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ABSTRACT: Further complications associated with infection by severe
acute respiratory syndrome coronavirus 2 (a.k.a. SARS-CoV-2) continue
to be reported. Very recent findings reveal that 20−30% of patients at high
risk of mortality from COVID-19 infection experience blood clotting that
leads to stroke and sudden death. Timely assessment of the severity of
blood clotting will be of enormous help to clinicians in determining the
right blood-thinning medications to prevent stroke or other life-
threatening consequences. Therefore, rapid identification of blood-
clotting-related proteins in the plasma of COVID-19 patients would save
many lives. Several nanotechnology-based approaches are being developed
to diagnose patients at high risk of death due to complications from
COVID-19 infections, including blood clots. This Perspective outlines (i)
the significant potential of nanomedicine in assessing the risk of blood
clotting and its severity in SARS-CoV-2 infected patients and (ii) its synergistic roles with advanced mass-spectrometry-based
proteomics approaches in identifying the important protein patterns that are involved in the occurrence and progression of this
disease. The combination of such powerful tools might help us understand the clotting phenomenon and pave the way for
development of new diagnostics and therapeutics in the fight against COVID-19.
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■ INTRODUCTION

As of August 6, 2020, over 717 680 COVID-19-related deaths
had been reported worldwide.1 The intense and unprecedented
effort to develop vaccines and new diagnostic technologies
(including nanotechnologies2−4) for the rapid identification of
infected individuals offers the hope of eventually controlling this
pandemic. Nevertheless, emerging effects of COVID-19 in
addition to the well-known pulmonary symptoms (e.g.,
cardiovascular disorders5,6) are also of immediate concern.
A major syndrome related to COVID-19 is blood clotting,

which thus far is responsible for the deaths of ∼20−30%7,8 of
critically ill SARS-CoV-2-infected patients.9 This phenomenon
is not yet fully understood. However, a very recent report
suggests that one factor may be the presence of the ACE2
receptorthe same receptor that the coronavirus binds in order
to enter lung cells. This receptor is located on the surface of the
endothelial cells that line the blood and lymph vessels.10

Although blood-thinning medications are the obvious clinical
choice to control blood clotting, determining appropriate dosing
and the need for other aggressive strategies (e.g., blood
transfusion) are critical in preventing/controlling complications,
including stroke.9 Therefore, the development of new methods
for rapid assessment of the severity of clotting could be of
enormous help to clinicians. In addition, identifying the
important protein patterns that are involved in the clotting
process can help the scientific community to (i) better design

sensors for rapid assessment of clotting severity and (ii) design
therapeutic biomolecules/drugs to prevent/delay the clotting
process.
Nanomedicine has so far furnished a unique opportunity for

the development of robust and sensitive sensors.11−13 In
addition, nanomedicine has shown great potential to be
combined with proteomics approaches for disease detection
and biomarker discovery applications.14−16 In fact, analysis of
plasma proteins using advanced proteomics approaches is a well-
documented strategy for biomarker discovery studies.17

Identifying such biomarkers has a significant clinical capacity
not only for disease identification but also for finding the
underlying mechanisms involved in disease occurrence and
progression. One of the central challenges of the proteomics
approaches is the complexity of the plasma proteome together
with the vast dynamic range between the least and most
abundant plasma proteins.17 Therefore, the development of
strategies with the capacity to reduce the complexity and
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dynamic range of the plasma proteome may be useful for
biomarker discovery applications
This Perspective describes the potential role of nanomedicine

in point-of-care diagnosis of COVID-19 infection in patients at
high risk of blood clotting as well as in determining appropriate
treatment options by employing the synergistic role of
nanomedicine and proteomics approaches.

