the strain from one variant counteracts by another and the martensite has minimum strain energy, and
there is no distinct macroscopic shape change after phase transformation.

When an external stress applies to an SMA with self-accommodated martensite, the variant
with strain direction most favorable to that of the applied stress would swallow up other variants.
The macroscopic shape change would appear because the strain that is produced by those variants with
different orientations does not counteract each other but accumulate. This is called the reorientation
of martensite variants [17]. The shape change would not disappear even upon unloading. However,
when the reorientated martensite variant transforms back to the parent phase by heating, it should
follow the lattice correspondence relationship of the parent phase transform into the variant. Thus,
the shape change would be recovered after the variant transforms back to the original parent phase.
Figure 3 illustrates schematically the two-dimensional (2D) crystallographic mechanism of SME. SE, or
called as pseudoelasticity (PE), is another unique behavior of SMAs, which is directly related to stress
induced martensitic transformation (SIMT) in SMAs, and the mechanism of SE is similar to the SME. It
refers to the ability of SMAs to recover a large nonlinear deformation (even reach as high as ~18% in
some SMAs [20]) immediately upon unloading at a constant temperature, and one typical stress-strain
curve of SE is shown in Figure 4. In fact, the external stress alters the thermodynamic conditions of MT,
according to the shear-like mechanism and thermodynamic principle [17]. Both SME and SE are greatly
affected by many factors, including inherent microstructural features and the external conditions, such
as applied stress and temperature [21]. In general, SME occurs by deforming below As and following
heating above Af, while SE occurs above Af depending upon the applied stress.
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3. Requirements for Hard-Tissue Replacements

The perfect method to repair/regenerate hard tissues is to use autografts, which the tissue that is
taken from one site and grafted to another site on the same person. However, a large number of artificial
biomaterials have to be adopted in clinic therapy surgeries due to the limitations on the availability
of natural hard-tissue. The ideal biomaterials should possess the same properties/functionality and
structure with human hard-tissue as far as possible. Therefore, we briefly describe the structure and
properties of these human hard tissues.

The hard-tissue in the human body mainly refers to two categories, bone and tooth. The human
bone mainly consists of outer cortical bone (also called compact bone, relatively dense) and inner
cancellous bone (also called trabecular bone, porous or cellular), except some vascular tissues [22,23],
as shown in Figure 5a. Both two types of bone tissues are in form of hydroxyapatite (HA) when
removing the organic matter, and differ only in porosity and density. The porosity of cortical bone
is 5–30% [23], while the porosity ranges from 30% to 90% in cancellous bone [22]. Although the
distinction between the two bone tissues is fairly difficult for the porosity less than 50%, the change
from the cortical to the cancellous bone is usually clear and takes place over a small distance, i.e.,
gradient porosity from outside to inside. The physical and mechanical properties of these two kinds of
bones from the reported results [22–32] are listed in Table 1. The human teeth are composed of external
enamel (relatively compact) and internal dentin (porous or tubular layer), in which the enamel has
a high degree of mineralization in form of HA, and dentin composed of type-I collagen, fluid, and
nanocrystalline HA, as shown in Figure 5b. The physical and mechanical properties of human teeth
are also listed in Table 1 [22–35].

Although the concrete requirements for hard-tissue replacements depend on the specific
applications in different parts or positions, the following general requirements should be considered
for hard-tissue replacement materials:

(1) Satisfactory biocompatibility and corrosion resistance

First, the materials that are used as implantable parts should be bio-inert and highly non-toxic at
least, which must not cause any inflammatory, allergic reaction, blood incompatibility, genotoxicity or
carcinogenicity to the human body [2,5]. Second, the materials wouldn’t result in any undesirable local
or global responses. Third, they should possess high anti-corrosion and anti-abrasive performance, that
means the metal ions released by chemical/stress corrosion or abrasion into the human body is low
and not harmful for short- or long-term service. Finally, the materials should show good bioactivity to
ensure sufficient bonding at the material/bone interface.
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tooth [34] (magnification image is SEM of actual tissue in a specific region).

(2) Suitable mechanical properties

As shown in Table 1, the mechanical parameters of hard tissues are diversified in different
positions of the human body. Thus, the materials are expected to possess properties to cover those
diversities. First, the strength (compressive, tension, flexure, etc.), fatigue, and wear resistance should
be considered. For example, the compressive strength of the bone replacement materials should be
higher than 224 MPa [28]. Moreover, the response of the implantable parts to the repeated cyclic
loads or strains is mainly determined by the fatigue resistance of the material, which determines the
long-term success of the implants that are subject to cyclic loading. In addition, poor wear resistance
may also result in the implants loosening and wear debris, which causes the adverse allergic reaction
and a reduction in the life-span of the implants. Second, the implantable materials are expected to
have relatively low modulus closed to the hard-tissue (0.76–20 GPa) [30,31], because high modulus
of implants may cause osteoporosis in the bone around the implants due to “stress shield effect”
according to the Wolff’s law, which indicates that the loading on a bone decreases, the bone will adapt
and become weaker. Third, the mechanical behavior of the hard-tissue should match the implants
to avoid fracture. Some human hard tissues also show the behavior analogy to SE, as shown in
Figure 1, and the recoverable strain can reach as high as 2.5% [32]. Thus, the materials for hard-tissue
replacement should possess similar or higher recoverable strain (>2.5%) at body temperature [32].

(3) Microstructural functionality similar to hard-tissue

The materials are expected to have a similar microstructure with bones or teeth, as shown in
Figure 5. They also should possess functionality that is similar to the hard-tissue, such as enough space
to allow for cell attachment, spreading, and proliferation, or sufficient nutrient transport towards the
cells and removal of waste products. Generally, for bone in-growth, the suitable porosity and pore size
ranges from 30% to 90% and 100–500 µm, respectively [36,37]. In addition, homogeneous or gradient
porous structure may be required in some body parts, as shown in Figure 5.
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Table 1. Physical and mechanical properties of human bone and teeth [22–35].

Hard-Tissue Human Bone Human Teeth

Properties Cortical Bone Cancellous Bones Enamel Dentin

density 1.99 g/cm3 [28] 0.05–1 g/cm3 [29] 3 g/cm3 2–2.1 g/cm3

porosity 5–30% [22,24–27] 30–90% [22,29] 7% 59–70%

Pore size 10–500 µm [22–27] 50–300 µm [24–27] 1.7–2.5 µm [33]

Tension Strength 79–151 MPa(longitudinal) [28]
51–56 MPa (transverse) 34–61 MPa [34]

Compression strength 131–224 MPa(longitudinal)
106–133 MPa(transverse) [28] 2–5 MPa [31]

Elastic modulus 17–20 GPa(longitudinal) [30,31]
6–13 GPa(transverse) 0.76–4 GPa [31] 3–25 GPa [35]

Recoverable strain 2–2.5% [32]

4. Porous NiTi Shape Memory Alloys

4.1. Fabrication and Pore Structure of Porous NiTi SMAs

Although the dense NiTi SMAs are significantly more expensive than the stainless steels and others
bio-metals, their unique properties, including SME and SE, non-magnetic and good biocompatibility,
make them realize widely biomedical applications, since approved by U.S. FDA in 1989 [38]. However,
secondary osteoporosis would cause around the implants due to the modulus mismatching between
the dense NiTi SMAs and the hard-tissue. Thus, the porous NiTi SMAs have a great advantage, because
their modulus can be adjusted by controlling the pore structure, and they were firstly developed at the
end of the 1980s in Russia. We will focus on the biomedical porous SMAs in detail in this section.

In general, porous materials should also meet the following requirements for implanting
application. It includes: (1) providing a physically and chemically bioactive surface to promote
the cell-material interaction; (2) providing a mechanical function stimulation cell differentiation and
biosynthesis, as well as ensuring a temporary or long-term support requirement; and, (3) supporting
the development of a three-dimensional tissue by providing a pore structure that is suitable for
cell adhesion, proliferation, and differentiation [39]. Moreover, pore structures decide mostly the
mechanical properties and biological performances, and thus, play a key role for implantation [40,41].
The pores can be classified into closed and open ones. The closed pores are surrounded by pore walls
and isolated from each other, while the open pores are interconnected to each other through various
channels. The open porosity ratio is the ratio of open pores to closed ones. Moreover, the porous
structure (dense SMAs with porous coating will not be discussed here) can also be divided into the
homogeneous porous structure and gradient porous structure. Generally speaking, porous metals
with closed pores exhibit mechanical properties that are better than that with open pores at the same
porosity [42]. However, the open pores are an often desirable structure for porous scaffolds in bone
replacement materials to allow for cell attachment or body fluid exchange [43,44]. Thus, to control
porous structure is one basic issue for biomedical porous NiTi SMAs [42,45].

4.1.1. Homogeneous Porous Structure

The porous NiTi SMAs are hard to fabricate by liquid phase processing due to its high melting
point (1310 ◦C). Thus, powder metallurgy (PM) techniques are generally used from either elements
powder or pre-alloyed powder [46–50], including conventional sintering (CS) [51,52], hot isostatic
pressing (HIP) [53] or CF-HIP [12,54,55], or sintering at a low gas pressure [56], SHS [57,58], as well as
spark plasma sintering (SPS) [59] and microwave sintering [60]. Recently, the additive manufacturing
(AM), like selective laser melting (SLM) or electron beam melting (EBM), are preferentially used to
fabricate porous NiTi SMAs [61–64]. Because the AM technique has advantages of building porous
parts with very complex geometries, it is a very cost-effective, energy efficient, and environmentally
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friendly manufacturing process [61]. Another special fabricating method is to use a reactive vapor
to infiltrate Ni foams [65]. The reader can also refer to the literatures for more description about
fabrication method for porous NiTi SMAs [10,48,61]. Table 2 lists the detailed pore characteristics for
porous NiTi alloys that are fabricated by various techniques.

In the CS process, the pressed green samples of Ni-Ti powder mixture is sintered at about
1000 ~ 1050 ◦C under a vacuum condition or the protection of Ar gas. The inter-diffusion of Ni and
Ti atom occurs and forms NiTi intermetallic phase during sintering. However, a small amount of
undesirable phase, such as Ni3Ti or Ti2Ni, are usually formed in the sintered samples due to their lower
formation enthalpy, the incomplete reaction between Ni and Ti powders, or eutectoid decomposition
of NiTi phase in sintering. These phases are also hard to remove, even by homogenization treatment at
high temperature for a long time. In order to reduce those phases, longer sintering time and higher
temperature are required, which results in unfavorable severe densification. Thus, the porosity is
relatively low (20–50%) and the pore size is small (10–100 µm) for the porous NiTi SMAs fabricated by
CS [50,65], as shown in Figure 6a.

Table 2. Pore characteristics of porous NiTi SMAs by various techniques [51–59,61,63,64].

