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Cells in tissues communicate by secreted growth factors (GF) and
other signals. An important function of cell circuits is tissue home-
ostasis: maintaining proper balance between the amounts of
different cell types. Homeostasis requires negative feedback on
the GFs, to avoid a runaway situation in which cells stimulate each
other and grow without control. Feedback can be obtained in at
least two ways: endocytosis in which a cell removes its cognate GF
by internalization and cross-inhibition in which a GF down-regulates
the production of another GF. Here we ask whether there are
design principles for cell circuits to achieve tissue homeostasis. We
develop an analytically solvable framework for circuits with multi-
ple cell types and find that feedback by endocytosis is far more
robust to parameter variation and has faster responses than cross-
inhibition. Endocytosis, which is found ubiquitously across tissues,
can even provide homeostasis to three and four communicating cell
types. These design principles form a conceptual basis for how
tissues maintain a healthy balance of cell types and how balance
may be disrupted in diseases such as degeneration and fibrosis.
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Tissues are made of several types of cells, including organ-
specific parenchymal cells, fibroblasts, macrophages, and

endothelial cells. For optimal function, tissues must maintain
proper ratios of these component cell types (1–3). In many tis-
sues, cell-type proportions are kept constant despite the fact that
cells continually turn over. This feature is called tissue homeo-
stasis. In tissues such as liver and lung, homeostasis is often re-
stored even after damage or perturbation (4–11). Loss of homeostasis
is a basis for diseases: Loss of a cell type characterizes degenerative
diseases, whereas hyperactivity of a cell type occurs in fibrosis.
Maintaining tissue homeostasis is challenging, because cells

must control their proliferation rates and death/removal rates. If
removal exceeds proliferation, cell numbers decline to zero. If
proliferation exceeds removal, cell numbers increase until they
reach a limiting factor (carrying capacity) which is defined either
by extrinsic factors such as oxygen and nutrients or within tissues
by spatial constrains (12–16). Therefore, cells must use control
circuits to adjust their proliferation and removal to reach a
constant concentration (17), especially for cell types such as
macrophages that need to be maintained far below their carrying
capacity in the tissue (Fig. 1 A and B). What these control circuits are
and what design principles guide their structure are currently unclear.
Principles for cell number homeostasis were recently eluci-

dated for a one-cell-type case, for CD4+ T cells (14, 18). The
T cells show autocrine feedback control in which they secrete
and sense the cytokine IL-2. Secrete-and-sense is a common
signaling motif found also in bacteria and yeast (19–21). The
effects of IL-2 are paradoxical, because it enhances both pro-
liferation and death of the T cells. This control leads to a stable
situation where a 30-fold range of initial T-cell concentrations
converges over time to a steady-state concentration that varies
less than twofold and lies far below the carrying capacity of the
system. This fixed point is called a stable ON state [see also
homeostasis in vivo (22, 23)]. The stable ON state is due to a
dynamic balance between proliferation and death. The system

also has another fixed point: Below a certain initial concentra-
tion of T cells the population decays to zero cells, converging to a
stable OFF state (14, 18). A stable OFF state in addition to a
stable ON state is a form of bistability (24–28). The OFF state
may help to avoid unwanted fluctuations in which a small group
of cells expands to give rise to a new tissue.
To approach the complexity of a multicell-type tissue there is

need to explore circuits of more than one cell type. Unlike T cells,
which secrete their own growth factors (GFs), in many tissues the
GFs for each cell type are supplied by other cell types. To address
this complexity in a controlled situation Zhou et al. (29) studied in
detail an in vitro coculture of two cell types, fibroblasts (pri-
mary mouse embryonic fibroblasts, FB) and macrophages (bone-
marrow-derived macrophages, MP) (29). Three key features were
found by tracking cell dynamics at high resolution (Fig. 1C): (i) an
ON state: A 2,500-fold range of initial FB and MP concentrations
all converge within 14 d to steady-state concentrations that vary
less than fourfold and maintain this steady state in a dynamic
balance of proliferation and death, (ii) an OFF state: There is a
range of low concentrations of MP and FB which decay to zero
cells, and (iii) an ON–OFF state: FB above a certain concentration
can grow without MP, indicating a third fixed point with only one
cell type.
The coculture system defines a two-cell circuit in which cells

communicate by GF secretion. The interactions in this circuit were
mapped (29) (Fig. 1D). Each cell type secretes a GF required by the
other cell type (FB require PDGF and MP require CSF1). Fur-
thermore, CSF1 inhibits PDGF production in FB (cross-regulation),
and both GFs are primarily removed by receptor binding and in-
ternalization (endocytosis). Finally, FB also have an autocrine loop
where they secrete PDGF, thus allowing growth without MP (29).
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These findings raise several questions. What is the feedback
loop that leads to homeostasis? What other circuits are possible?
Are there principles that can tell us which circuits and types of
feedback are more functional than others? Given that real tissues
are typically made of at least four cell types (parenchymal cells,
macrophages, fibroblasts, and endothelial cells), can two-cell circuits
be scaled up to provide homeostasis to more than two cell types?
To address these questions we study cell circuits theoretically by

introducing an analytically solvable framework for a wide class of
circuits, aiming to use the coculture circuit as a starting point to
define principles for homeostatic circuits. We prove a design prin-
ciple which is necessary for robust tissue homeostasis within our
framework of circuits, namely that the GF for the cell far from
carrying capacity must be down-regulated in a negative feedback
loop. There are two possible mechanisms for this feedback. The first
is by cross-inhibition through gene regulation, and the second is by
receptor binding of the GF and internalization. The latter mech-
anism, known as endocytosis, occurs when cells internalize and
degrade their cognate GFs by well-understood molecular mecha-
nisms (30–34).
Endocytosis is ubiquitous in tissues and provides systems-level

function to intracellular pathways (33, 35–38). There have been
fewer studies addressing its computational/circuit role on the

level of tissues. An elegant exception is a recent study on cyto-
kine endocytosis that showed that the balance between diffusion
and endocytosis-based consumption defines local cell neighbor-
hoods of a specific size (39). We find here a key regulatory role
for endocytosis: Feedback by endocytosis can provide tissue
homeostasis and is faster and more robust than the alternative
feedback mechanism of cross-inhibition by the other GF. We
finally demonstrate that endocytosis in modular cell circuits can
provide homeostasis to three and four cell types simultaneously.