■ HOW DO VIRUSES INDUCE BLOOD CLOTS?
The mechanism behind the recently observed blood-clotting
phenomenon associated with COVID-19 remains unclear.
However, we have much more data on other respiratory viruses
such as SARS,MERS-CoV, H7N9, andH1NI. In fact, in patients
suffering from these respiratory tract infections, typical signs of
alteration in the coagulation system have been reported, such as
thrombosis in small vessels or pulmonary capillaries and fibrin
deposition or pulmonary hemorrhage.18−22 Similarly, in the
2003 SARS outbreak, signs of aberrant coagulation system
function included vascular fibrin thrombi associated with
pulmonary infarcts.23

Despite the current lack of information, it is plausible that the
interplay between the complement system, inflammation, and
the coagulation system plays a central role in thrombosis
formation in patients infected by SARS-CoV-2. Following any
acute injury or attack by pathogens, the complement and
coagulation systems are coordinately activated, regulating the
response by limiting hemorrhage and counterattacking the
invading pathogen.24−27 As its name implies, the complement
system complements the humoral immune system by enhancing
antibody-mediated immunity and increasing the ability of
phagocytic cells such as macrophages and neutrophils to
eliminate bacteria or viruses, attack and destroy pathogens in
membranes, and clear damaged cells.28 The complement system
is composed of around 30 proteins circulating in the blood.29

Upon any defense requirement, the complement proteins are
extravasated from blood vessels and execute their immune
function through different pathways.30

The coagulation system consists of platelets, endothelial cells,
and soluble blood proteins whose main responsibility is to
initiate coagulation at the site of an injury.31 The process of
coagulation takes place via an intrinsic or extrinsic pathway;

these pathways converge on factor X activation.32 The intrinsic
pathway is activated by the exposure of endothelial collagen
following injury inside the vascular system and involves plasma
factors XII, XI, IX, and VIII. In contrast, the much quicker
extrinsic pathway involves tissue factor (TF) and plasma factors
I, II, and VII and is activated by external trauma or injury.33 Key
cells such as platelets play a central role in hemostasis by
providing a surface upon which coagulation can take place and
by releasing various mediators contributing to hemostasis.26

Under normal conditions, the body can maintain a balance
between procoagulant and anticoagulant mechanisms. How-
ever, studies have shown that viruses and inflammatory cells can
induce activation of the immune system, which leads to massive
secretion of complement proteins and immunoglobulins and
alterations in all of the elements of the coagulation cascade. This
in turn creates an imbalance in the coagulation system,34 which
can lead to both thrombotic and hemorrhagic complications.35

Table 1 outlines the possible mechanisms by which viruses can
interfere with blood coagulation mechanisms.
In addition, viral infections are known to alter coagulation

proteins. For example, dengue viruses, which cause acute febrile
disease after transmission through the bite of an infected
mosquito, can decrease the activity of factors II, V, VII, VIII, IX,
X, and XII, resulting in massive bleeding in the most severe form
of the disease, dengue hemorrhagic fever.36 Recent data from
patients with SARS-CoV-2 indicate the presence of greatly
elevated levels of several system coagulation markers such as D-
dimer and fibrin/fibrinogen degradation products compared
with healthy controls.37,38

■ CURRENT NANOMEDICINE STRATEGIES FOR
DIAGNOSIS AND TREATMENT OF THROMBOSIS

One of the major outcomes of COVID-19-related blood clotting
is thrombosis. Theragnostic nanotechnologies have been
developed to (i) diagnose thrombosis early and (ii) deliver
thrombolytics/thrombosis inhibitors to the affected area. To
efficiently target and deliver therapeutics, nanoparticles should
be designed to target some thrombosis biomarkers. P-selectin, a
cell adhesion molecule on the surfaces of activated endothelial
cells and activated platelets; D-dimer, a fibrin degradation

Table 1. Possible Mechanisms by Which Some Viruses Interfere with the Coagulation Cascade, Causing Bleeding Disorders or
Thrombosis

mechanism description
usual pathological

outcome example(s) ref(s)

reduced platelet numbers or
changes in their function

increased adherence or activation of platelets or change in platelet number due to secretion of
autoimmune antibodies against platelets

hemorrhage • avian
influenza
(H5N1)

39, 40

• SARS

damage to endothelial cells • inhibits the anticoagulation properties of endothelial cells by reducing heparan sulfate
anticoagulant synthesis

thrombus formation herpes viruses 41, 42

• affects the production of coagulation regulatory substances such as protein C, a coagulation
inhibitor

• enhances the procoagulant properties of endothelial cells by production of tissue factor or
Von Willebrand factor (vWF)