Fabrication
Method Porosity/% Pore Size/µm Pore Shape Pore

Connectivity
Pore

Distribution

CS 20–50% 10–100 irregular good homogeneous

HIP/CF-HIP 10–80% 100–3000 rounded bad homogeneous
or gradient

SHS 30–70% 300–500 directional very good homogeneous

Space holder
assisted
sintering

10–80% 10–3000 Depend on
space holder

Depend on the
space holder

homogeneous
or gradient

AM 0–90% >150 Depend on
designing very good homogeneous

or gradient

For CF-HIP, the green samples are sintered at a pressure much higher than that for CS, usually as
high as 150 MPa, which favors the diffusion of Ni and Ti atoms, and the formation of sintering neck,
as well as pore structure controlling [54]. Thus, lower sintering temperature and shorter sintering
time are usually required in comparison with CS, and wider porosity range (from 10% to 78%) and
near-spherical pores (Figure 6d) can be achieved. Furthermore, CF-HIP has the advantage to obtain
homogeneous microstructure easily with fewer defects, like cracks, hence higher mechanical properties
can be achieved in porous NiTi SMAs [12,66], and we will discuss this aspect in detail later.

Different from CS and CF-HIP, the SHS method forms NiTi phases continuously in entire pressed
powder sample by utilizing the exothermic reaction of Ni and Ti from local external energy [58]. Porous
NiTi SMAs can be fabricated from the compacted green samples by SHS in a few seconds, and they
exhibit relatively high porosity (30–70%), high pore connectivity, and directional pores, which are
formed by the gas flowing in Figure 6c. The most disadvantages of SHS are that the processing and
the pore characters are hard to be controlled after launching the reaction [67].

In order to control the porosity and the pore characters, the space holders (or pore-forming agent)
are added during mixing Ni and Ti powders (or pre-alloy NiTi powders) based on CS, HIP, and
SHS, and the space-holders would be eliminated during sintering by degassing or after sintering
by selective corrosion [68–70]. Various space-holders, such as TiH2 [68,71], NH4HCO3 [72–74],
carbamide/urea [75,76], NaCl [77], NaF [78,79], Mg [80,81], and even steel wire [82], have been used.
Thus, the pore characters with pre-defined size, shape [83], distribution (homogeneous or gradient),
and even inner surface can be obtained by controlling particle shape, size, or packing ratio of space
holder. It should be mentioned that the porous NiTi SMAs prepared by PM methods with or without a
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pore-forming agent, usually have high oxygen content with increasing the porosity. It would affect the
phase transformation and mechanical properties to some extent.
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Figure 6. Homogeneous pore structure in porous NiTi SMAs by various methods: (a) CS [12];
(b) SHS [57]; (c) thermal explosion mode in high temperature synthesis (SHS) [12]; (d) capsule-free hot
isostatic pressing (CF-HIP) [12]; (e) SLM (the inset image is the designed part corresponding to the
fabricated one) [63]; and, (f) SLM (the inset image is a macrograph) [64].

For AM, the porous NiTi parts can be formed by adding successive layers of the pre-alloyed
NiTi powders, rather than removing the materials. Each point or layer is melted or sintered by the
laser beam (or electron beam). Any complex or exact porous architectures can be obtained by a
three-dimensional computer aided design (3D CAD) method, as shown in Figure 6e, the porous NiTi
SMAs is exactly similar to the CAD designed one [63]. Thus, very wide porosity range (0–90%) and
any pore shapes (Figure 6f [64]), even complete open porosity can be achieved just by designing [64].

4.1.2. Gradient Porous Structure

The porous NiTi SMAs fabricated by the above method has a homogeneous structure in general.
Anyway, inhomogeneous pore structure can also be obtained by CS with space-holder [74] and CF-HIP.
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In particular, CF-HIP can conveniently prepare designed porous structure without space-holder [84],
such as “sandwich-like” structure and gradient structure. As shown in Figure 7a, three layers structure
created in the radial direction, i.e., a porous layer at the outmost, a dense layer in the middle, and
another porous layer in the central region, which is similar to that of the femur. With this structure,
the outer porous layer is favorable for bone cell adhesion, the intermediate dense layer makes the
implants withstand sufficient loads. The sandwich-like pore structure is caused by the combination of
high mold pressure and gas pressure during sintering [84]. Figure 7b shows another gradient porous
structure by CF-HIP, with porosity as high as 78% and open pore ratio of only about 8%, which is
similar to that of one femur bone. This novel pore structure is attributed to the thermal explosion
reaction and is formed by the expansion outward of air bubbles in the melting NiTi alloy [84].
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low pressing sintering.

The particle size of powder greatly affects porosity and pore size. Porous NiTi SMAs sintered
from a designed and mold pressed powder mixture of different particle sizes would exhibit designed
porosity and pore size, as schematically shown in Figure 8, Ti-1, Ti-2, Ni-1, or Ni-2 represents Ti and
Ni powders of different particle sizes, respectively. Thus, various well controlled gradient porous
structures in radial or axial direction can be fabricated in this way. Figure 7c shows an example of
gradient structure in radial direction obtained by using the filling way given in Figure 8a, i.e., the
outer layer with low porosity (~27%) and small pore size (20–30 µm), while the inner layer with high
porosity (~45%) and large pore size (200–300 µm). There is a distinct interface between the inner and
outer layer, because of a sharp change in porosity and pore size. By modifying the filling way, as given
in Figure 8b, continuous gradient porosity, changing mildly from high (~31%) to low (~21%) along the
axial direction, can be obtained and is shown in Figure 7d. Zhang et al. [74] also prepared gradient
structure, by CS using space-holder NH4HCO3 to tune the structure.
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Thus, the pore structures resembling the hard-tissue structure, such as a vertebra or femur, can be
obtained for biomedical applications.Materials 2018, 11, x FOR PEER REVIEW  11 of 53 
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Figure 8. Schematic illustration in the filling of the powder mixture for fabricating two gradient porosity
NiTi SMAs (Ti-1 or Ti-2 represents one Ti powder with a certain particle size, the same meaning for the
Ni-1 or Ni-2).

4.2. Microstructure and Properties of Porous NiTi SMAs

The mechanical and biological performances of porous NiTi SMAs are determined not only by
their pore architecture but also by their fine microstructure. For example, the undesirable Ni-rich
phases (Ni3Ti) or inclusion oxide phases (Ti4Ni2Ox) would cause higher Ni ion leaching or deterioration
of mechanical and SE [85]. Contrary to dense NiTi SMAs, a small amount undesirable phase, such as
Ti2Ni or Ni3Ti can often be observed even at a high sintering temperature up to 1100 ◦C in porous NiTi
SMAs due to the reasons described in the previous section [85], as shown in Figure 9a,b. By increasing
the gas pressure of sintering (i.e., CF-HIP), Ni-rich Ni3Ti phases can be eliminated, while Ti2Ni phases
still present, as shown in Figure 9c. Until very recently, Chen et al. [86] clarified this problem by
investigating sintering behaviors from elemental powder mixtures of Ni/Ti and Ni/TiH2 while using
in-situ neutron diffraction and in-situ SEM. As illustrated in Figure 10, the Ti2Ni or Ni3Ti phase would
form through eutectoid decomposition of B2 phase at 620 ◦C during furnace cooling when the sintering
temperature is over 1000 ◦C, while they form due to the incomplete reaction between Ni and Ti during
sintering below 1000 ◦C. In order to obtain a single NiTi phase, longer heat treatment time at 1000 ◦C
or higher temperature had to be adopted [58,86], as shown in Figure 9d. Using pre-alloy NiTi powders
is also a way to overcome this problem [87], however the cost is inevitably higher.

Materials 2018, 11, x FOR PEER REVIEW  11 of 53 

 

 
Figure 8. Schematic illustration in the filling of the powder mixture for fabricating two gradient 
porosity NiTi SMAs (Ti-1 or Ti-2 represents one Ti powder with a certain particle size, the same 
meaning for the Ni-1 or Ni-2). 

4.2. Microstructure and Properties of Porous NiTi SMAs 

The mechanical and biological performances of porous NiTi SMAs are determined not only by 
their pore architecture but also by their fine microstructure. For example, the undesirable Ni-rich 
phases (Ni3Ti) or inclusion oxide phases (Ti4Ni2Ox) would cause higher Ni ion leaching or 
deterioration of mechanical and SE [85]. Contrary to dense NiTi SMAs, a small amount undesirable 
phase, such as Ti2Ni or Ni3Ti can often be observed even at a high sintering temperature up to 1100 
°C in porous NiTi SMAs due to the reasons described in the previous section [85], as shown in Figure 
9a,b. By increasing the gas pressure of sintering (i.e., CF-HIP), Ni-rich Ni3Ti phases can be eliminated, 
while Ti2Ni phases still present, as shown in Figure 9c. Until very recently, Chen et al. [86] clarified 
this problem by investigating sintering behaviors from elemental powder mixtures of Ni/Ti and 
Ni/TiH2 while using in-situ neutron diffraction and in-situ SEM. As illustrated in Figure 10, the Ti2Ni 
or Ni3Ti phase would form through eutectoid decomposition of B2 phase at 620 °C during furnace 
cooling when the sintering temperature is over 1000 °C, while they form due to the incomplete 
reaction between Ni and Ti during sintering below 1000 °C. In order to obtain a single NiTi phase, 
longer heat treatment time at 1000 °C or higher temperature had to be adopted [58,86], as shown in 
Figure 9d. Using pre-alloy NiTi powders is also a way to overcome this problem [87], however the 
cost is inevitably higher. 

 
Figure 9. Microstructure of porous NiTi SMAs by: (a) conventional sintering (CS) with Ni/Ti powders 
at 1100 °C for 2 h; (b) CS with Ni/TiH2 powders at 1100 °C for 2 h [86]; (c) CF-HIP, 1050 °C for 3 h [54]; 
and, (d) SHS and post-reaction heat treatment at 1150 °C for 1 h [58]. 

Figure 9. Microstructure of porous NiTi SMAs by: (a) conventional sintering (CS) with Ni/Ti powders
at 1100 ◦C for 2 h; (b) CS with Ni/TiH2 powders at 1100 ◦C for 2 h [86]; (c) CF-HIP, 1050 ◦C for 3 h [54];
and, (d) SHS and post-reaction heat treatment at 1150 ◦C for 1 h [58].
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Figure 10. Schematic model of microstructural evolution during reactive sintering and furnace cooling:
(a–d) Ni/Ti; (e–h) Ni/TiH2. Region <942 ◦C is the solid-state reaction process. Dehydrogenation and
separation of newly born Ti powders are shown in (f); Region >942 ◦C is the LPS; Region cooling is
final structure below 620 ◦C after furnace cooling. White lines and black dots indicate the needle-like
Ni3Ti and spherical NiTi2 eutectoid precipitates formed during cooling. [86].