Results
Model for the FB–MP Coculture Circuit Explains Observed Dynamics.
We begin by developing a model of the FB–MP circuit of Zhou
et al. (29) to describe the in vitro dynamics of the two cell types.
Each cell type secretes a GF that enhances the proliferation rate
of the other cell type: FB cells (X1) secrete CSF1 (C12), and MP
cells (X2) secrete PDGF (C21) (Fig. 1D). We exclude spatial
distributions and instead use a well-mixed (or mean-field) ap-
proximation in which all cells see the same concentration of GFs.
The model also neglects cell contact and chemotaxis effects.
The dynamics of the cells are therefore defined by equations in

which cells can divide and are removed (e.g., by apoptosis)
according to rates that are affected by the concentration of the
secreted factors (Eqs. 1 and 2) (40, 41):

dX1

dt
=X1

�
λ1hðC21Þ

�
1−

X1

K

�
− μ1

�
[1]

dX2

dt
=X2ðλ2hðC12Þ− μ2Þ. [2]

Here λi and μi are the proliferation and removal rates of cell
type Xi, respectively. K is the carrying capacity at which prolifer-
ation rate of FB (X1) drops to zero. We assume that X2 <<K,
because macrophages were shown to be far below their carrying
capacity in the coculture experiments (29). The effect of each GF
on its target cell occurs by binding of the GF to its cognate re-
ceptor on the target cells, as described by Michaelis–Menten-like
functions hðCijÞ=Cij=ðCij + kijÞ with halfway effect at kij.
The equations for the concentration of the GFs depend on

their secretion rates by cells and on their removal rates (endo-
cytosis, diffusion, and degradation). The equation for CSF1 (C12)
includes secretion by X1 cells at rate β12, endocytosis by X2 cells
at rate α12, and degradation/diffusion at rate γ:

dC12

dt
= β12X1 − α12X2hðC12Þ− γC12. [3]

We assume here that endocytosis works with Michaelis–Menten
kinetics with the same halfway point, hðCijÞ, as does the effect of
Cij on their target cells in Eqs. 1 and 2. We use the same halfway
point because both signaling and endocytosis depend on ligand
binding to the cognate receptor. This use of the same function
hðCijÞ makes the analysis simpler. Relaxing this assumption, by
using a different halfway point for internalization than for signal-
ing, does not affect the conclusions (SI Methods).
The equation for the second GF, PDGF (C21), is slightly more

complicated because PDGF expression is inhibited by CSF1, and it is
also produced by X1 cells in an autocrine signaling loop at rate β11
(Fig. 1D):

dC21

dt
= β21X2

k12
k12 +C12

+ β11X1 − α21X1hðC21Þ− γC21. [4]

Again, we use the same k12 as for signaling and endocytosis,
assuming that cross-regulation works through the same receptor
signaling pathway.
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Fig. 1. Homeostasis of cell numbers through circuits of communicating
cells. (A) An ON state exists when cell numbers converge to the same steady-
state concentration starting from a range of different initial conditions.
(B) The ON state requires careful regulation, because if proliferation and
removal rates are unequal cells rise to a high carrying capacity or decline to
zero. (C) A schematic phase portrait of the FB–MP coculture experiment,
showing its three fixed points: a stable OFF state (red), a stable ON state
(blue), and an ON–OFF state (green). (D) The FB–MP circuit topology:
CSF1 cross-inhibits PDGF gene expression, FB and MP endocytose their
GFs, and FB secrete PDGF. (Lower) Description of the interactions in
the circuits. (E) The phase portrait of the FB–MP circuit provided by the
model of Eqs. 1–4, using the biologically plausible parameter values
~λ1 = 3.7,   ~λ2 = 2.2,   ~μ= 1,   ~β12 =3.4,   ~β11 = 6.8,    and ~α12 = 10,   ~α21 = 1. The axes
are dimensionless cell numbers, with conversion factors to cell numbers shown.
Examples of trajectories that go to each fixed point are shown in color.
(F) Dynamics of the cell and GF concentrations for the trajectories highlighted
in E as well as two other trajectories for each fixed point.
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These equations, together with the parameter values, define
the dynamics of the FB–MP circuit (Fig. 1D). The equations
have 13 parameters. We reduced this down to eight dimension-
less parameter groups (Methods) using dimensional analysis.
Biologically plausible values for the parameters are given in
Tables 1 and 2.
We next asked whether the interactions captured by this model

are sufficient for a stable steady state of cell numbers. To answer
this, we use the fact that GF dynamics are faster (time scale of
minutes to tens of minutes) than the dynamics of cell populations
(time scale of days). We hence set GF equations (Eqs. 3 and 4) to
quasi steady state by setting the temporal derivative to zero (we
tested numerically that this is a good approximation for the dy-
namics; Fig. S1). As a result, GF concentrations are described by
algebraic equations. Solving for the steady state of the GFs we end
up with two rate equations for the cells.
We find that these equations describe the experimentally ob-

served dynamics well with biologically plausible parameters
(Tables 1 and 2). The phase portrait of the equations shows three
fixed points (ON, OFF, and ON–OFF) (Fig. 1E). A wide range
of initial cell concentrations converge to the same steady-state
level—the ON state. There is also a basin of attraction to the
OFF state, defined as the set of initial conditions that flow to
zero cell concentrations. The green curves show that even
without MP (X2) FB (X1) still reach a high steady-state level, the
ON–OFF state (Fig. 1F).
The existence of three fixed points occurs for a wide range of

model parameters. One can vary GF production rates (β) by
10-fold, endocytosis rates (α) by 100-fold, and proliferation to
removal ratios λ=μ by 10-fold without losing the ON state. At
other values of the parameters one or two of the fixed points can
be lost, leading to loss of one or both cell types regardless of
initial conditions. These altered parameter sets thus provide
phenotypes similar to degenerative diseases (42, 43).