• through attachment of inflammatory cells such as platelets or granulocytes, may reverse the
antithrombogenic properties of endothelial cells toward procoagulation

alteration of coagulation
proteins

decrease or increase the level of coagulation factor: e.g., increased fibrinogen or factor VII may
favor thrombosis, whereas decreased factors IX and X may lead to hemorrhage

either thrombus
formation or
hemorrhage

ebola virus 43

disruption of the function of
natural anticoagulant

viral infection can decrease anticoagulant substances such as protein C, protein S, or
antithrombin through either decreased synthesis or degradation by the host immune system

thrombus formation hantavirus 44

alteration in fibrinolysis decreased fibrinolysis due to increased serpin E1, an inhibitor of tissue plasminogen activator
(tPA), or decreased tPA, leading to hyperfibrinolysis

either thrombus
formation or
hemorrhage

SARS 45
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product; and E-selectin, a cell adhesion molecule that is
expressed by cytokine-activated endothelial cells, have been
reported to act as thrombosis biomarkers.46 (Figure 1).
The current endeavor for addressing thrombosis using

nanomedicine involves delivering nanoparticles loaded with
antithrombotic agents to the thrombus sites through targeting of
one or several proteins involved in coagulation (e.g., fibrin,
thrombin, or hydrogen peroxide (H2O2)). Alternatively,
targeting cells involved in the coagulation process, such as
activated platelets, via cell-binding ligands has also been
reported. Using H2O2-responsive boronate antioxidant polymer
(BAP) linked to fibrin-targeting lipopeptides, Kang et al. showed
that the nanoparticles could deliver tirofiban to the thrombus
site in rat models inhibiting the generation of H2O2, therefore
suppressing TNF-α and soluble CD40.47 Similarly, by the use of
iron oxide nanoparticle micelles functionalized with a fibrin-
specific binding peptide as well as bare nanoparticles, thrombus
sites have been detected using magnetic particle imaging.48

Ultrasmall superparamagnetic iron oxide nanoparticles coated
with fucoidan, a polysaccharide with high affinity for activated
platelets, have been shown to attach to P-selectin and assist with
in vivo diagnosis of thrombus formation.49 Similarly, liposome
nanoparticles surface-modified with cyclic Arg-Gly-Asp (RGD)
can also be targeted to the activated platelet receptor integrin
GPIIb-IIIa.50 Several other examples have also demonstrated the
feasibility of this approach (see examples in Table 2).

Although a wide range of targeted nanotechnologies have
been developed for theragnostic applications for thrombosis,
this approach has some shortcomings that may limit its future
applications. Upon contact of nanoparticles with complex
physiological fluids such as blood, a coating of biomolecules
(mostly proteins) covers their surface. This layer, called the
biomolecular/protein corona, gives a new identity to the
nanoparticles.51−53 The formation of a biomolecular corona
has several adverse effects54 on therapeutic nanoparticles;
important examples include shielding targeting species on the
surface of nanoparticles,55−57 creating an additional barrier at
the surface of drug-loaded nanocarriers,58 and creating different
biological identities across patients.59−64 Other issues such as
the inherent thrombogenicity of nanoparticles also need to be
considered. For example, TiO2 nanoparticles cause platelet
aggregation and therefore exacerbate thrombosis risk.65

■ POTENTIAL APPLICATION OF NANOMEDICINE
STRATEGIES FOR DIAGNOSIS AND TREATMENT
OF THROMBOSIS: THE ROLE OF
MASS-SPECTROMETRY-BASED PROTEOMICS

While the benefits of the conventional use of nanoparticles for
therapeutic applications in thrombotic patients may be affected
because of biomolecular/protein corona formation, this in turn
may create unique opportunities for diagnostic applications
(Figure 2).62,64 In fact, the composition of the biomolecular
coronas formed on the surface of identical nanoparticles strongly

Figure 1. Examples of (A) thrombosis-specific biomarkers and (B) different types of biomolecules that are used in targeted nanoparticles for diagnosis
and treatment of thrombosis. Abbreviations: tPA, tissue plasminogen activator; PPACK, D-phenylalanyl-L-prolyl-L-arginyl chloromethylketone.
Adapted with permission from ref 75. Copyright 2020 Elsevier. Some features were created with BioRender (www.BioRender.com).