4.2.1. Effect of Microstructure and Pores on Martensitic Transformation (MT)

As revealed by many studies, the mechanical and phase transformation behavior of the
porous SMAs are greatly affected by their microstructure and porosity, in particular at higher
porosity [54,66,76,87]. The influences are mainly due to the composition inhomogeneity and the
interface effect.

Figure 11 shows the DSC heating and cooling curves of the porous NiTi SMAs that were prepared
by CS, SHS, and CF-HIP [66], respectively. It can be seen that the three samples show considerable
different transformation behaviors during heating, only one endothermic peak appears in the SHS
sample and two distinct endothermic peaks for the CS sample, while two overlapped peaks for the
CF-HIP sample. However, it shows two exothermic peaks for all three samples during cooling, despite
the difference in the peak position. The above difference in MT behaviors is attributed to the difference
in micro-region composition homogeneity of three samples. The porous NiTi SMAs fabricated by SHS
show the most homogeneous micro-region composition among the three samples due to the high
combustion temperature of ~1300 ◦C. While the micro-region composition inhomogeneity is the most
noticeable for the CS sample. The homogeneity of the composition in the sample by CF-HIP is between
that by CS and SHS.

Porous NiTi SMA has a lot of internal pore surfaces, which can greatly affect the MT behaviors
because the interfaces, including grain boundaries or surfaces, can promote the nucleation of a new
phase. It had been reported that the MT temperatures would change by increasing the porosity
for Ni-rich Ni50.8Ti49.2 SMAs, as shown in Figure 12a [54]. As can be seen, Af and Rp of R-phase
transformation decrease slightly with increasing porosity, while Mp and Ms of B19’ MT decrease
obviously when the porosity is lower than 40%, and gradually turn steady with further increasing
porosity. This is because the quantity of pore walls increases with increasing porosity, and the pore
walls promote the nucleation and growth of Ni4Ti3 particles. Moreover, internal stress would produce
around those Ni4Ti3 precipitations that hinder the formation of B19’ martensite, and thus, reduce the
transformation temperature (Ms or Mp) of B19’. In addition, the internal stress around the Ni4Ti3
precipitations becomes unobvious after growing up to enough size. However, for the Ti-rich porous
NiTi alloys, the results are different from that for the Ni-rich ones, as given in Figure 12b, the Ms is
almost independent of the porosity ranging from 26% to 89% and close to those of dense samples [76].
It should be attributed to no Ni4Ti3 precipitation formed in the Ti-rich alloys. Thus, the influence of
internal stress due to Ni4Ti3 precipitation seems to be critical.
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4.2.2. Effect of Pores on Mechanical Properties and Superelasticity (SE)

It has been reported by many studies [66,86,88,89] that the pores play a very important role in
influencing the mechanical and superelastic properties of porous NiTi SMAs, including elastic modulus,
critical SIM stress, compression strength, fatigue, and damping behaviors, etc. The reasons are mainly
attributed to two factors: (1) the coupling effect between pores and NiTi matrix by stress concentration
around pores; and, (2) the reduced valid loading area due to the existing pores. Generally, elastic
modulus, compressive stress, and superelastic strain would reduce greatly with increasing porosity.

Figure 13 shows the compressive stress-strain curves of CF-HIP porous NiTi SMAs with different
porosities in comparison with dense NiTi [88]. The dense NiTi SMAs shows typical compressive
stress-strain curves, an obvious SIM plateau of ~700 MPa, and as high as 8% superelastic strain at RT.
However, the compressive stress-strain behaviors of porous NiTi SMAs are much different from that
of the dense one, i.e., no apparent SIM plateau can be observed in the porous samples with porosity
more than 28%, and it shows almost linear elasticity of more than about 4% when the porosity is less
than 31%. The result is also confirmed in porous NiTi SMAs by CS, as shown in Figure 14 [86], the
sample with 15% porosity show an obvious SIM slope, as indicated by the arrows a and b in Figure 14a,
while it is a linear stress-strain behavior for the sample with 28% porosity. The reason can be mainly
attributed to the stress concentration around the pores with various sizes as demonstrated by in situ
OM observation [89]. The local stress in some micro-regions around the small pores or the tips of pores
can possibly reach the critical stress for SIM, even if the applied nominal stress is small. Moreover,
the stress concentration factor (the ratio of the maximum stress to the average stress) is related to
pore shape [90]. Therefore, SIM occurs continuously in different micro-regions around the pores of
different sizes with increasing the nominal stress. Thus, no distinct SIM plateau appears. Recently,
Shariat et al. [91] confirmed that SE behavior can be affected by the shape and quantity of pore in NiTi
SMAs, and it exhibits the SIM slope over entire forward and reverse MT when 33% of the gauge length
is covered by the circular hole.
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Furthermore, it is apparent that the slope of the curves (elastic modulus) is gradually reduced
with increasing the porosity, the compressive strength and the superelastic strain also decreasing.
The porous NiTi SMAs with 45% porosity exhibit only 2% superelastic strain and low compressive
strength of 100 MPa, as given in Figure 13a. Similar results had been reported in porous NiTi SMAs
that were prepared by other methods [81], for example, porous NiTi SMAs by SHS with about 60%
porosity behave like brittle materials and show very small superelasticity. However, porous NiTi SMAs
with designed radial gradient pore structure (from 20% porosity in outside to 61% porosity inside) can
exhibit superior SE (>4%) and strength (>230 MPa) [74], as shown in Figure 13b. Thus, it is suggested
that the concept of gradient porosity will help to develop porous NiTi SMAs with the required pore
features. The high porosity and large pore size part would allow and promote tissue cell in-growth,
while the denser part would provide crucial SE and sufficient strength.
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The porosity selection is highly dependent on different applications, for example, low porosity
for load-bearing applications, and a high porosity up to 80–90% only for tissue in-growth. Thus, it is
vital to know precisely the mechanical properties and superelastic behaviors (including maximum
superelastic strain at RT) for various porosities. For metal foams, it is known that the relationship
between the mechanical parameter (P) and porosity (p) can be well predicted by Gibson and Ashby
mode, as below, which is based on single phase alloys [48]:

P/Ps = C(1 − p)n (1)

where P includes the properties of porous metals, such as elastic modulus (E) and strength (σ), the
subscript s denotes the solid or dense materials, and (1 − p) equals to relative density (ρ/ρs).

However, for porous SMAs, the numerical modeling of mechanical response is still very
difficult due to phase transformation during loading and unloading, irregular pore shape and
distribution, and complex micro-region internal stress situation around pores. Some researchers
attempted to simulate the superelastic behavior of homogeneous or gradient porous NiTi [92] by
specific numerical approaches, such as the micro-mechanical averaging technique [93–96], Eshelby’s
effective medium model with Mori–Tanaka mean-field theory [96–98], or the Unit Cell Finite Element
Method [90,92,99–103]. Most of the simulated relation between elastic modulus (or strength) and
porosity agree well with their experimental data in small porosity range. However, almost all of the
modeling except few Refs. [96] do not take account for local phase transformation and even plastic
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deformation around pores. Thus, most of the simulations result obviously do not accord with the
observed experimental results of SE mentioned above in Figures 13 and 14.

Panico et al. [90] successfully simulated the complex interaction between porosity, local phase
transformation, and macroscale response by adopting the Finite Element Method and taking the
development of permanent inelasticity in the matrix into consideration. As can be seen in Figure 15a,b,
this model can predict well the trend of elastic modulus and critical SIM stress with porosity, and
the results almost coincide with Gibson and Ashby model when the porosity is lower than 30%.
Moreover, it can also simulate the difference of superelastic response of porous SMA with various
porosities as given in Figure 15c. However, it predicted that the superelastic strain of porous SMAs at
high porosity is higher than that at low porosity, which does not agree with the experiment results.
Moreover, all of the results cannot interpret the difference of superelastic behaviors between the
dense SMA (obvious SIM plateau) and the porous ones (without SIM plateau). Olsen et al. [104]
simulated the effect of micro-voids on the superelastic-plastic behavior of NiTi SMA. They found
that the average stress level lowers, and both phase transformation and plastic yielding occur at
considerably lower stress by introducing micro-voids in a homogeneous material. In addition, it is
found that the superelastic stress–strain hysteresis becomes narrower with increasing porosity, i.e., the
amount of energy dissipated during a stress–strain cycle is reduced. Hence, further studies need to be
carried on about the coupling effect of pores on the performance of porous NiTi SMAs.

Materials 2018, 11, x FOR PEER REVIEW  16 of 53 

 

Panico et al. [90] successfully simulated the complex interaction between porosity, local phase 
transformation, and macroscale response by adopting the Finite Element Method and taking the 
development of permanent inelasticity in the matrix into consideration. As can be seen in Figure 
15a,b, this model can predict well the trend of elastic modulus and critical SIM stress with porosity, 
and the results almost coincide with Gibson and Ashby model when the porosity is lower than 30%. 
Moreover, it can also simulate the difference of superelastic response of porous SMA with various 
porosities as given in Figure 15c. However, it predicted that the superelastic strain of porous SMAs 
at high porosity is higher than that at low porosity, which does not agree with the experiment results. 
Moreover, all of the results cannot interpret the difference of superelastic behaviors between the 
dense SMA (obvious SIM plateau) and the porous ones (without SIM plateau). Olsen et al. [104] 
simulated the effect of micro-voids on the superelastic-plastic behavior of NiTi SMA. They found that 
the average stress level lowers, and both phase transformation and plastic yielding occur at 
considerably lower stress by introducing micro-voids in a homogeneous material. In addition, it is 
found that the superelastic stress–strain hysteresis becomes narrower with increasing porosity, i.e., 
the amount of energy dissipated during a stress–strain cycle is reduced. Hence, further studies need 
to be carried on about the coupling effect of pores on the performance of porous NiTi SMAs. 

 
Figure 15. Superelastic behavior of the porous SMAs: (a) elastic modulus for the samples with a 
porosity of 0.1, 0.2, and 0.4; (b) macroscopic critical SIM stress for the onset of transformation as a 
function of porosity; and, (c) average stress–strain responses for the samples with porosity. [90]. 

Here, the relationship between the porosity and elastic modulus, compressive stress at 3% strain 
(slightly higher than 2–2.5%, the maximum recoverable strain of cortical bone), and the maximum 
superelastic strain were summarized and plotted in Figure 16 based on the experimental results for 
porous NiTi (Ni-rich) SMAs. This plot can be used as a guide for selecting porous NiTi SMAs for 
different applications. It indicates that the dependence of elastic modulus on porosity cannot be 
expressed by the single linear model (or Gibson and Ashby model), but it can be divided into two 
stages, as given in Figure 16a. The E (elastic modulus) rapidly decreases with increasing porosity in 
the range smaller than ~30%, while the tendency turns slowing in the porosity range higher than 30%. 