An Analytical Framework for Two-Cell Circuit Topologies with
Endocytosis and Cross-Regulation. We next asked how unique
the observed FB–MP circuit is in terms of its ability to maintain
ON and OFF fixed points. To address this, we consider all possible
two-cell circuit topologies which include the types of interactions
seen in the coculture circuit. We use a mathematical screening
approach that was pioneered in other contexts, such as to discover
circuits for robust morphogenesis (44–50), exact adaptation (51, 52),
ultrasensitivity (53), bistability (54), cell polarization (55, 56), and
fold-change detection (57, 58). An advantage of the present ana-
lytically solvable framework is that we need not numerically scan
different parameters, which would entail millions of numerical
runs per topology; instead, we deduce the fixed point structure of
the phase portrait analytically (58).
We considered all circuit topologies that differ from the circuit

depicted in Fig. 1D by including or lacking the following inter-
actions. (i) Each GF can be removed by endocytosis by the target
cell type, or instead be removed primarily by degradation/diffu-
sion. (ii) Each cell can secrete its own GF, forming an autocrine

loop, or have no autocrine loop. (iii) Each GF can up- or down-
regulate the production of the other GF, by activating or
inhibiting gene expression, or have no such cross-regulation.
Together, these possibilities make up 144 different topologies
(Fig. S2) (Fig. 1D). The FB–MP circuit described above is one of
these 144 possibilities.
The dynamics of each circuit are therefore defined by equa-

tions for cell dynamics which are the same as Eqs. 1 and 2. The
equations for the concentration of the GFs are the same as Eqs.
3 and 4 except for allowing the cross-regulation terms to include
up-regulation, down-regulation, or no interaction in any combi-
nation. All of these possibilities can be written in a single set of
equations:

dC12

dt
= β12X1

�
1−

1
2
θð1+ θÞ+ θhðC21Þ

�
+ β22X2 − α12X2hðC12Þ− γC12 [5]

dC21

dt
= β21X2

�
1−

1
2
ωð1+ωÞ+ωhðC12Þ

�
+ β11X1 − α21X1hðC21Þ− γC21, [6]

where the numbers θ and ω are equal to 1, −1, or 0 to represent
the sign of the interactions. θ and ω= 1 represent activation
[that is, Cij=ðkij +CijÞ], θ and ω=−1 represent inhibition
[namely, kij=ðkij +CijÞ], and θ and ω= 0 correspond to no in-
teraction. Each topology can further have α12 = 0 or α21 = 0,
meaning that endocytosis of that GF is negligible compared with
the removal by degradation/diffusion. Finally, circuits can have
β11 = 0 or β22 = 0 representing no autocrine secretion. The FB–
MP circuit, for example, has θ= 0, ω=−1, α12,α21 > 0, and
β22 = 0, β11 > 0. Each of the 144 topologies has the same eight
dimensionless parameter groups (Table 2) as the FB–MP circuit
of Eqs. 1–4 (the FB–MP circuit has one of these groups equal to
zero because β22 = 0).

A Stable ON State Requires Down-Regulating the GF for the Cell That
Is Far from Carrying Capacity. We asked which circuit topologies
among the 144 can reach a robust steady state with a defined
ratio of the two cell types (an ON state). We computed the
steady states of the circuits by solving for the nullclines ( _X1, _X2 = 0)
(59). By analytically solving the shape of the nullclines in each of
the 144 circuits we find a necessary and sufficient condition for a
circuit to have a stable ON state (at least for some parameter
values; see SI Methods). This condition is that the GF (C12) that
drives the cell that is far from carrying capacity (X2) must be down-
regulated. Without this condition, the level of X2 cells grows
without bound (until reaching a high carrying capacity not specified
in the model).
There are two ways that this down-regulation can occur. The

first is endocytosis of C12 by X2 cells. The second is by cross-
inhibition of C12 production in X1 cells by C21. Furthermore,

Table 1. Model parameters

Parameter Biological meaning Biologically plausible value Source

λi Maximal proliferation rate of Xi cells ∼0.1 h−1 BNID 111159, 101560
μi Removal rate of Xi cells 10−2 to 5 × 10−2 h−1 BNID 101940 (40)
K Carrying capacity of X1 cells ∼10−3 cells per μm3 77
kij Binding affinity (Kd) of growth factor Cij 3 × 10−2 to 3 × 10−1 molecules per μm3 78, 79
βij Maximal secretion rate of growth factor Cij by Xi cells 10 to 102 molecules per cell per minute BNID 112718
αij Maximal endocytosis rate of growth factor Cij by Xj cells 102 to 103 molecules per cell per minute (80) BNID 112725
γ Degradation rate of growth factors 0.01 to 1 h−1 (29)

BNID, BioNumbers ID number.
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there must not be autocrine secretion of C12 by X2 cells, other-
wise the ON state is unstable (in the case of C21 cross-inhibiting
C12) or has a very small basin of attraction (in the case of en-
docytosis of C12; see SI Methods) (Fig. 2A). This necessary and
sufficient condition on the circuit topology is found in 48 of
the 144 topologies.
Importantly, we also screened two-cell circuits in which both

cell types are far from carrying capacity (Fig. 2B). We find that
none of the 144 possible circuits can show a stable ON state:
Such circuits, modeled by deleting the carrying capacity term K
in Eq. 1, either degenerate to zero cells or show cell numbers
that climb to infinity (and eventually reach some high, non-
modeled, limiting factor) (Fig. 2C). This statement, proved in SI
Methods, will become relevant when we consider three- and four-
cell circuits below. We also tested the case in which both cells
have a carrying capacity (by different limiting factors); in this
case regulation makes little difference, and both cell types can
reach a stable ON state close to their carrying capacity even
without down-regulating the GFs (Fig. 2 D and E).