Table 2. Representative Examples of Targeted Nanocarriers for Treatment of Thrombosis with Efficacy Validations in Rat or
Mouse Models

mechanism of action payloads nanocarriers refs

delivery of clot-busting
drugs

tissue plasminogen activator (tPA), hirulog, heparin, and
streptokinase

iron oxide; micelle; carbon capsule; liposome; and
copper

66−74

thrombin inhibitors D-phenylalanyl-L-prolyl-L-arginyl chloromethylketone (PPACK) and
aspirin

platelet aggregation
inhibitors

antiplatelet peptides, heparin, and P2Y1 agonist
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depends on the disease(s) the plasma donor has. This results in
the concepts of “personalized” and “disease-specific” protein
coronas, where a unique role is assigned to the biomolecular
corona in catching disease-specific biomarkers and disease
diagnosis.61,62,76−80

Currently, mass spectrometry (MS) is the gold standard for
analysis of plasma composition as well as protein corona
composition. Advances in the past decade have turned
proteomics into an unprecedented tool for routine investigation
of the proteome81 with regard to variations in protein
abundances and post-translational modifications (PTMs) as
well as biochemical and thermal stability. With the recent advent
of single-cell proteomics,82 the imaginable application space of
proteomics has expanded exponentially.
According to the human plasma proteome draft of 2017, 3509

proteins have been quantified reliably in plasma in a compilation
of 178 individual experiments.83 Thousands of proteins can now
be measured with state-of-the-art MS-based plasma proteo-
mics.84−86 Despite huge investments, apart from classic blood
biomarkers approved by the U.S. Food and Drug Admin-
istration, few new biomarkers have entered the clinical setting.
Most of these biomarkers are abundant proteins that can be
readily measured in plasma. A major challenge with plasma
proteomics is to retain proteome coverage when analyzing larger
sample cohorts. The main analytical difficulty to tackle is the
presence of highly abundant proteins such as albumin (55% of
the total protein mass in plasma). Seven proteins constitute 85%
of the total protein mass in plasma.87 Peptides from abundant
proteins crowd the spectra, hindering comprehensive profiling
of the plasma proteome and making in-depth analysis of plasma
cohorts challenging. Plasma depletion strategies are available,88

but the high cost and time-consuming nature of these methods
makes them unlikely to be applicable in large cohorts. In this
line, indirect analysis of nanoparticle biomolecular/protein
coronas can provide an advantage in biomarker discovery by
enriching plasma and lowering the plasma proteome complexity
and providing a new type of information.
The benefits of MS methods for the identification of blot-

clotting disorders induced by viruses such as SARS-CoV-2 can
be followed in two distinct and interrelated approaches. In
general, plasma and serum are suitable accessible biofluids for
biomarker discovery or differential diagnostic analyses.89 These

biofluids harbor rich sources of information on the health status
of individuals and have been exploited for years to inform the
medical decision-making process.90 In this line, comparative
proteomics of healthy and patient samples plays a major role in
either pattern discovery or biomarker discovery. The first
approach mainly relies on comparative biomolecular pattern
detection and does not aim for individual biomacromolecules.
To characterize the distinctive patterns in diseases such as
COVID-19 infection, individual biomarker discovery can be
facilitated using advanced MS techniques. Therefore, we can
develop nanoparticle-based assays that have the ability to adsorb
proteins of interest on the surface of nanoparticles and make
identifiable detection signals through color changes, electric
signals, and so forth. These two approaches are elaborated in the
following sections.

■ DEVELOPMENT OF SENSORY NANOMEDICINE TO
ASSESS THE RISK OF BLOOD CLOTTING

The unique feature of the biomolecular/protein corona is that its
proteins have almost no correlation with their plasma
concentrations.52,91,92 In other words, the biomolecular corona
offers a novel type of proteomics data (in terms of the number
and type/category of proteins and their concentrations) that is
totally different from similar data on plasma proteins. In a recent
study, we demonstrated a proof of concept that disease-specific
biomolecular coronas, in combination with unsupervised and
supervised classification approaches, offer the unique capacity to
detect and discriminate various types of cancer93 and neuro-
degenerative disorders.94 In our system, rather than detecting a
specific biomarker, the sensor array provides pattern recognition
of the corona protein composition adsorbed on the surface of
distinct nanoparticles (e.g., liposomes with various surface
chemistries). Our results show that the pattern of corona
composition derived from the nanoparticle sensor array
provides a unique “fingerprint” for each type of cancer.
The current knowledge applicable to the development of ex

vivo sensory nanobased technologies to monitor the risk of
thrombosis specially from viral disease is very limited. In
addition, using the same concept, the proteomics information
retrieved from the biomolecular/protein corona may be used for
the development of sensory nanomedicine for fast diagnosis of
blood clotting and its severity. This is very useful for the
synergistic role of nanomedicine and proteomics approaches, as
the profiles of biomolecular/protein coronas can significantly
reduce the complexity and dynamic range of the human
proteome.