Figure 15. Superelastic behavior of the porous SMAs: (a) elastic modulus for the samples with a
porosity of 0.1, 0.2, and 0.4; (b) macroscopic critical SIM stress for the onset of transformation as a
function of porosity; and, (c) average stress–strain responses for the samples with porosity. [90].

Here, the relationship between the porosity and elastic modulus, compressive stress at 3% strain
(slightly higher than 2–2.5%, the maximum recoverable strain of cortical bone), and the maximum
superelastic strain were summarized and plotted in Figure 20 based on the experimental results for
porous NiTi (Ni-rich) SMAs. This plot can be used as a guide for selecting porous NiTi SMAs for
different applications. It indicates that the dependence of elastic modulus on porosity cannot be
expressed by the single linear model (or Gibson and Ashby model), but it can be divided into two
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stages, as given in Figure 20a. The E (elastic modulus) rapidly decreases with increasing porosity
in the range smaller than ~30%, while the tendency turns slowing in the porosity range higher than
30%. It can be seen that the elastic modulus of porous NiTi SMAs can be adjusted to match that of
cortical bone (6–20 GPa), or cancellous bone (<4 GPa) when the porosity is higher than 20%. The same
trend can be found for the compressive stress, as shown in Figure 20b, and the critical point is also
~35% porosity. Although the physical meaning of this critical point is still unclear, it may relate to the
change of the pore structure from closed pores dominating to open pores dominating, and thus more
martensite (lower modulus) cannot revert back to parent phase (high modulus) due to severe stress
concentration around open pores. It is no doubt that porous NiTi SMAs with a porosity lower than
40% can fulfill the requirement for the maximum compressive stress of 224 MPa for cortical bone [28].

However, the relationship between maximum superelastic strain and porosity is different from
that for elastic modulus and compressive stress. For all the reported results (the porosity changes from
0% to 60%), the maximum superelastic strain almost decreased linearly with increasing porosity and
would decrease to below 2.5% when porosity is higher than 60%. It should be noted that porous SMAs
with porosity smaller than 20% exhibit almost the same superelastic strain as that of the dense ones.

Thus, after evaluating all those three factors, it can be concluded that porous NiTi SMAs
with a porosity of 30–40% can be considered as replacement materials for cortical bones, while
that with 40–90% porosity can be used in cancellous bones. Furthermore, porous NiTi SMAs with
gradient porous structure (or sandwich porous structure) can further satisfy the requirements of
various hard-tissues.

Besides the above three important factors, the fatigue is one vital issue to be considered in
biomedical applications [105,106]. Kohl et al. [107] reported that the maximum stress and SE of porous
NiTi SMAs with a porosity of 51% decrease with increasing the number of cycles, the SE strain is
smaller than 1% after 100000 cycles. The fatigue deterioration is due to the microcracking from the
sharp notches of irregular pores and the brittle Ti4Ni2Ox phase. By forming near spherical pores
in porous NiTi SMAs by CF-HIP [108], the fatigue is greatly improved with very good deformation
recovery ability in term of a linear SE as high as 4%. Moreover, when the high cycling strain is
applied, the degradation of superelasticity effect only occurs in the first cycle, the good linear SE is
maintained thereafter. Nakas found that the endurance limit or the critical stress for failure decreases
with increasing the porosity [105,106], and it is worth to mention that these values for all the porosity
(49–64%) are above the critical stress level that an implant is usually subjected to, as shown in
Figure 16 [105]. Obviously, to remove the undesirable phases (Ti2Ni or oxide) and to obtain near
spherical pores should benefit fatigue performance of porous NiTi SMAs.

The abraded debris might cause osteocytic osteolysis on the interface between implants and bone
tissue, and thus inducing the subsequent mobilization of implants gradually, and finally resulting in
the failure of bone implantation. For example, Rhalmi et al. [109] simulated the event of fatigue debris
released from porous NiTi SMAs, and evaluated the toxicity of alloyed NiTi particles indirectly contact
with surrounding tissue, particularly spinal cord dura matter. The implanted NiTi particles caused
inflammation (acute at first and reducing to mild chronic over time) only at the adjacent epidural space,
while the abnormal response from the dura matter was maintained over one year of implantation.

Besides the above mentioned in vitro properties, it is more important to evaluate in vivo
mechanical and biomechanical performances of porous NiTi SMAs. Although other porous implants,
such as porous stainless steel, porous Ti, and porous HA, can relieve stress shielding effect by matching
elastic modulus with hard-tissue, the SE of porous NiTi SMAs has significant advantage over others
porous biomaterials imitating the mechanical behaviors of hard-tissue, such as bones or tendons,
which has been shown in Figure 1. By investigating the porous NiTi composited with bone implanted
in rabbits for one and three months, as shown in Figure 17, Itin et al. found that the mechanical
performance of the composite of porous NiTi and bone is even superior to either porous NiTi or bone
alone [110]. The SE of porous NiTi SMAs can be maintained even after bone ingrowth satisfying the
hard-tissue requirement for biomechanical compatibility. Porous NiTi SMAs with 40–50% porosity
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can exhibit more than 3% recoverable strain, which is greater than bone’s own recoverable strain of
about 2.5%. Thus, the implant is more likely to keep integrated with the bone that is subjected to the
physiological peak stress when a person is climbing stairs (870% body mass), which may deform the
bone beyond the elastic deformation limits of implant materials in current use.

4.2.3. Effect of Pores on Biomedical Properties

In comparison with other bone graft substitute materials, porous NiTi SMAs possess satisfactory
biomechanical properties. Thus, their biological properties, including corrosion resistance and
biocompatibility, become a critical issue for hard-tissue biomedical applications. In fact, the corrosion
resistance, cell attachment or in-growth would be greatly affected by the pore structural characteristics,
such as porosity (or pore volume), pore size, and pore shape. Many investigations [39] had proved
that high specific surface area of porous SMAs have a great effect on the corrosion properties, Ni ion
releasing, bone osteointegration, etc., but the results are controversial, which may be attributed to
different surface status. Itin et al. [110] demonstrated that the corrosion rate of porous NiTi SMA by
SHS is closed to that of dense one, and are much lower than that by CS because the SHS alloy has low
surface area due to larger pore size. However, the corrosion rate almost does not further increased in
porosity range higher than 35%, as shown in Figure 18. It has been also found that Ni ion releasing of
porous NiTi SMAs is ten times higher than the dense one in simulated body fluid (SBF) [111], as shown
in Figure 19. Furthermore, the released Ni ion content is affected by pore character and is much higher
than the safety line (0.5 µg/cm2/week) [112]. However, it has also been reported that porous NiTi
SMAs show good resistance to local and general corrosion by potentiodynamic polarization evaluation
and low Ni leaching [113].

In general, as proved by many studies [62,114–116], porous NiTi SMAs exhibit good cell
adhesion and biocompatibility, which also depends on the structure of surfaces. For example,
Assad et al. [117,118] systematically studied the biocompatibility of porous NiTi SMAs by in vitro
and in vivo testing, and concluded that the short-term biocompatibility of porous NiTi is comparable
to that dense NiTi, moreover it has no potential to produce irritation, systemic toxicity reactions, or
sensitization in animal models by in vivo standard allergy potential evaluation.

In addition, porous NiTi SMAs also exhibit good tissue biocompatibility in vivo by some
investigation [40,119,120]. No apparent adverse reactions were observed around the implanting areas
in the proximal tibia of the rabbit after six weeks, and the in-growth bone has similar properties to the
surrounding bone [121]. Moreover, it shows excellent osseointegration and bony contact in rabbits and
rats without signs of loosening. For example, it has been found that CF-HIP prepared porous NiTi
exhibit good cytocompatibility and good superelastic biomechanical properties in comparison with
dense NiTi and porous pure Ti, and thus are considered to be suitable for load-bearing hard-tissue
replacement materials [122].

It was also reported that the porosity and pore size of biomaterial scaffolds play a critical role in
bone formation in vitro and in vivo [123]. Large pores and high porosity can promote bony contact
and tissue in-growth, and improve the fixation and remodeling between the implantation and the
human tissue [119], and therefore, can improve the biocompatibility of porous NiTi SMAs. By in vivo
evaluation, for example, Kujala et al. [40] found that the SHS porous NiTi SMAs with high porosity
show best bone contact, while the sample with the lowest porosity show a lower incidence of fibrosis
within the porous NiTi, although bone contact is significantly inferior. Moreover, Ayers et al. [119]
also found that porous NiTi SMAs with higher pore volume (or specific surface area) exhibit a higher
volume of ingrown bone and external bony apposition. However, Ayers et al. [119] also addressed
that there is no apparent correlation between pore size (for 100–400 µm) and bone in-growth near the
interface during the cartilaginous period of bone growth for porous NiTi SMAs, because the thickness
of implants is the same order as the pore size.

In summary, porous NiTi SMAs has great potential as biologically safe materials for
hard-tissue replacements.
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4.3. Surface Modification of Porous NiTi SMAs

Ni is in a tightly bound with Ti in NiTi alloys, Ni leaching is tiny and safe for dense NiTi SMAs with
proper treatment after implantation for long-term, which is admitted by FDA. For example, in vivo
Ni concentrations in the tissue around the NiTi implants are reported to be approximate 0.2 µg·g–1

in animal studies [40], and concentrations of Ni ions had been found in vitro in a range of 10 µg·g–1

to inhibit cell growth [121–123]. However, it is still a concerning issue that excessive Ni ion would
release inevitably from the matrix materials due to corrosion or abrasion in the biological environment
and induce adverse influences, such as allergic response, cellular hypersensitivity, cytotoxicity, and
genotoxicity, and even endanger life [120]. With respect to porous NiTi, Ni ion releasing is of particular
concern due to very high exposed surfaces, although porous NiTi SMAs shows great advantages in
biomedical applications [116]. It is known from Figure 19 that the Ni ion releasing from porous NiTi
is one or two orders of magnitude higher than that from dense NiTi [111,124]. Furthermore, the Ni
leaching would be greatly enhanced because of the unavoidable presence of Ni3Ti (even pure Ni) in
the sintered porous NiTi SMAs [86]. Thus, it is a vital issue to reduce the Ni ion releasing. Surface
modification is an ideal method to reduce Ni leaching while keeping its other excellent performances,
and a lot of investigations [125–157] have been made in recent ten years.

Surface modification of dense NiTi SMAs generally aims at forming an enhanced corrosive
protective layer to prevent Ni releasing. Moreover, some special consideration, such as a bioactive
layer allows cell attachment combining with abrasive resistance property, would also be taken into
account. Thus, various surface treatments, including surface finishing [125–129], passivation [130–140],
coating [145–157], and sterilization [158], have been developed, and their effect on corrosion resistance
and Ni leaching level in vitro and in vivo, as well as biological performances, have been investigated.
Those protective films on the surfaces of NiTi SMAs include mainly bio-inert layers (such as Ti
oxides [130], TiN [148], TiC [149], etc.) and bioactive layers (for example HA [152] or others [154]).