Endocytosis Is Important for Resilient Circuits That Recover Quickly
and Are Robust to Parameter Fluctuations. According to our design
principle, homeostasis depends on negative feedback on C12, either
by endocytosis or cross-regulation. In the experimental FB–MP
circuit, endocytosis seems to be the dominant mode of GF removal
(29). One may ask why endocytosis is used to stabilize the circuit
instead of cross-inhibition of C12 by C21.
To address this, we compare two circuits: the first has endocy-

tosis of C12 by X2 (without cross-regulation between the GFs) and
the second has no endocytosis but has cross-regulation in which
C21 down-regulates C12 (Fig. 3A). To compare the circuits on
equal footing we use mathematically controlled comparison (60).

In this approach, one keeps equal as many internal parameters
and external dynamical features of the circuits as possible.
For a fair comparison we therefore demand that the concen-

trations of cells X1 and X2 and GFs C12 and C21 in the ON and
ON–OFF states be the same between the two circuits. This
equality can be achieved while demanding equal values of six out
of the eight dimensionless parameters. The remaining two pa-
rameters must vary between the circuits, the endocytosis rate of
C12 (a12) and the production rate of C12 (β12), because these rates
define the essential topological difference between the two cir-
cuits (Methods).
We plot the phase diagram for the two circuits for biologically

plausible parameters (Tables 1 and 2) in Fig. 3A. We find that
the circuit with cross-inhibition has a much larger basin of at-
traction for losing X2 cells or both X1 and X2 cells (gray region in
Fig. 3A). The circuit with endocytosis has a very small basin of
attraction to the OFF state and a basin of attraction of area zero
to the ON–OFF state, since adding even a small number of X2
cells leads to the ON state.
In addition, we compared the response time of the two circuits

to reach the ON state by computing the eigenvalues of the Ja-
cobian at the ON state (Fig. 3A). We find that the circuit with
endocytosis reaches the ON state about eightfold faster than the
circuit with cross-inhibition.
We also tested the impact of changing the parameters on the

existence of fixed points in the two circuits. Changing the bio-
chemical parameters in the model can lead to losing either the
ON state or the ON–OFF state, or both. Losing the ON state
means that for every initial condition of X2 we end up losing this
cell type. We find that the circuit with endocytosis is more robust
to fluctuation in parameters, whereas the circuit with cross-
inhibition is closer in parameter space to losing X2 or losing
both cells (Fig. 3B and Fig. S4).
We conclude that endocytosis is a more robust and rapid

regulatory mechanism than cross-inhibition for attaining a stable
ON state.

Effects of Receptor Internalization, Down-Regulation, and Sensory
Adaptation. The model described so far (Eqs. 1–6) did not ex-
plicitly include the GF receptor dynamics. In this section we
analyze the effects of considering the receptors explicitly.
We begin with the effect of negative feedback in which signal

through the receptor causes a down-regulation of receptor ex-
pression (by transcriptional or posttranscriptional effects). Such

A D

E

B

C
X1 X2

C12

C21

X1 X2

C12

C21

 Neccessary and Sufficient
for a stable ON state

OR

WITHOUT

StableNOT Stable

X1 X2

C12

C21

X1 X2

C12

C21

X1 X2

C12

C21

X1

X2

X1 X2

C12

C21

X1 X2

C12

C21

X1

X2

carrying
capacity

of X1

carrying
capacity

of X2

endocytosis

cross-inhibition

autocrine

Fig. 2. A necessary and sufficient condition for a stable ON state in cell circuits. (A) The GF for the cell that is far from carrying capacity (C12) must be inhibited
either by endocytosis or by cross-regulation and must have no autocrine loop. (B) Circuits in which neither cell type is close to carrying capacity do not have a
stable ON state. (C) Stream plot of one of the circuits in B shows that cell numbers either degenerate to zero (marked in red) or grow without bound.
(D) Circuits in which both cells are close to carrying capacity are stable with no need for cross-regulation or feedback. (E) Stream plot of one of the circuits in
D shows that even without regulation on the GFs cells reach either an OFF state (marked in red) or an ON state (marked in blue).

Table 2. Dimensionless model parameters

Dimensionless
parameter Definition

Biologically plausible
range

~λi λi=μi 2 to 10
~μ μ2=μ1 ∼1
~β12 β12K=γk12 10−1 to 10
~β22 β22k21=β12k12 10−2 to 1
~β11 β11K=γk21 10−1 to 10
~α12 α12k21=β21k12 1 to 102

~α21 α21K=γk21 1 to 102
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negative feedback can in principle occur in GF signaling (61, 62).
To model down-regulation we explicitly add an equation for the
receptor in cell type i: dRi=dt= βRif ðSÞ–αRiRi, where the signal S is
due to Michaelis–Menten binding of the GF: S=RiCji=ðkji +CjiÞ
and f ðSÞ= kS=ðkS + SÞ is a decreasing function causing the down-
regulation. At large signal (S>> kS), we find at steady state that
Ri,st decreases with GF as Ri,st =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βRi=ðαRiCji=ðkji +CjiÞÞ

p
. Plugging

Ri,st into the model equations, we find that all terms with
Cji=ðkji +CjiÞ need to be replaced with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cji=ðkji +CjiÞ

p
. The re-

ceptor parameters βRi and αRi can be collapsed into the model
parameters.
Simulating the dynamics results in very similar phase portraits

of the original model (Fig. S5A). We conclude that negative
feedback that works on receptor level does not make a significant
difference, at least in the simple framework we consider here.
Next, we study the impact of endocytosis on receptor levels.