■ PROTEOMICS TECHNOLOGIES ENABLE
BIOMARKER DISCOVERY: IMPLICATIONS FOR
COVID-19

By combining biomolecular/protein corona and MS-based
approaches, we may identify the important single proteins that
are involved in the COVID-19 blood-clotting process. In the
case of COVID-19, for disease mechanism studies or biomarker
discovery, proteomics can be used for comparative analysis of
plasma among healthy and infected individuals as well as
severely ill patients. Another important layer of information can
be obtained if such studies are coupled with biomolecular/
protein corona analysis. Since proteins recovered from nano-
particle coronas have been shown to have significant differences
with plasma proteins in terms of concentration and
representation, protein corona patterns can be exploited for

Figure 2. Current applications of protein coronas in disease detection
as well as their potential future utility in diagnosis of COVID-19.16,125

Protein structures were taken from the RCSB Protein Data Bank.
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biomarker (pattern) discovery under different disease con-
ditions. For this purpose, plasma from both patients and healthy
individuals can be incubated with nanoparticles, creating a
corona array that can be subsequently analyzed by proteomics
techniques. Many studies have identified this concept for several
life-threatening diseases such as cancers and neurodegenerative
diseases.16,60,95−101

Once the biomolecular/protein corona is captured, the
proteome can be processed and subjected to LC−MS/MS
analysis. If the focus is on the most abundant corona proteins,
label-free techniques can be used. For example, using this
approach, Hadjidemetriou et al. showed that the protein corona
formed on PEGylated liposomes (HSPC:Chol:DSPE-
PEG2000) following intravenous administration in melanoma
(B16-F10)- and lung carcinoma (A549)-bearing mice was
enriched by tumor-specific protein compared with control
plasma samples that revealed none of those proteins.97

As mentioned above, label-free analysis of plasma suffers from
shallow proteome coverage and over-representation of missing
values, especially in analysis of large cohorts. One solution is to
perform data-independent acquisition, where only a set number
of precursor ions are selected and analyzed byMS/MS. Through
this method, Bruderer et al. analyzed 1508 plasma samples in a
fast and robust way, identifying 408 proteins on average per
acquisition (319 proteins in 90% of all acquisitions).102 These
can be further combined with targeted MS strategies to
selectively quantify a defined subset of analytes, in this case
complement proteins, immunoglobulins, and clotting factors
most relevant to COVID infection.103 Alternatively, samples can
be multiplexed by isobaric neutron-coded TMT reagents or
similar labeling technologies and fractionated to provide a
deeper snapshot of the corona state, at the cost of expense and
analytical time. Human Plasma Proteome Project (HPPP)
considerations and recommendations regarding plasma proteo-
mics study design, sample collection, quality measures,
processing workflows, MS data acquisition, data processing,
and bioinformatic analysis have been reviewed elsewhere.104

On the other hand, the same corona analysis can be applied to
the SARS-CoV-2 virus itself as a natural nanoparticle. Since the
biomolecular/protein corona is associated with nanoparticle
bioactivity, different coronas from plasmas of different
individuals might react differently with biological entities. For
example, in an interesting study, Ezzat et al.105 demonstrated
that respiratory syncytial virus (RSV) and herpes simplex virus
type 1 (HSV-1) are covered by rich and unique biomolecular/
protein coronas in different biofluids. They further showed that
the corona affects viral infectivity and induction of immunity.
Viruses were shown to bind amyloidogenic peptides and to
catalyze amyloid formation by surface-assisted nucleation. HSV-
1 could even catalyze aggregation of amyloid-β peptide (Aβ42)
in animal models. The authors indicated that the viral corona is a
critical factor dictating virus−host interactions. A similar
strategy can be employed to study COVID−host interactions
in different patients.
Biomarker discovery, target deconvolution, and mechanism

