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ABSTRACT The draft genome sequence of Rhodococcus erythropolis VKPM Ac-1659,
a putative oil-degrading strain, is reported. This genome sequence may provide bet-
ter insights into the diversity and evolution of the genes responsible for hydrocar-
bon degradation in soil microorganisms.

Representatives of the species Rhodococcus erythropolis, first described by Gray and
Thornton in 1928 as aromatic compound decomposers (1), are widely used in bioreme-

diation technologies as bioemulsifiers and hydrocarbon degraders (2). Here, we report the
draft genome sequence of R. erythropolis VKPM Ac-1659, a putative oil-degrading strain iso-
lated from oil-polluted soil collected about 753km from the city of Novosibirsk, Russia, and
deposited in the Russian National Collection of Industrial Microorganisms (VKPM; https://
vkpm.genetika.ru/).

For DNA extraction, the strain was grown on meat-peptone medium (3) at 29°C for 24h.
DNA was isolated using the ammonium salt treatment technique, as described previously (4).
A genomic library was prepared using the KAPA HyperPlus kit (Roche, Switzerland) according
to the manufacturer’s recommendations. Sequencing was performed on an Illumina MiSeq
system using a 2� 250-bp format and a MiSeq reagent kit; 1,745,674 read pairs were
obtained, yielding 866.4 million nucleotides.

Default parameters were used for all software unless otherwise specified. Quality
control of the raw reads was performed using the fastp v0.20.1 package (5). Read proc-
essing and genome assembly were conducted using the ZGA pipeline (6), with the fol-
lowing steps: (i) quality read trimming and adapter removal using BBDuk v38.75, (ii)
merging of the overlapping paired reads using bbmerge v38.75 (7), and (iii) de novo as-
sembly of the assembled treated reads using the SPAdes v3.13.1 assembler (8). The ge-
nome assembly consisted of 170 contigs with a total length of 6,612,324 bp and an N50

value of 664,755 bp. The final genome coverage was 74�. The G1C content of the as-
sembly was 62.38%. Analysis of the assembly quality using CheckM (9) showed both a
high level of completeness (99.94%) and a low level of predicted contamination (3.24%).
Genome-based taxonomic classification of the sequenced strains was performed using the
Type Strain Genome Server (TYGS) (10). The TYGS analysis identified strain VKPM Ac-1659 as
Rhodococcus erythropoliswith high confidence; the estimated digital DNA-DNA hybridization
(dDDH) values were greater than 85% for both the R. erythropolis type strains, NBRC 15567
and JCM 3201. Genome annotation was performed during submission of the data to NCBI
using the NCBI Prokaryotic Genome Annotation Pipeline (11).

Analysis of the genes responsible for oil degradation was carried out using NCBI
BLAST1 (12) with known oil degradation genes of both marine (13) and soil (14) microorgan-
isms as queries. Two gene clusters were detected, including genes for rubredoxins, alkane 1-
monooxygenase, and TetR family transcriptional regulators, the last of which might be
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responsible for the first step of alkane utilization, as described previously (15). One cluster
consisted of AC1659_RS04735, AC1659_RS04740, AC1659_RS04745, and AC1659_RS04750,
and the other consisted of AC1659_RS17110 AC1659_RS17115, AC1659_RS17120, and
AC1659_RS17130. An additional contribution to alkane metabolism is possibly made by two
NAD(P)/FAD-dependent oxidoreductases (AC1659_RS20515 and AC1659_RS22365) showing a
high level of similarity with their counterparts in Acinetobacter baylyi ADP1, known to metabo-
lize a wide spectrum of substrates, including phenol, benzyl alcohol, benzaldehyde, benzoate,
and their hydroxy derivatives (16). In turn, the genes for polycyclic aromatic hydrocarbon deg-
radation were not identified.

Data availability. The genome sequence has been deposited at NCBI GenBank and
is available under accession number JAGVVT000000000.1. The raw sequencing reads
are available in NCBI SRA under accession number SRX10910539.
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