Obviously, surface modification is even more necessary for porous NiTi SMAs because of its
higher corrosion rate and Ni leaching level, as mentioned before [110,112]. However, some surface
modification methods applied in dense NiTi SMAs are invalid for porous ones because of the complex
pore architecture (interconnect pore channel is usually smaller than 50 µm), and obstruction for inner
surfaces of closed pores. For example, chemical vapor deposition (CVD), physical vapor deposition
(PVD), or plasma immersion ion implantation (PIII) is applicable to exposed surfaces but not to inner
pores. Thus, thermal oxidation [114], wet chemical oxidation [159,160], or gas nitriding [65] were
attempted for the surface modification of porous NiTi SMAs.
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Thermal oxidation in air is a valid surface treatment for the complex interconnected pore surfaces.
Wu et al. [114] found that an optimal parameter is annealing at 450 ◦C for 1 h, and the treated porous
NiTi SMA exhibits a corrosion rate that is two orders of magnitude lower than the untreated one.
However, it would cause much higher Ni leaching level (a factor of 12–25) than the untreated NiTi
due to the formation of thicker Ni-rich layers under the thin TiO2 layer. Significant results were also
achieved by using PIII method. Ho et al. [161] reported that Ni leaching of the porous NiTi reduced to
one-third of the original one after treated by Oxygen PIII. Moreover, a high corrosion resistance was
shown and even comparable to untreated dense NiTi. In addition, the material behaves the same SE as
the untreated one [162].

The wet chemical oxidation is also effective in enhancing corrosion resistance, as well as in
depressing Ni leaching [159,163,164]. For example, Jiang et al. [163] reported the formation of
crystalline HA layers on porous NiTi (after five days, which is faster than natural HA formation) by wet
passivation and subsequent immersion in SBF. The resulting HA layer uniformly covered the porous
NiTi, both on the surfaces and within the pores, and Ni release was even lower than that of untreated
dense NiTi (up to 50 days). Gu et al. [159] reported the faster formation of apatite layer on the surface
of porous NiTi SMAs with nearly circular pore shapes. Wu et al. [160] made a large-scale direct growth
of nanostructured bioactive titanates in porous NiTi SMAs via a facile low temperature hydrothermal
treatment in NaOH solution, and the modified surface shows superhydrophilicity and favors the
deposition of hydroxyapatite and accelerates cell attachment and proliferation. Gotman et al. [65]
modified porous NiTi (70% open porosity) by nitriding, and its Ni leaching is an order of magnitude
lower than that without surface treatment. However, most studies didn’t compare the Ni leaching level
with the acceptable one for the human body, although most results were concluded to be positive. Thus,
Yuan et al. [111] compared different wet chemical oxidations, and found that all of those porous NiTi
samples treated by single wet surface treatment exhibit Ni leaching level higher than the safety line,
except the one treated by the combining HNO3 passivation and oxygen PIII, which can be depressed
under the safety line beyond six weeks, as shown in Figure 21.

Obviously, all those above mentioned surface modifications can only form a protective film on
the outer surface and the inner surfaces of open pores, but they are invalid for the inner surfaces of
closed pores. Thus, the concern would be raised for the increasing of Ni ion leaching if the closed pores
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crack and more fresh untreated surfaces are exposed to body fluid and accelerate corrosion during
cyclic loading. Thus, some attempts have been made to solve this problem. Berthville [52] proposed to
fabricate porous NiTi by SHS under an atmosphere of Ca vapor, the pore surfaces would be coated
with residual calcium oxide. It may promote bone in-growth if calcium oxide changes to Ca(OH)2, but
further results have not been reported. Recently, Li et al. [165] developed an in-situ nitriding method
through the decomposition of ammonia during sintering. A TiN protective layer of 1µm thick can be
formed on all surfaces, including closed pores, as shown in Figure 22. The porous NiTi treated by this
way, as the in vitro and in vivo results shown in Figure 23, exhibit higher cell attachment number and
lower Ni releasing level than the untreated one.

Based on the above discussion, free of undesirable Ni-rich phases and the homogeneous protective
layer is a pursue goal for surface modification of porous NiTi SMAs. However, the assessment of the
durability and stability is still lacking for the surface protective layers under cyclic loading or body
fluid environment, in particular, for their long-term performance. In addition, the effect of surface
treatments on the overall SME and SE behavior of porous NiTi SMAs should be also emphasized.
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4.4. Application of Porous NiTi SMAs

In addition to the unique SME, SE, biocompatibility, and biomechanical compatibility, porous
NiTi SMAs also possess additional benefits common to other porous metallic materials, such as low
density, high specific surface area and high permeability. Furthermore, porous NiTi SMAs have
additional advantages of excellent compatibility for magnetic resonance imaging (MRI) and computer
tomography (CT) scanning [166]. Thus, it has already been proposed to using them in many aspects,
including biomedical applications [167], energy absorption [168], light-weight actuator [102], etc. Till
now, various biomedical applications in bones or teeth, such as maxillofacial repairing, bone fixation
plates or screws, teeth root replacements [168], acetabular cup, femoral stem replacements, and cervical
and lumbar vertebral implantation [167] are still the main targets for porous NiTi SMAs. For example,
some commercial porous NiTi products had fabricated by SHS in Canada (Biorthex Inc., Boucherville,
QC) for spine implantations and replacements, as shown in Figure 24a–c, and they already have
more than hundreds of clinic application examples since 1984 [169]. One of the advantage of porous
NiTi SMAs as compared to other porous metals for implanting (e.g., pure Ti and stainless steel) is
the excellent biomechanical compatibility (i.e., SE) of NiTi, as shown in Figure 1. In addition, the
acetabular cups also can be manufactured while using porous NiTi SMAs, they possess the similar
porous structure, elastic modulus and mechanical behavior with the surrounding bones. Thus, the
patients after implantation would recover at a shorter time and without secondary osteoporosis due
to SE. Shishkovsky et al. attempted to fabricate tooth while using porous NiTi SMAs by selective
laser sintering (SLS), as shown in Figure 24e [170]. Moreover, one of the advantage of porous NiTi
SMAs as compared to other porous materials is the firm fixation of implanting teeth by using SME. For
example, the gum tissue part can be deformed into a cylindrical shape before surgery, as shown in
Figure 24f, it can be smoothly implanted into the gum of the patient, and then it can be firmly fixed at
body temperature due to its unique SME.
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(e) tooth [170]; and, (f) gum tissue replacement [167].

5. Porous Ni-Free Shape Memory Alloys

No matter dense or porous NiTi SMAs are considered, the Ni ion issue seems always a vital
concern for the doctors and patients, although Ni ion releasing had been proved to be safe in the human
body within relatively short-term (e.g., <10 years) after various surface modifications. In addition,
there are some uncertainties for surface protection, in particular for porous NiTi SMAs due to complex
pore architecture and the various stresses and physiological conditions. Thus, a great deal efforts are
being made to develop Ni-free SMAs to ultimately solve the Ni releasing problem in recent years.

5.1. Dense Ni-Free SMAs

5.1.1. Development History and Alloy Systems

As well known, pure Ti and Ti alloy have been used as hard-tissue replacement materials because
of their excellent biocompatibility and corrosion resistance, as well as low density, in comparison
with other biometals, such as Co-Cr and stainless steels [5,16]. Ti alloys are generally categorized
into three different groups of α, β, and (α + β)-type alloys. Ni-free SMAs only exist in β type Ti
alloys because the β phase (BCC crystalline structure) transforms to either metastable α′ (hexagonal
structure) or α” martensite (orthorhombic structure) by quenching from high temperature, and the β
to α” transformation is a reversible MT that leads to the SME [171]. The transformation temperature
can be tuned by adjusting alloy composition [172]. However, these β type Ti-based SMAs haven’t
attracted much attention until recent ten years because of wide applications of NiTi SMAs in numerous
biomedical areas.

Until now, SME or SE have been reported in several Ni-free β type Ti-based binary alloy
systems, including Ti-Nb [173–176], Ti-Mo [177,178], Ti-V [179], and Ti-Fe [180,181]. However,
these binary Ti-based SMAs exhibit poor SME stability and small recoverable strain (generally
<3%) when comparing with NiTi SMAs of 8% recoverable strain. Thus, in order to improve their
SME or SE, alloying elements are added into those binary alloy systems. Many ternary even
quaternary Ni-free SMAs have been developed, including Ti-Nb-based (such as Ti-Nb-Zr [176],
Ti-Nb-Ag [173], Ti-Nb-Al [174], Ti-Nb-Ta [182], Ti-Nb-O [183], Ti-Nb-Fe [184], etc.), Ti-Mo-based (such
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as Ti-Mo-Ga [177], Ti-Mo-Sn [185], etc.), Ti-V-based (such as Ti-V-Fe-Al [186], Ti-V-Cu-Cu-Co-Al [187],
etc.), Ti-Fe-based (Ti-Fe-Nb [181], Ti-Fe-Ta [180], etc.), and Ti-Zr-Nb-based [188].

Among those Ni-free Ti-based SMAs, Ti-Mo-based alloys are susceptible toω phase embrittlement,
and Ti-V-based alloys are not suitable for biomaterials due to the cytotoxicity of V [189]. However,
Ti-Nb-based alloys [173–176,190,191], including Ti-Nb-Zr and Ti-Nb-Ta alloys, etc., attract more
attention, because Nb, Zr, and Ta can lower modulus and increase the strength of β type Ti alloys,
in addition to their non-toxicity. Thus, this review focuses on the effect of alloying elements and heat
treatment on microstructure, SME, SE, mechanical, and biological properties of Ti-Nb-based SMAs.

5.1.2. MT, Microstructure and Shape Memory Effect (SME)

The fabricating methods and heat treatment process of Ni-free Ti-based SMAs are actually similar
to that for β type Ti alloys. Generally, the fabrication of dense Ni-free Ti-based SMAs with fine
grain size or desirable texture, consists of melting, cold or hot rolling of the ingot, and the following
annealing or aging heat treatment, and will not be further described in the following text, except that
the special process is involved.