elucidation are among the most important applications of
proteomics. In comparison with other omics technologies,
proteomics is of utmost importance in such studies, as proteins
are the main functioning units in any given biosystem and
proteomics is the only system-wide tool that provides
information on both protein production and degradation as
well as PTM states and protein stability. In a cellular context,
proteomics can be used to analyze pathways that are modulated

by a perturbation.106 Usually, such pathways mirror the
underlying biological phenomenon and provide hints on
mechanisms and druggable proteins, targets, or biomarkers
that can be pursued.

■ COVID-19 BLOOD-CLOT MYSTERY
The effects of viral infection on coagulation are noted above.
Since COVID-19 infection is associated with aberrant
coagulation cascade, resulting in serious alteration of coagulat-
ing factors and other mediators, timely detection of rising levels
of complement proteins, immunoglobulins, and clotting factors
in blood plasma could provide the information necessary for
clinicians to choose the right strategy (e.g., appropriate dosing of
blood-thinning medications) and aggressiveness of treatment to
prevent the lethal consequences of massive blood clotting such
as heart and/or brain strokes.
Analysis of the biomolecular/protein corona profiles of many

nanoparticles (e.g., silica,107 polystyrene,107 and gold58) has
revealed the capacity of the corona in absorption of complement
proteins, immunoglobulins, and/or coagulants, which can be
extremely helpful for detection of sudden increases in the
abundance of these proteins in blood plasma. We have shown
that precoating of nanoparticles with specific proteins (e.g.,
immunoglobulins) can significantly improve the recruitment of
similar proteins from blood plasma.108 Therefore, precoating
nanoparticles with clot-related proteins such as fibrinogen,
fibrin, factor VIII, factor XIII, tissue plasminogen activator, or
protein Z could significantly intensify the recruitment of similar
proteins into the corona, creating a unique opportunity for the
development of a sensitive and robust approach for rapid
identification of even subtle signs of clotting in plasma. These
protein-enriched coronas can be detected through well-
developed colorimetric sensing platforms, including smart-
phone-readable systems for detection and discrimination of
multiple proteins.109 In addition, well-designed (opto)-
plasmonic nanoparticles110/nanosensors111 (e.g., gold110,112)
may identify changes in the secretion of blood-clotting proteins
by generating colored solutions amenable to detection with the
naked eye or point-of-care devices. For example, by the use of
the protein corona in combination with the enzyme-mimetic
activity of gold nanoparticles (i.e., polyhedral oligomeric
silsesquioxane polymer-caged), a sensitive colorimetric analysis
was developed for the identification of metallothioneins, which
are important biomarkers for heavy-metal poisoning.113 As
another example, a colorimetric assay based on gold nano-
sensors functionalized with antisense oligonucleotides was
developed to target the nucleocapsid phosphoprotein of
COVID-19 for diagnosis of SARS-CoV-2-infected people
using the naked eye.114

The same concepts as explained above can be used in optical
sensory nanoparticles (e.g., gold) as a rapid and portable kit to
monitor the sudden release of complement-based proteins in the
plasma of patients who are critically ill with COVID-19. Such
techniques for rapid detection of the release of clot-related
proteins can help clinicians predict the severity of blood clotting
and therefore administer the right dosage of drug-thinning
medications to prevent stroke and other life-threatening
conditions.
In addition to the point-of-care approaches for monitoring the

risk and severity of blood clotting, the biomolecular corona may
also be analyzed with omics techniques (e.g., proteomics,
metabolomics, and/or lipidomics) to gather data regarding the
patterns of biomolecules involved in blood-clotting phenomena,
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which may yield a deeper understanding of the mechanisms
underlying this aspect of COVID-19’s effects. For example, we
showed that depending on the type of disease, the composition/
profile of biomolecules that form at the surface of nanoparticles
upon their interactions with biological fluids is different.61 Using
the biomolecular corona formed on sensory nanoparticles, we
were then able to discern protein patterns that are useful in
identifying various types of cancers and gather useful
information regarding the association of protein patterns with
each cancer type.16

Identification of proteins distinctively involved in COVID-19-
related blood clotting may help illuminate the underlying
mechanisms and pathways, guiding the scientific community to
new therapeutic approaches. Identifying the important proteins
can also help in the development of new targeted nanomedicine
for rapid monitoring of the release of such proteins, which will
provide a huge clinical advantage in assessing the risk of blood
clotting and its severity in COVID-19-infected patients.