Endocytosis, with receptor internalization and degradation, acts
to reduce both GF and receptor levels. We model receptor dy-
namics in cell type i as a balance between production, removal by
endocytosis, and nonendocytosis removal:

dRi

dt
= βRi − αji

Cji

kji +Cji
Ri − αRiRi. [7]

At steady state, receptor numbers decrease due to endocytosis:
Ri,st = βRi=ðαjiðCji=kji +CjiÞ+ αRiÞ. We next used this steady-state
receptor level term in the equations for cell and GF dynamics.
Thus, endocytosis rates of Cji and signaling rates due to Cji are
multiplied by Ri,st (SI Methods). This results in the same equa-
tions as before, but with renormalized parameters: Halfway
binding coefficients kij change to kijαRi=ðαRi + αijÞ and secre-
tion, endocytosis, and proliferation rates are multiplied by

βRi=ðαRi + αijÞ. Thus, the fixed-point structure of the model
remains invariant (Fig. S5B). The renormalized parameter val-
ues, using typical receptor production and removal rates, result in
minor changes to the biologically plausible parameter set (SI
Methods).
We also considered the effect of exact sensory adaptation on

the receptor (e.g., by covalent modification). We analyzed two
models for sensory adaptation (52, 63), an incoherent feedfor-
ward loop (I1FFL) (64) and an integral feedback loop (65). In
these models, the receptor signaling output SðtÞ adapts precisely
to a set-point S0 for any constant level of input GF, Cst. At first
sight, exact adaptation abrogates the effect of the circuit (within
our separation of timescale approach in which cell dynamics is
much slower than GF dynamics) because the GF concentra-
tion is at steady state and its level no longer affects the cell’s
proliferation rates.
However, analysis shows that these adaptation circuits cannot

adapt exactly when the input CijðtÞ rises exponentially (exponential
ramp) (66). This exponential rise occurs when the cells that se-
crete Cij grow exponentially, Xi ∼ erit. The result is a steady-state
level of signaling that depends on the exponential growth rate of
the cells, S= f ðriÞ.
Analyzing this situation shows that exact adaptation cannot

support an ON stable state when one cell is far from carrying
capacity. The reason is that the cell with carrying capacity stops
growing when it reaches its carrying capacity. Hence, its growth
rate ri drops to zero and can no longer pull the adapting circuit
away from its steady-state output. As a result, there is no feedback
on the cell far from carrying capacity to avoid instability. Thus, we
predict that the cell away from carrying capacity must not have
exact adaptation in the receptor signaling for its cognate GF.
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The Two-Cell Circuits Can Scale Up to Form a Modular Circuit for
Homeostasis of a Tissue with Three and Four Cell Types. We finally
consider a tissue made of more than two cell types. We consider,
for example, a tissue made of four types of cells: parenchymal
cells, macrophages, fibroblasts, and endothelial cells (Fig. 4A) or a
set of three of these cell types (Fig. 4 B and D). These cells
communicate by secreted GFs (or, in the case of endothelium, by
oxygen). The number of possible circuit topologies increases
rapidly with the number of cell types. There are ∼ 1012 ways to
connect three cell types using the present class of circuit topolo-
gies, and ∼ 1024 different ways for four cell types (Methods). An
exhaustive screen is therefore unfeasible. Even counting only cell
circuits made of modules, each with a two-cell circuit topology,
results in ∼ 106 different circuit topologies for three cells types and
∼ 1012 for four cell types (Methods).
As an alternative to a full screen we take the more modest aim

of providing a proof of principle for the possibility of homeo-
stasis by plausible three- and four-cell circuits. For this purpose
we study a three-cell circuit made of modules, each with the two-
cell circuit topology analyzed above (Fig. 4B).
In this three-cell circuit model (Methods) fibroblasts and pa-

renchymal cells are close to their carrying capacity, whereas
macrophages are far below carrying capacity. Macrophages se-
crete GFs for the other two cell types. Fibroblasts and paren-
chymal cells communicate with macrophages using the same two-

cell circuit design observed in the FB–MP circuit (Fig. 4B). We
find that this three-cell circuit shows a stable ON state, in which
cells converge to steady-state cell numbers from a wide range of
initial conditions. Below a threshold number of cells, the circuit
reaches an OFF state, in which all cells flow to zero (Fig. 4C).
The ON state has a large basin of attraction and a wide range of
feasible parameters (each parameter can be changed by at least
10-fold around a reference set of plausible parameters and still
maintain stability).
We next study a four-cell circuit with endothelial cells which

are far below carrying capacity (Methods). Endothelial cells
supply oxygen to all other cell types which down-regulates the
production rate of VEGF by macrophages (67) (Fig. 4D). We
find that this four-cell circuit is also stable, showing stable ON
and OFF states (Fig. 4E).
Interestingly, the present four-cell circuit has one module that

is inherently unstable on its own. This is the module made of two
cell types that are both far from carrying capacity—endothelial
cells and macrophages. Such a circuit cannot show an ON state
in isolation: Cell numbers either degenerate to zero or increase
to infinity. This module, however, is stabilized and shows a stable
ON state in the presence of the other two cell types.
In Fig. S6 we show several other three-cell and four-cell circuit

topologies that have robust homeostasis. For example, homeo-
stasis can be achieved by a minimal circuit with only two endo-
cytosis interactions (Fig. S6 A, B, and D). This raises interesting
questions about design principles for three-cell and four-cell
circuits. Based on a numerical test of several hundred three-
cell and four-cell circuits we hypothesize the following general-
ization of the present two-cell circuit principle: A necessary
condition of a stable ON state is that for each cell type far from
carrying capacity at least one of its GFs must be down-regulated
(by endocytosis or cross-regulation).