Baker [192] firstly found that the SME in a Ti-35 wt.% Nb alloy, which originates from β

→ α” MT, is alike the SME stems from the thermoelastic MT in other SMAs, such as NiTi,
Cu-Zn-Al alloys. From then, many studies have been made about the effect of alloy content and
thermo-mechanical treatment on microstructure evolution, MT temperature, SME/SE and mechanical
behaviors [175–177,182,184,185]. However, only a few studies [193,194] present the exact phase
transformation temperature for stress-free samples by common DSC methods, which had been
attributed to small transformation enthalpy of β↔ α” MT and very low transformation temperature.
Thus, most results of Ms temperature were obtained indirectly from the relationship between critical
SIM stress and temperatures in stress-strain curves in Ni-free Ti-based SMAs [172,175–177]. Recently,
Lai et al. found that the Ms temperature of Ti-Nb alloy can be measured by the DSC method at lower
Nb composition, as shown in Figure 25 [194].
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The microstructure evolution, including in-situ characterization [195,196], demonstrate that stable
α phase, metastable α′ and ω phases often appear in Ti-based SMAs besides the primary β and α”
phases that are responsible for SME after rolling or heat treatment. However, the distribution and
size of those phases would greatly influence the MT and mechanical behaviors. As is well known,ω
phase is an important phase in Ti-based SMAs, which can be easily formed either by quenching from
high temperature (athermalω) or by aging at an intermediate temperature (isothermalω) [197,198].
It had been reported that the precipitation ofω phase would cause embrittlement [199]. However, fine
ω precipitates from β phase is an effective way to improve critical stress for slipping and SME, and
stability of SE for Ti-based alloys [196,200]. It has been reported that, by annealing and proper aging
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treatment, nano-sizedω and α precipitates in βmatrix of small grain size can further improve yield
strength, fatigue life, and SME [201,202]. However, ω phase would coarsen or transform into α phase
when aged at a higher temperature or longer duration [203], and SME or SE would deteriorate or even
disappear. Fortunately, the formation or coarsening ofω phase can be inhibited by adding the third
elements, such as Ta or Sn etc., in Ti-Nb binary alloys. Recently, Dubinskiy et al. [195] made in-situ
X-ray diffraction (XRD) study during temperature changing or loading-unloading in Ti-Nb-Zr and
Ti-Nb-Ta SMAs. They found only α” phase forms for Ti-Nb-Ta SMAs during cooling, while the α” and
ω phase can be formed for Ti-Nb-Zr SMAs. Moreover, the quantity of α” phase increases with cooling
down or applying a load, while the quantity ofω phase is not affected.

In addition to microstructure, the MT temperature of Ti-based SMAs is greatly affected by alloy
compositions. Miyazaki et al. [172] reported that the Ms decreases by 40 K with 1 at.% increasing of
Nb content, and the Ms is lower than RT when Nb content exceeds 25.5 at.% in binary Ti-Nb SMAs, as
shown in Figure 26a. Furthermore, as shown in Figure 26b, the Ms temperature decreases by about 30,
35 and 160 K with 1 at.% Ta, Zr and O content for Ti-22at.%Nb-based ternary SMAs. Similarly, it is
reported that the Ms decreases by 90 K [204], 160 K [205], and 200 K [206] with the addition of 1 at.% of
Mo, Pt and N. In addition, Hao et al. found that Ms decreases 41.2 K and 40.9 K with increasing 1 wt.%
Zr or 1 wt.% Sn, respectively, for Ti-(20–26)Nb-(2–8)Zr-(3.5–11.5)Sn alloys [207]. The change of Ms

would lead to different SME and SE behavior of Ni-free Ti-based SMA. For example, Ti-(22–25)at.%Nb
alloy exhibits only the SME at RT, while Ti-(25.5–27)at.% Nb alloys can show partial SME and partial
SE [200].
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Ti-Nb-based ternary alloys [172].

The SME and SE are also influenced by the critical stress for slip deformation in SMAs. Thus, low
temperature annealing and aging treatment following cold-rolling were used to improve the critical
stress of slip deformation by producing fine subgrain structure, fine α, and ω precipitates. Ti-Nb
binary alloys can exhibit stable and almost complete superelasticity of 2.7% at RT [196]. In addition,
the addition of third (or more) elements, such as Ta, Zr, O, Mo, Sn, etc., is also effective in promoting
the critical stress for slip deformation and a larger transformations strain [203], and hence, improve
the SE for Ti-based SMAs [208]. For example, by the addition of 4 at.% Mo, the maximum superelastic
strain for Ti-15Nb-4Mo (at.%) can be increased to 3.5% at RT [203], as high as 4.3% recoverable strain
for Ti-22Nb-6Zr (at.%) alloy at RT [178], which almost reach the possible maximum recoverable strain
for those alloys at RT as revealed by in-situ XRD analysis [195]. Recently, a highest non-martensitic SE
of 6% at RT, as shown in Figure 27, was reported in Ti-19Nb-14Zr (at.%) SMAs after annealing and
aging treatment by Ma et al. [209], which is attributed to the presence of β and very fineω phases.
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Except for the melting method, the PM method, like HIP [210], was also used to produce Ti-based
SMAs. Very recently, Lai et al. [211] fabricated Ti-22Nb-6Zr (at.%) SMAs with the porosity of about
5% by CS. The alloy exhibits as high as 5.9% compressive recoverable strain at −85 ◦C that is similar
to that of as-rolled alloy, which is due to its very low Ms temperature. In order to increase the Ms

temperature, Yuan et al. [212] decreased the Nb and Zr content to fabricated Ti-11Nb (at.%) alloys
by CS, and 5.5% recoverable strain was obtained at RT, while Ti-22Nb (at.%) alloys show only 3.5%
recoverable strain, as shown in Figure 28a. It is worth to note that the Ti-11Nb alloys can possess stable
SE of 4.3% at RT after 10 cycles, as shown in Figure 28b. Table 3 lists some typical physical and SE
properties of Ti-Nb-based SMAs.
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Table 3. Typical properties for Ti-Nb-based SMAs [40,198].

Melting point 1750–1800 ◦C Elastic Modulus 35–120 GPa

Density 4.8–5.5 g/cm3 Poisson’s Ratio 0.33

Yield Strength 250–790 MPa Tension strength 590–1074 MPa (rolling and aging)

Biocompatibility Excellent, compared Ti Elongation 15–90%

Corrosion resistance Excellent, better than Ti Recoverable strain Maximum 6%

Wear resistance Good, better than Ti Fatigue life 3 × 104–1 × 107

5.1.3. Mechanical and Biological Properties

In general, most of Ti alloys offer the appropriate mechanical properties for orthopaedic
applications, but their susceptibility to crack propagation and relatively poor wear performance
is unfavorable. Although dense Ni-free Ti-based SMAs exhibit the properties that are similar to β type
Ti alloys, the composition and SE of Ni-free Ti-based SMAs are different from conventional β type
Ti alloys. Thus, many studies have devoted to their mechanical behaviors, in particular, the effect of
thermo-mechanical treatments or composition on the elastic modulus, ductility, or fatigue, etc.

Ni-free Ti-based SMAs generally behave lower elastic modulus than α type Ti and α + β type
Ti alloys because β phase is BCC crystal structure with lower atom density in the lattice. It has been
reported that the elastic modulus can be tuned from 120 to 35 GPa by adjusting alloy composition,
annealing and preferential crystal orientation [213], which approach the upper limit (25 GPa) of
hard tissue. Moreover, the elastic modulus of Ti alloys can be approximately predicted by using the
parameters that were proposal by Morignaga et al. [214] while using the following equations:

Bo = ∑ Xi(Bo)i (2)

Md = ∑ Xi(Md)i (3)

where X represents the atomic fraction, and Md and Bo represent the values of the quantum parameters
for each of the i alloying elements [215]. Each (Md, Bo) pair is located on the phase stability maps, as
shown in Figure 29. The elastic modulus of the ternary alloys show strong Md and Bo dependence,
and generally the alloy with high Md and low Bo has a low elastic modulus [216].

Ni-free SMAs, including Ti-Nb-based [200] and Ti-Mo-based [185], show very good ductility, can
easily cold-rolled to a thin plate of several mm thickness. Figure 30a compares the strength of Ti-based
SMAs with other biomaterials [217], and they exhibit strength comparable to NiTi SMAs. Moreover,
they combining high yield strength with low elastic modulus, as shown in Figure 30b.

In addition to strength, the wear resistance of Ti-based SMAs should be a concern for hard-tissue
replacement applications because the presence of wear debris in the surrounding tissue would
cause loosening or failure of the implants. Because few investigations have been made on the wear
performance of Ti-based SMAs, we summarized the wear performance of β type Ti-based bio-metals
here. In general, pure Ti or Ti-6Al-4V alloys exhibit poor tribological performance due to their low
resistance to plastic shearing and low protection induced by surface natural oxides [218]. Therefore,
surface modifications or designing new Ni-free Ti alloys were used to ameliorate this problem. Fretting
and sliding wear studies showed that Ti-35Nb-8Zr-5Ta (wt.%) is much superior to Ti-6Al-4V [219] due
to SIM and high content of Nb2O5 formed in the surface layer [220]. Ehtemam-Haghighia et al. [221]
reported that the β type Ti-11Nb-7Fe alloy can exhibit higher wear resistance and strength than pure
Ti and Ti-6Al-4V alloys, as well as the lower elastic modulus. Thus, Ni-free Ti-Nb-based SMAs are
believed to have good wear resistance when the applying stress is lower than the critical stress for
slipping. Similarly, the fatigue performance of the solution treated β type Ti alloys can be improved
by cold rolling [222] or appropriate aging treatment [223]. For example, the aged Ti-Nb-Ta-Zr alloys
exhibit higher fatigue strength than that after solution treatment or severe cold rolling as shown in
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Figure 31, the fatigue life can reach as high as ~107. Table 3 summarizes the mechanical parameters of
Ti-Nb-based SMAs.Materials 2018, 11, x FOR PEER REVIEW  30 of 53 
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Figure 31. Fatigue properties of Ti-Nb-Ta-Zr alloys subjected to aging treatment at 573 K for 10.8 ks
(AT10.8), solution treatment (ST), and severe cold rolling (CR) [223].