■ FUTURISTIC STRUCTURAL BIOMARKER
DISCOVERY BY BIOMOLECULAR/PROTEIN
CORONA ANALYSIS

Thermal proteome profiling (TPP)115 is a recent breakthrough
that added a novel protein stability dimension in proteomics.
This method is based on combining the cellular thermal shift
assay (CETSA)116 with multiplexed quantitative proteomics.
The underlying assumption in CETSA and TPP is that binding
of a protein to a molecule can change its thermal stability.
Therefore, TPP can be used for proteome-wide monitoring of
protein stability.117 Apart from drug target engagement analysis,
this method enables the analysis of protein stability in different
cellular states,118,119 monitoring of protein stability in different
tissues,120 and studies of protein complexes.121 In addition, a
TPP-based method called system-wide identification of enzyme
substrates by thermal analysis (SIESTA) was recently devised
for studying the effect of PTMs on protein stability.122 Very
recently, a high throughput (16-fold) version of TPP called the
proteome integral solubility alteration (PISA) assay123 has been
developed that reduces the amount of starting biomaterial and
analysis time as well as the number of missing values.
Combination of these recent proteomics approaches with the

unique aspect of protein coronas (i.e., in reducing the
complexity and dynamic range of plasma proteins) might help
envision a future where changes in protein stability (due to the
presence of different proteoforms, conformations or PTMs as
well as protein−protein interactions) might be exploited as
structural disease biomarkers124 in addition to the classic
analysis of protein abundances.

■ OUTLOOK

This Perspective has offered insights about the possibility of
using nanomedicine, and specifically nano−bio interfaces, to
develop point-of-care devices for ex vivo monitoring of the risk
and severity of blood clotting in COVID-19 infection, which
would greatly help clinicians make appropriate medical
decisions to prevent or minimize the damage associated with
clotting. In addition, analysis of corona profiles by omics
techniques could help the scientific community better under-
stand the mechanisms underlying blood clotting, laying the
groundwork for the development of new therapeutics.
Obviously, these efforts require integrated functioning among
many stakeholders,126 including researchers with expertise in