Discussion
We present a mathematical framework for cell circuits that ro-
bustly reach homeostasis by means of communication by se-
creted GFs. When both cells are close to carrying capacity, an
ON steady state can be reached without regulation. When nei-
ther has a carrying capacity regulation cannot achieve an ON
steady state. When one cell type has a carrying capacity we find a
necessary condition for reaching homeostasis in this class of
circuits: The GF for the cell type that is far from carrying ca-
pacity must be down-regulated. There are two ways of imple-
menting this condition: endocytosis or inhibitory cross-regulation
by the other GF. We find that endocytosis is a more robust and
rapid mechanism than cross-regulation for cell circuits to stabi-
lize their ON state. Finally, we show that endocytosis can provide
robust homeostasis to more than two cell types and we model a
tissue made of four types of cells: parenchymal cells, fibroblasts,
macrophages, and endothelial cells.
Endocytosis in cell circuits provides negative feedback control

because a cell removes its own GF. If endocytosis is the domi-
nant mode of GF removal, compared with GF degradation, it
can provide robust homeostasis. Endocytosis enables circuits to
recover faster from perturbations and be more robust to pa-
rameter fluctuations than cross-regulation. An intuitive reason
for the advantages of endocytosis is that endocytosis allows cells
to directly control the level of their own GFs, without being
dependent on other cell types to sense the GFs they secrete. If
there is a fluctuation of too many X2 cells they endocytose and
remove more C12, leading to lower X2 proliferation and to sta-
bilization back to the fixed point.
The need to provide homeostasis and at the same time to

avoid disease leads to an interesting tradeoff. Cell circuits with
both ON and OFF states show a tradeoff between the sizes of the
basin of attraction to these fixed points. A large basin of at-
traction for the ON state of the tissue is important to ensure
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recovery from injury or inflammation, whereas a large basin of
attraction to the OFF state is important for the prevention of
spurious tissue growth from a few cells. Here, we showed that
endocytosis provides a large basin of attraction for the ON state
compared with cross-inhibition.
We also analyzed additional modes of receptor-based negative

feedback. We find that receptor down-regulation and receptor
internalization by endocytosis do not have a sizable effect on the
dynamics. Exact sensory adaptation can abolish the circuit
function, because it makes the cells insensitive to the level of GF.
We predict therefore that the cell far from carrying capacity must
not have exact adaptation for its cognate GF.
One may ask why cells in tissues secrete GFs for the other cell

types, instead of a design in which cells do not cross-communicate
but instead have autocrine circuits that keep each cell type in
homeostasis as in the T-cell/IL2 system, or fibroblasts in the Zhou
et al. (29) system. We believe that communication via GFs across
cell types may offer advantages: Macrophages cannot proliferate
on their own but require the other cell type (fibroblasts), pre-
venting unwanted growth of a single cell type outside of a tissue
context. Moreover, GFs can signal the need for function from
other cell types, as when macrophages (as well as other cell types)
sense a lack of oxygen and signal this to endothelial cells using
VEGF (67).
The cell circuits presented here may be useful in recovery

from situations that perturb cell number ratios, such as in-
flammation. During inflammation, macrophage number rises
significantly (68), thus disrupting the balance between cell types
in the tissue. Homeostatic cell circuits may help cells to restore
balance after inflammation. The present approach may also help to
understand certain disease states, such as degeneration and fibro-
sis, as states of “bad” parameters or initial conditions, or loss of a
necessary regulation. For example, the OFF state can result in loss
of all cell types reminiscent of degeneration. In addition, changing
the biochemical parameters in our model can lead to a state in
which one of the cell types is lost (e.g., macrophages), leading to an
excess of the other cell type (fibroblasts), which may lead to
overactive ECM production characteristic of fibrosis.
We also considered homeostasis of three and four cell types,

which is a model for typical tissues. We find that negative feedback
by endocytosis in a modular circuit can provide homeostasis to
three and four cell types. Future work can scan additional multi-
cell circuits, although a complete survey is challenging due to their
very large number. One possible way forward is to use the as-
sumption that natural circuits can show the property of modu-
larity. Scanning three- and four-cell circuits made from modules of
two cell types may make the computational scan more feasible.
Such modularity seems to commonly occur on different levels of
biological organization and can arise based on natural selection
for modular goals (69–72).
Future work can address issues of spatial heterogeneity, che-

motaxis, cell contact, and other interactions found in natural
tissues. It would be interesting to test whether endocytosis
feedback mechanisms are important for homeostasis in stable
tissues (tissues where parenchymal cells self-renew) such as liver,
kidney, and pancreas in vivo. The role of endocytosis in keeping
homeostasis of cell numbers can be tested using synthetic cell
circuits or bioengineered tissues, which may demonstrate the
differences between cross-inhibition and endocytosis (73–75).
Future work can also address tissues in which stem cells renew
some of the cell types. As molecular information accumulates on
cell communication in tissues we hope that the present frame-
work can help to provide meaning to molecular interactions such
as endocytosis within a systems-level context.