In general, pure Ti and Ti alloys possess excellent corrosion resistance and good biocompatibility
under both in vivo and in vitro evaluation due to a passive TiO2 layer on their surface [224,225].
The addition of Nb and Ta can strengthen the surface TiO2 film of Ti alloys [226] and enhance
the forming of highly stable Nb2O5 or Ta2O5 layer [227]. Thus, Ni-free β type Ti-based SMAs,
often added with some non-toxic elements, such as Nb, Zr, Hf, and Ta, are supposed to exhibit
good biocompatibility or low cytotoxicity in comparison to pure Ti. In fact, Ti-Nb-based (such as
Ti-Nb-Zr) or Ti-Ta-based alloys had been proved to show better corrosion resistance than pure Ti
or Ti-6Al-4V alloys in physiological or protein solutions [228], as well as excellent biocompatibility
and osteoconductivity [194,229,230]. For example, Bai et al. reported that the Ti–Nb alloys exhibited
corrosion resistance that was superior to Ti in three different physiological solutions [231], they found
that the Ti–Nb alloys also produced no deleterious effect to L929 fibroblasts and human osteoblast-like
MG-63 cells, and cells performed excellent cell attachment onto Ti–Nb surface, indicating a good
in vitro cytocompatibility. In addition, Arciniegas et al. [230] carefully assessed the biocompatibility
of two Ti-Nb-Zr SMAs by in vitro preosteoblastic cell testing, the results indicated that the cell
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biocompatibility is not statistically different to that obtained in pure Ti, as shown in Figure 32. Moreover,
good cell adhesion is greatly attributed to the presence of a 2-nm thick layer of amorphous Nb2O5

on them. In addition, they also found that the Ti-19.1Nb-8.8Zr (wt.%) SMA exhibit higher corrosion
resistance than NiTi SMAs [193], and even compared with pure Ti [232]. Bai et al. further compared
in vivo bone tissue biocompatibility of Ti-Nb alloys with pure Ti, the results indicated that Ti-Nb alloys
had a comparable osteocompatibility to pure Ti while using micro-CT and histological evaluations, as
shown in Figure 33 [231].
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Figure 33. Histotomy of bone contact of the Ti–Nb alloy (a,c) and Ti (b,d) at 4 weeks and 12 weeks
illustrated by fluorescence-dyeing reagents, respectively. Green (#) revealed the new bone formation
of two-week duration dyed by calcein, and the yellow (∆) revealed that new formation of four-week
duration by tetracycline [231].

Based on the above results on mechanical properties, superelastic behavior, corrosion resistance,
and excellent biocompatibility, Ni-free Ti-based alloys could be a promising material for implantation.

5.2. Porous Ni-Free SMAs

As stated before, dense Ni-free SMAs exhibit low elastic modulus of ~35 GPa, which are much
lower than pure Ti (110 GPa), and even smaller than that of NiTi SMAs (48 GPa). However, they
are still much higher than hard tissues, for example, cortical bone (6–20 GPa) [30] and cancellous
bone (<4 GPa) [31], and would produce a stress shielding effect and cause the failure of implantation.
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Inducing porous structure can reduce the elastic modulus. In addition, as mentioned before, the
porous structure promotes cell adhesion, allows for bone cell in-growth and integrates with host
tissue (i.e., osteointegration), as well as allowing body fluid exchange. Obviously, the porous structure
is extremely important in determining the biological and mechanical properties without worrying
about Ni ion from the high specific surface area, and consequently, the performance in orthopaedic
applications. Accordingly, a number of efforts are made to fabricate and control the pore structure of
Ni-free Ti-based SMAs in order to further promote their performances as hard-tissue replacements in
recent ten years [210,217,233–235].

5.2.1. Fabrication Method and Porous Structure

Distinct porous structures can be fabricated by different methods in metallic materials, such
as porous Ti or Ta, or Al foams [47]. Because Ni-free SMAs consist of some elements with a high
melting point, such as Ti (1660 ◦C), Nb (2468 ◦C), Zr (1850 ◦C), Ta (2995 ◦C), Mo (2617 ◦C), Hf
(2150 ◦C), etc. Thus, most of porous Ni-free SMAs, are fabricated by PM or AM methods from element
powders [233,234] or pre-alloy powder [217], including CS [210,217,235], microwave sintering [236],
HIP/CF-HIP [237], and AM [238,239], which are similar to those for porous NiTi SMAs. However,
SHS method cannot be adopted to preparing porous Ni-free SMAs due to no reaction between Ti
and Nb (Mo or Ta). In addition, pore-forming agent, including NH4HCO3 [235,239,240], urea [241],
TiH2 [237], or polyurethane [242,243], are usually added into the powders to obtain porous Ni-free
SMAs with various high porosities and specific pore shape, because there is no obvious Kirkendall
effect for Ti-Nb or Ti-Mo alloy system [211]. As like the fabrication of porous NiTi SMAs, as shown in
Figure 34, Ni-free Ti-based SMAs also have high oxygen content and other impurities either dissolving
in a matrix or forming oxides inside the matrix [210].

For Ni-free Ti-Nb-based SMAs, as shown in Figure 35a,b, it is easy to produce porous specimens
with low porosity (5–6%) and very small pore size (<10 µm) [241] by sintering at high temperature
(1400 ◦C), while it is difficult for Ni-Ti alloy system. In order to obtain high porosity, the pore-forming
agent [235,240–242] has to be added into the mixed element powders to form pores. Figure 35c is the
morphology of porous Ti-22Nb-6Zr alloys that were prepared by CS with NH4HCO3 addition [241],
and it has 58% porosity and near spherical pores of ~250 µm. By controlling pore forming agent, the
larger pore size of 800–1000 µm and high open porosity can be obtained by vacuum sintering from
alloy powders, as shown in Figure 35d. Xu et al. fabricated porous Ti-25 wt.% Nb alloys with porosity
even reaching 70% by sintering using polyurethane as space-holder, as shown in Figure 36 [243].
In addition, the pores shape of porous Ni-free SMAs is mainly determined by the particle shape of the
pore-forming agent and it can be easily adjusted [232].
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Figure 35. Pore morphology of porous Ti-22Nb-6Zr SMA with various porosities by different methods:
(a) 6.7% by CS [241]; (b) 12% by CF-HIP [234]; (c) 57.6% by CS with NH4HCO3 [241]; and, (d) 65% by
CS with pore forming agent from alloy powder [217].
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Figure 36. Porous Ti-25 wt.% Nb alloys with 70% porosity fabricated by PM using polyurethane as
space holder [243]: (a) macrographic image, and (b) pore structure.

Except for the pore structure, it is vital to obtain β phase as a primary phase and homogeneous
microstructure for porous Ni-free Ti-based SMAs fabricated by PM. However, the Ti solid solution of
porous Ti-Nb(or Mo)-based SMAs only formed through inter-diffusion of Ti and Nb (Zr and Ta) atoms.
Therefore, the homogeneous single phase can only be obtained by sintering at a higher temperature
(>1400 ◦C) for long duration (10 h) [233,241]. For example, porous Ti-22Nb-6Zr (at.%) alloys sintered
at 1200 ◦C for 10 h contains more undesirable phases than that sintered at 1400 ◦C for the same time,
such as α-Ti, Nb, and Zr. While single β phase, can be obtained at the higher sintering temperature.

Porous Ni-free SMAs have been also fabricated by AM methods using pre-alloyed powders in
recent years, because they have the ability to build complex porous structure according to the CAD
model. For example, Liu et al. [239] prepared porous Ti-24Nb-4Zr-8Sn (wt.%) SMAs with a single β
phase by electron beam melting (EBM) technique, as shown in Figure 37a. The porous architecture can
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be exactly obtained according to the designed model, as shown in Figure 37b,c. Moreover, the high
porosity of 68–91%, pore size of 500 µm, and 3% SE can be achieved in these porous samples.

In summary, the porous structure of Ni-free SMAs can be adjusted to satisfy the bone replacement
requirements (pore size of 100–500 µm, and porosity of 30–90%) by adding a pore-forming agent
during PM or by AM techniques. Moreover, the single and homogeneous microstructure can also be
obtained through the optimal processing parameters.

5.2.2. Mechanical and Biomedical Properties

The major benefits of porous NiTi SMAs as compared with other bone graft materials are their
good mechanical strength, low elastic modulus, and high recoverable strain at body temperature [65].
Therefore, it is necessary for porous Ni-free SMAs to match these benefits.
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Figure 37. (a) The morphology of the electron beam melting (EBM)-produced porous Ti-24Nb-4Zr-8Sn
(wt.%) SMAs; (b) the single unit of 3D rhombic dodecahedron modeling; and, (c) the surface
morphology [239].

The mechanical properties of porous Ni-free SMAs are also greatly affected by pore characters,
such as porosity or pore shape. The mechanical properties of porous Ni-free SMAs deteriorate to a
very low level with increasing porosity and pore size. Thus, a trade-off must be maintained between
the mechanical properties and porosity (or pore size) for different biomedical applications [244].
However, most of the studies [210,217,236] focus on the dependence of the elastic modulus and
compressive strength on porosity, but not on bending or tensile. Moreover, few investigations reported
the relationship between SE, fatigue, or wear properties and porosity for porous Ni-free SMAs.

Porous Ni-free SMAs can exhibit a high compressive elongation of more than 40%, and their
compressive strength (70–125 MPa) and elastic modulus (1.5–3.4 GPa), which decrease with an
increasing of porosity in the range from 47% to 65%. Moreover, the superelastic strain of these
porous Ti-Nb-Zr SMAs at RT is similar to that of cortical bone, being 2–2.5%, as shown in Figure 38.
These make the porous Ni-free SMAs match the properties of bovine trabecular bone [210]. However,
the SIM plateau cannot be observed for all the porous Ni-free SMAs [214,221,234,235]. On the contrary,
they usually exhibit linear superelastic behavior during either compressive [210,217,243], tensile or
bending testing [210], as shown in Figure 39. It is obvious that porous Ni-free SMAs show higher
compressive strength and SE (3.5% recoverable strain), than that from tensile or bending, and the
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worst results appeared in tension testing (0.5% recoverable strain). The reason is that the cracks easily
propagated from the tip around pores during tension.Materials 2018, 11, x FOR PEER REVIEW  36 of 53 
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Figure 39. Stress-strain cycle curves for porous Ti-21Nb-5.5Zr alloys under various testing modes at
RT: (a) compressive; (b) tensile; and, (c) bending [210].

Generally, the dependence of elastic modulus and compressive strength on porosity can be roughly
predicted using Gibson and Ashby model [48] for porous Ni-free SMAs [235]. However, it should
be noted that the mechanical behavior of porous alloys is also affected by the pore size, shape and
distribution, in addition to porosity [245,246]. The elastic modulus can be adjusted from 35–100 GPa
(dense Ni-free SMAs) to 1–2 GPa (60–70% porosity). The relationship map of elastic modulus and
porosity for porous Ni-free SMA are summarized in Figure 40a [210], referring to Figure 20a for
comparison with porous NiTi SMAs. Thus, it is clear that porous Ni-free SMAs can also show a
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competitive combination of “elastic modulus–porosity” properties and they can match perfectly that
of human bone [210] when compared to the known porous NiTi and porous metallic materials, such as
Ta, Ti, etc.

Moreover, from the “compressive strength–porosity” point of view, as shown in Figure 40b,
porous Ni-free SMAs can exhibit the “strength-porosity” region higher than that of human bone, and
it is similar to porous NiTi SMAs shown in Figure 20b. Thus, the safe use of them is well guaranteed
as biomedical implantation materials [210]. The recoverable strain is another important property that
should be taken into account for porous Ni-free SMAs. There are a few studies focus on the relationship
of superelastic strain and porosity. Figure 40c summarizes those reported data [210,217,241]. Obviously,
the changing trend of them is different from that of porous NiTi SMAs in Figure 20c, it decreases
rapidly from dense to 20% porosity, and the slope of reducing becomes mild, from 20% to 65% porosity.
It is clear that porous Ni-free SMAs (<45% porosity) can show maximum recoverable strain higher
than cortical bone (2.5%), though it exhibits slight lower superelastic strain than porous NiTi SMAs at
various porosities. Nevertheless, porous Ni-free SMAs are still superior to other metallic foams.