biological sciences, physical sciences, virology, nanomedicine,
and medical sciences127 as well as funding agencies and device/
drug developers.
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Östenson, C.-G.; et al. In-depth human plasma proteome analysis
captures tissue proteins and transfer of protein variants across the
placenta. eLife 2019, 8, No. e41608.
(88) Lee, P. Y.; Osman, J.; Low, T. Y.; Jamal, R. Plasma/serum
proteomics: depletion strategies for reducing high-abundance proteins
for biomarker discovery. Bioanalysis 2019, 11 (19), 1799−1812.
(89) Geyer, P. E.; Holdt, L. M.; Teupser, D.; Mann, M. Revisiting
biomarker discovery by plasma proteomics. Mol. Syst. Biol. 2017, 13
(9), 942−942.
(90) Geyer, P. E.; Voytik, E.; Treit, P. V.; Doll, S.; Kleinhempel, A.;
Niu, L.; Müller, J. B.; Buchholtz, M.-L.; Bader, J. M.; Teupser, D.; et al.
Plasma Proteome Profiling to detect and avoid sample-related biases in
biomarker studies. EMBO Mol. Med. 2019, 11 (11), e10427.
(91) Lundqvist, M.; Stigler, J.; Cedervall, T.; Berggård, T.; Flanagan,
M. B.; Lynch, I.; Elia, G.; Dawson, K. The evolution of the protein
corona around nanoparticles: a test study. ACS Nano 2011, 5 (9),
7503−7509.
(92) Schleh, C.; Semmler-Behnke, M.; Lipka, J.; Wenk, A.; Hirn, S.;
Schaf̈fler, M.; Schmid, G.; Simon, U.; Kreyling, W. G. Size and surface
charge of gold nanoparticles determine absorption across intestinal
barriers and accumulation in secondary target organs after oral
administration. Nanotoxicology 2012, 6 (1), 36−46.
(93) Caracciolo, G.; Safavi-Sohi, R.; Malekzadeh, R.; Poustchi, H.;
Vasighi, M.; Zenezini Chiozzi, R.; Capriotti, A. L.; Lagana,̀ A.; Hajipour,
M.; Di Domenico, M.; et al. Disease-specific protein corona sensor
arrays may have disease detection capacity. Nanoscale Horiz. 2019, 4
(5), 1063−1076.
(94) Hajipour, M. J.; Ghasemi, F.; Aghaverdi, H.; Raoufi, M.; Linne,
U.; Atyabi, F.; Nabipour, I.; Azhdarzadeh, M.; Derakhshankhah, H.;
Lotfabadi, A.; et al. Sensing of Alzheimer’s disease andmultiple sclerosis
using nano-bio interfaces. J. Alzheimer’s Dis. 2017, 59 (4), 1187−1202.
(95) Papafilippou, L.; Claxton, A.; Dark, P.; Kostarelos, K.;
Hadjidemetriou, M. Protein corona fingerprinting to differentiate
sepsis from non-infectious systemic inflammation. Nanoscale 2020, 12
(18), 10240−10253.
(96) Hadjidemetriou, M.; McAdam, S.; Garner, G.; Thackeray, C.;
Knight, D.; Smith, D.; Al-Ahmady, Z.; Mazza, M.; Rogan, J.; Clamp, A.;
Kostarelos, K. The human in vivo biomolecule corona onto PEGylated
liposomes: a proof-of-concept clinical study. Adv. Mater. 2019, 31 (4),
1803335.
(97) Hadjidemetriou, M.; Al-ahmady, Z.; Buggio, M.; Swift, J.;
Kostarelos, K. A novel scavenging tool for cancer biomarker discovery
based on the blood-circulating nanoparticle protein corona. Bio-
materials 2019, 188, 118−129.
(98) Corbo, C.; Molinaro, R.; Tabatabaei, M.; Farokhzad, O. C.;
Mahmoudi, M. Personalized protein corona on nanoparticles and its
clinical implications. Biomater. Sci. 2017, 5 (3), 378−387.
(99) Mahmoudi, M. Debugging Nano-Bio Interfaces: Systematic
Strategies to Accelerate Clinical Translation of Nanotechnologies.
Trends Biotechnol. 2018, 36 (8), 755−769.
(100) Tavakol, M.; Montazeri, A.; Naghdabadi, R.; Hajipour, M. J.;
Zanganeh, S.; Caracciolo, G.; Mahmoudi, M. Disease-related
metabolites affect protein−nanoparticle interactions. Nanoscale 2018,
10 (15), 7108−7115.
(101) Caputo, D.; Papi, M.; Coppola, R.; Palchetti, S.; Digiacomo, L.;
Caracciolo, G.; Pozzi, D. A protein corona-enabled blood test for early
cancer detection. Nanoscale 2017, 9 (1), 349−354.
(102) Bruderer, R.; Muntel, J.; Müller, S.; Bernhardt, O. M.; Gandhi,
T.; Cominetti, O.; Macron, C.; Carayol, J.; Rinner, O.; Astrup, A.; et al.
Analysis of 1508 plasma samples by capillary-flow data-independent
acquisition profiles proteomics of weight loss and maintenance. Mol.
Cell. Proteomics 2019, 18 (6), 1242−1254.
(103) Gillette, M. A.; Carr, S. A. Quantitative analysis of peptides and
proteins in biomedicine by targeted mass spectrometry. Nat. Methods
2013, 10 (1), 28−34.
(104) Ignjatovic, V.; Geyer, P. E.; Palaniappan, K. K.; Chaaban, J. E.;
Omenn, G. S.; Baker, M. S.; Deutsch, E. W.; Schwenk, J. M. Mass

Spectrometry-Based Plasma Proteomics: Considerations from Sample
Collection to Achieving Translational Data. J. Proteome Res. 2019, 18
(12), 4085−4097.
(105) Ezzat, K.; Pernemalm, M.; Pålsson, S.; Roberts, T. C.; Jar̈ver, P.;
Dondalska, A.; Bestas, B.; Sobkowiak, M. J.; Levan̈en, B.; Sköld, M.;
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