Methods
Dimensional Analysis of the Two-Cell Circuit Model. We start with the model
for the two-cell circuits in our screen:

_X1 =X1

�
λ1hðC21Þ

�
1−

X1

K

�
− μ1

�
[8]

_X2 =X2ðλ2hðC12Þ− μ2Þ [9]

_C12 = β12X1

�
1−

1
2
θð1+ θÞ+ θhðC21Þ

�
+ β22X2 − α12X2hðC12Þ− γC12 [10]

_C21 = β21X2

�
1−

1
2
ωð1+ωÞ+ωhðC12Þ

�
+ β11X1 − α21X1hðC21Þ− γC21. [11]

According to Buckingham’s pi theorem (76), there should be eight dimensionless
parameter groups for these equations. We accordingly define dimensionless vari-

ables ~X1 =X1=K,   ~X2 = β21=γk21X2,   ~C12 =C12=k12,   ~C21 =C21=k21,  and   ~t = μ1t
and obtain differential equations for the dimensionless variables (for con-
venience we do not keep the ∼ sign):

_X1 =X1

�
λ1
μ1

hðC21Þð1−X1Þ− 1
�

[12]

_X2 =X2
μ2
μ1

�
λ2
μ2

hðC12Þ− 1
�

[13]

μ1
γ

_C12 =
β12K
γk12

X1

�
1−

1
2
θð1+ θÞ+ θhðC21Þ

�
+
β22k21
β21k12

X2 −
α12k21
k12β21

X2hðC12Þ−C12

[14]

μ1
γ

_C21 =X2

�
1−

1
2
ωð1+ωÞ+ωhðC12Þ

�
+
β11K
γk21

X1 −
α21K
γk21

X1hðC21Þ−C21. [15]

Here hðCijÞ=Cij=1+Cij. Since μ1 � γ, we can set time derivatives in Eqs. 14 and 15

to zero. Defining dimensionless parameters, ~λ1 = λ1 =μ1,   ~λ2 = λ2=μ2,   ~μ= μ2=μ1,  
~β12 = β12K=γk12,   ~β22 = β22k21=β21k12,   ~β11 = β11K=γk21,   ~α12 = α12k21=β21k12, and
 ~α21 = α21K=γk21, we obtain the dimensionless model (for convenience we do not
keep the ∼ sign):

_X1 =X1ðλ1hðC21Þð1−X1Þ− 1Þ [16]

_X2 = μ  X2ðλ2hðC12Þ− 1Þ [17]

0= β12X1

�
1−

1
2
θð1+ θÞ+ θhðC21Þ

�
+ β22X2 − α12X2hðC12Þ−C12 [18]

0=X2

�
1−

1
2
ωð1+ωÞ+ωhðC12Þ

�
+ β11X1 − α21X1hðC21Þ−C21. [19]

The dimensionless model (Eqs. 16–19) has eight dimensionless parameters.
Note that the proliferation to removal ratios obey λ1, λ2 > 1, otherwise there
is no solution for a positive fixed point for the cells, and they only decay to
zero. The FB–MP circuit is given by setting θ= 0,ω=−1, β22 = 0.

Derivation of the Nullclines. The steady states of Eqs. 16 and 17 are (assuming
positive cell numbers X1,X2 > 0)

C12,st =
1

λ2 − 1
[20]

C21,st =
1

λ1ð1−X1Þ−1
. [21]

Note that for the steady state of C21 to be positive (Eq. 21), X1 must be below
its carrying capacity: X1 < 1− 1=λ1. When λ1 >> 1, X1 is bounded by its
carrying capacity.

Substituting these GF steady states (Eqs. 20 and 21) in Eqs. 18 and 19 yields
equations for the cell nullclines:

0= β12X1

�
1−

1
2
θð1+ θÞ+ θ

λ1ð1−X1Þ
�
+ β22 X2 −

α12
λ2

X2 −
1

λ2 − 1
[22]

0=X2

�
1−

ω

2λ2
ðλ2ðω+ 1Þ− 2Þ

�
+ β11X1 −

α21X1

λ1ð1−X1Þ−
1

λ1ð1−X1Þ− 1
. [23]
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Solving each of Eqs. 22 and 23 for X2ðX1Þ yields the two nullclines:

X2 =
λ2

α12 − λ2β22

�
1

1− λ2
+X1

�
1−

θ

2
ð1+ θÞ+ θ

λ1ð1−X1Þ
�
β12

�
[24]

X2 =
2λ2
�
X1α21 + λ21ð−1+X1Þ2X1β11 + λ1ð−1+X1Þð1+X1ðα21 + β11ÞÞ

�
λ1ð−2ω+ λ2ð−2+ω+ω2ÞÞð1+ λ1ð−1+X1ÞÞð−1+X1Þ . [25]

The points ðX1,X2Þ that solve Eqs. 24 and 25 (intersection of the nullclines)
are the fixed points of the system. Note that also the lines X1 = 0,X2 = 0 are
nullclines that intersect at the zero fixed point, X1,X2 = 0.