For the hard tissue replacement applications, the fatigue properties of porous Ni-free SMAs
are one vital aspect to be considered due to experiencing cyclic loading during daily activities. In
general, the fatigue properties of highly porous Ti alloys may suffer from high levels of porosity,
and the fatigue strength of porous Ti alloys has been reported to be in the range of 0.1–0.25 yield
strength of porous samples, which is lower than the normalized endurance limit of dense titanium
(i.e., 0.4 yield strength). The rough surface of struts, notch sensitivity of Ti alloys, the presence of
void and porosity in struts, microstructure, and residual stress are believed to be the cause of this
difference [247]. Leuders et al. [248] found that heat treatment and the HIP process can significantly
increase the endurance limit of porous Ti alloys fabricated by AM. Recently, Liu et al. [239] fabricated
porous Ti-24Nb-4Zr-8Sn (Ti2448) alloys with EBM and the following annealing treatment, they found
that porous Ti2448 alloys with SE can exhibit a higher normalized fatigue strength (Figure 41a), greater
plastic zone ahead of the fatigue crack tip, and the crack deflection behavior in comparison with porous
Ti-6Al-4V alloys. Moreover, for the same fatigue strength, the Young’s modulus of porous Ti2448
samples is only half of the porous Ti-6Al-4V samples, as shown in Figure 41b [239]. Thus, porous
Ni-free Ti-based SMAs can exhibit better fatigue performance than porous pure Ti or Ti alloys.

It has been proved from many results that porous Ni-free Ti-based SMAs exhibit excellent
corrosion resistance [226–228] and bio-inert to human body [249]. They are suitable for biomedical
applications especial for bone replacement after treating by bioactive surface modification [250,251].
For example, Li et al. [252] reported analogically that porous Ti-24Nb-4Zr SMAs owns excellent
corrosion resistance at 0.9% physiological and Flank’s solutions with different pH values at body
temperature. Moreover, Ti-Nb-Sn SMAs exhibit even better corrosion resistance than NiTi SMAs [253],
and there are no any harmful ions releasing from them [237]. In addition, the bioactive HA layer can
form on the inner and outer surfaces of porous Ti-Nb-Sn [237] and Ti-Mo [254] SMAs modified by
alkali-heat treatment. Similar to other porous SMAs, the rough inner surfaces of porous Ni-free SMAs
exhibit better apatite-inducing ability and cell growth than the smooth surface of dense materials, and
their high specific surface area is more favorable for cell adhesion and proliferation [253]. For instance,
the porous Ti-Nb-Zr alloys show three times cell numbers than that on the dense samples [14].



Materials 2018, 11, 1716 38 of 53

Materials 2018, 11, x FOR PEER REVIEW  38 of 53 

 

 

 
Figure 40. The relationship between elastic modulus (a); compressive strength; (b) [210]; and, 
superelastic strain (c) [210,217,241] and porosity for Ni-free SMAs. 

0 20 40 60 80 100

0

2

4

6

8
 [210]
 [241]

dense Ni-free SMA

Su
pe

re
la

st
ic

 s
tra

in
, %

Porosity, %

dense TiNi SMA

(c)

2.5 %

(a) 

(b) 

224 
106 

Figure 40. The relationship between elastic modulus (a); compressive strength; (b) [210]; and,
superelastic strain (c) [210,217,241] and porosity for Ni-free SMAs.
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Most of the reported studies in vitro indicated that porous Ni-free SMAs exhibit good cell
biocompatibility, as shown in Figure 42, which is significant for implantation or replacement materials.
However, the detailed in vivo results are still lack about cellular metabolism, gene expression, and
blood compatibility, as well as the effect of pore structure on biocompatibility. Here, we just presented
some results of the effect of the pore on biocompatibility from porous Ti alloys, which can indicate the
porous Ni-free Ti-based SMAs indirectly.

With respect to the porous Ti alloys, the optimal pore size of 100–500 µm had been accepted
widely for bone replacements to allow bone cell in-growth [255,256]. Moreover, Clemow et al. [257]
reported that the percentage of bone growing into the surface was inversely proportional to the
square root of pore size. In addition to pore size, the pore shape would also affect the extent of cell
in-growth. Goodman et al. [258] had reported that the bone in-growth in square-shaped pores increases
in comparison with that in round-shaped pores. Pores with more ragged and rough surfaces also
offer a larger surface area for bone in-growth [259]. Tuchinskiy et al. [260] selected porous Ti alloys
with different porosities and implanted them into mice for four weeks. The results indicated that the
specimen with low porosity provoked a more vigorous foreign body reaction, and was encapsulated
in a dense, highly collagenous bag with few blood vessels running through it, while the material with
high porosity had a thinner sac with far greater vascularity.
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In summary, the mechanical properties of porous Ni-free SMAs, especially with the elastic
modulus and compressive strength as the two key factors, can be tuned to match various bone
replacement applications, such as cancellous bone (<4 GPa), cortical bone (6–20 GPa), etc. Its SE at
body temperature can also reach 2.5% when the porosity is smaller than 40%, and it can be improved
further by optimizing pore architecture and microstructure. Besides, porous Ni-free alloys possess
biocompatibility that is as good as porous Ti. Thus, porous Ni-free SMAs possess suitable mechanical
and biomechanical properties required for hard-tissue replacement applications proposed in Section 3,
while the worry for Ni ion releasing no longer exists. Thus, these make them competitive materials
(even superior to others porous pure Ti or porous Ti-6Al-4V alloys [261]) for hard-tissue implantation,
such as various biological fixation applications [262], or for biomedical scaffolds in tissue engineering
applications [263], as shown in Figure 43. All of the biomedical application examples that are discussed
in Section 4.4 are also applicable to porous Ni-free SMAs. Moreover, porous Ni-free SMAs are more
suitable for the long-term hard-tissue replacements, such as spine complete replacement materials, as
shown in Figure 43b.
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6. Prospects and Summaries

Porous SMAs, including porous NiTi SMAs and Ni-free SMAs, can be fabricated by PM combing
with space-holder or AM techniques to possess various complex porous architectures mimicking the
microstructure of different hard-tissue parts with excellent flexibility and reproducibility. Moreover,
external figuration can also be easily obtained to promote individualized implant design. This opens a
pathway to a wide range of potential hard-tissue replacement applications. In addition, the control of
porosity in matrix struts, pore surface roughness, and phase distribution is essential to reduce stress
concentration and corrosion, which can greatly improve their fatigue failure, wear, and corrosion
performance, thus enhancing long-term reliability.

Both NiTi SMAs and Ni-free SMAs can provide similar modulus with enhanced strength and
fatigue life matching between the replacement materials and the hard-tissues. Moreover, they possess
superior shape recovery capability to match the hard-tissue. Thus, they can fulfill almost all of the
structural and property requirements for various hard-tissue replacement applications. In addition,
some valid numerical (or finite element) modeling techniques are capable of establishing the mechanical
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and biological, as well as superelastic and biomechanical behavior that is dependent on the porosity of
these porous SMAs. With continuous amelioration of those methods, a more actual relationship will
be provided between the performance and fine pore structure, as well as attractive alternatives for
lengthy experimental evaluation, such as fatigue testing. It will promote the new design for hard-tissue
replacement applications.

Porous NiTi SMAs after surface modification exhibit good biocompatibility and acceptable Ni
leaching level, while porous Ni-free SMAs show excellent biocompatibility without any harmful ion
releasing. Furthermore, some extra efficiency-related improvements, such as bioactive layer (e.g., HA
protective film), on the pore surfaces to enhance the functionality of bone in-growth, wear resistance,
and antibacterial character, can be also implemented. In order to improve the long-term reliability,
hybrid coating (such as bioactive nanofiber hybrids coating) and in-situ surface modification should
be the future trend for surface modification of porous SMAs.

Consequently, porous SMA is considered one of most competitive candidate for hard-tissue
replacement materials. Porous NiTi SMAs after surface modification are suitable for relatively
short-term applications (e.g., the implants are used in the patients of more than 80 years old and they
usually exist in the human body for less than 10 years) under high and complex loading conditions
according to the current experimental results. However, the long-term applications should be further
evaluated depending on more evidence. While porous Ni-free Ti-based SMAs seem suitable to apply
under relatively low loading condition for a longer period (more than 10 years, e.g., adopting in the
younger patients of aged 60–79) until now. We believe that porous Ni-free SMAs will be the most
competitive candidate for hard-tissue replacement applications by further improving their mechanical
and superelastic properties.

Nevertheless, the human body is a very complex organic system, which may cause an
unpredictable adverse reaction when the devices with some unsolved problems are implanted into it.
There are several aspects need to be further studied.

The first, the porous NiTi and Ni-free Ti-based SMAs are mainly prepared by PM methods, which
would easily cause high oxygen content (or another impurity) in materials by dissolving in the matrix
or forming oxides inside the matrix [210]. Moreover, it is well known that the properties of Ti and its
alloys are very sensitive to interstitial elements, such as O, N, C, and H [264]. The Ms temperature
would reduce to very low due to the presence of O. Thus, porous NiTi and Ni-free SMAs behave
totally different mechanical or superelastic behaviors to dense forms at the same nominal composition.
Moreover, the secondary phases induced due to high content interstitial elements would greatly
deteriorate the fatigue and corrosion properties for porous Ni-free and NiTi SMAs. Thus, the contents
of these interstitial elements, especially oxygen, must be controlled to a very low level, and it seems an
effective method to prepare powder and sintering under a reductive atmosphere.

The second, for some bone replacements, such as total hip replacements, the properties of tensile,
bending, fatigue-corrosion, and wear-corrosion must be important in addition to compressive strength
and elastic modulus. Indeed, it is known that the tensile cyclic strain has been shown to affect the
morphology, directionality, and proliferation of soft tissue cells [265,266], and the biological activity
of bone cells in vitro [267]. However, most of the reported results come from compressive testing
for porous SMAs. Thus, tensile or bending should be extensively studied for porous NiTi and
Ni-free SMAs.

The third, although a rough “property-porosity” map has been built up for porous NiTi and
Ni-free SMAs, it is still difficult to predict exactly all of the properties based on its specific pore
structure. Moreover, except porosity, pore size and pore shape would also affect the performances.
Thus, a precision relationship map should be built up between the properties and pore structures by
future work.

Finally, the interaction between porous SMAs with tissue cells in the field of tissue engineering is
still unknown, and the study on how efficiently to evaluate this network performing as a part of the
circulatory system needs to be strengthened in the future.
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