Mathematically Controlled Comparison Between Two Circuits. To compare the
two circuits in a mathematically controlled way, we assume the two
circuits have the same fixed points, and we solve the steady-state
equations (Eqs. 16–19) for the parameters instead of the cells and GFs.
We denote the ON-state level of cells and GFs by Xi,h,Cij,h. Substituting

this steady state in Eqs. 16–19, we get

0= λ1h
�
C21,h

��
1−X1,h

�
− 1 [26]

0= λ2h
�
C12,h

�
− 1 [27]

0= β12X1,h

�
1−

1
2
θð1+ θÞ+ θh

�
C21,h

��
+ β22X2,h − α12X2,hh

�
C12,h

�
−C12,h [28]

0=X2,h

�
1−

1
2
ωð1+ωÞ+ωh

�
C12,h

��
+ β11X1,h − α21X1,hh

�
C21,h

�
−C21,h. [29]

For the ON–OFF we have X1 =X1,l ,X2 = 0,Cij =Cij,l. Since the ON–OFF
state is also a fixed point, we can use it as well in the steady-state
equations:

0= λ1h
�
C21,l

��
1−X1,l

�
− 1 [30]

0= β12X1,l

�
1−

1
2
θð1+ θÞ+ θh

�
C21,l

��
−C12,l [31]

0= β11X1,l − α21X1,lh
�
C21,l

�
−C21,l . [32]

Solving Eqs. 26, 27, and 30 for the GF fixed points and substituting them in
Eqs. 28, 29, 31, and 32 we end up with four equations that depend on the
parameters and C12,l. We can solve these four equations for four different
parameters. We chose to solve for β11, β12, α21, c12,l:

β11 =
1

2X1,h

 
−2+ 2

�
−1+X1,h

��
−1+X1,l

�
λ1

X1,l
�
1+

�
−1+X1,h

�
λ1
��
1+
�
−1+X1,l

�
λ1
�

+

�
−1+X1,h

�
X2,h

�
−2ω+ λ2

�
−2+ω+ω2

���
X1,h −X1,l

�
λ2

! [33]

β12 =
2
�
1−X1,h

�
λ1
�
λ2 +X2,hð−1+ λ2Þðα12 − β22λ2Þ

�
X1,h

�
2θ+

�
−1+X1,h

��
−2+ θ+ θ2

�
λ1
�ð−1+ λ2Þλ2

[34]

Note that the only parameters that depend on the endocytosis rate of C12,

α12, are C12,l and β12. Therefore, for comparing a circuit with negative reg-
ulation of C12 but no endocytosis to a circuit with endocytosis, we can keep
six of the parameters (λ1, λ2, μ, β11, β22, and α21) and the fixed points
(xi,h, xi,l , cij,h, and c21,l) the same between the two circuits and change only
two parameters (α12and β12), and the ON–OFF fixed point of C12 (C12,l).

Counting More than Two Cell Circuits. To estimate the amount of different three-
cell circuits and four-cell circuits we count circuits with the maximal number of
secretedGFs. For three cells, each cell can secrete atmost twoGFs for all twoother
cell types. Therefore, there are atmost sixGFs. EachGF can either be secreted in an

autocrine signaling by its target cell or not (26), and can be either endocytosed by

its target cell or not (26). In addition, each GF can be up- or down-regulated by all

other two GFs for the cell type that secretes it or not [ð33Þ6]. Together, all
combination of these interactions results in ∼ 1012. Following the same calcula-

tion for four cells, there are 212212ð33Þ12 ∼ 1024 possible four-cell circuits.
Inmodular three-cell circuits eachGF canbeaffectedonlyby theGFsecreted in the

same two-cell circuitmodule. Therefore, for a three-cell circuitwith sixGFs (composed

of three two-cell modules) there are 1443 ∼106 different circuit topologies. For four-

cell circuits there are 1446 ∼1012 different modular circuit topologies.

Model for a Stable Three-Cell Circuit. The following Eqs. 37–43 describe the
three-cell circuit (Fig. 4B):

_C12 = β12X1 − α12X2
C12

1+C12
−C12 [37]

_C21 =
1

1+C12
X2 + β11X1 − α21X1

C21

1+C21
−C21 [38]

_C23 = β23
1

1+C32
X2 − α23X3

C23

1+C23
−C23 [39]

_C32 = β32X3 − α32X2
C32

1+C32
−C32 [40]

_X1 =X1

�
λ1

C21

1+C21
ð1−X1Þ− 1

�
[41]

_X2 =X2

�
λ2

C12

1+C12

C32

1+C32
− 1
�

[42]

_X3 =X3

�
λ3

C23

1+C23
ð1−X3Þ− 1

�
. [43]

Model for a Stable Four-Cell Circuit. The following Eqs. 44–53 describe the
four-cell circuit (Fig. 4D):

_C12 = β12X1 − α12X2
C12

1+C12
−C12 [44]

_C21 =
1
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X2 + β11X1 − α21X1

C21

1+C21
−C21 [45]
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1

1+C32
X2 − α23X3

C23

1+C23
−C23 [46]

_C32 = β32X3 − α32X2
C32

1+C32
−C32 [47]
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−1+X1,h
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−1+X1,l

�
λ1

�
− X1,h

1+ ð−1+X1,lÞλ1 +X1,l

�
1

1+ð−1+X1,hÞλ1 +X2,h

�
1− ωð−2+ λ2 + λ2ωÞ

2λ2

���
X1,h

�
X1,h −X1,l

�
X1,l

[35]

C12,l =

�
−1+X1,h

�
X1,l
�
2θ+

�
−1+X1,l

��
−2+ θ+ θ2

�
λ1
��
λ2 +X2,hð−1+ λ2Þðα12 − β22λ2Þ

�
X1,h

�
−1+X1,l

��
2θ+

�
−1+X1,h

��
−2+ θ+ θ2

�
λ1
�ð−1+ λ2Þλ2

. [36]
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_C4 = β4X4 − α4ðX1 +X2 +X3Þ C4

1+C4
−C4 [48]

_C24 = β24
1

1+C4
X2 − α24X4

C24

1+C24
−C24 [49]

_X1 =X1

�
λ1

C21

1+C21

C4

1+C4
ð1−X1Þ− 1

�
[50]

_X2 =X2

�
λ2

C12

1+C12

C32

1+C32

C4

1+C4
− 1
�

[51]

_X3 =X3

�
λ3

C23

1+C23

C4

1+C4
ð1−X3Þ− 1

�
[52]

_X4 =X4

�
λ4

C24

1+C24
− 1
�
. [53]
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