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Abstract: When cities develop rapidly, there are negative effects such as population expansion, traffic
congestion, resource shortages, and pollution. It has become essential to explore new types of urban
development patterns, and thus, the concept of the “smart city” has emerged. The purpose of this
paper is to investigate the links between smart city policies and urban green total factor productivity
(GTFP) in the context of China. Based on panel data of 200 cities in China from 2007–2016 and treating
smart city policy as a quasi-natural experiment, the paper uses a difference-in-differences propensity
score matching (PSM-DID) approach to prevent selection bias. The results show: (a) Smart city
policies can significantly increase urban GTFP by 16% to 18%; (b) the larger the city, the stronger and
more significant this promotion.

Keywords: smart city; green total factor productivity; difference-in-differences propensity score
matching; quasi-natural experiment

1. Introduction

Urban growth is a global trend, the world’s urban population will be close to 70% by 2050 [1].
Following this world trend, urbanization is also developing rapidly in China. The urbanization level rose
from 17.92% in 1978 to 54.7% in 2016, and will rise by 70% in 2030 [2]. However, China’s urbanization
is mainly enacted through area expansion and population spatial agglomeration. This model will lead
to population expansion, traffic congestion, resource shortages, and environmental degradation [3].
The 18th National Congress of the Communist Party of China clearly put forward the concept of “new
urbanization”. Cities are implementing programs aiming to increase their sustainable development.
These address several aspects, such as smart energy management, the increased use of renewables,
and improvements in resource efficiency [4]. Smart city policy is an effective way to solve persistent
sustainability issues in society [5]. The development and wide application of modern information
communication technology (ICT) and internet technology provide the opportunity to base the smart
city on these technologies, creating a model that meets development needs [6].

Many countries around the world have launched policy projects about the concept of Smart City.
In November 2008, IBM first proposed the idea of “Smart Planet” and officially introduced the concept
to the US federal government in January 2009, suggesting investment in building a new generation of
intelligent information infrastructure. Singapore is one of the first countries in the world to establish a
“smart country” construction strategy. Moreover, in 2006 and 2016, the “Smart Country 2015” plan and
the “Smart State 2025” plan were launched in Singapore, respectively. In 2016, the Japanese cabinet first
proposed the concept of “social 5.0” which is the ultra-smart society and the six necessary measures to
achieve a super-intelligent society in the “Science and Technology Basic Plan”. These countries have
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made fruitful achievements in the construction of smart cities. China has begun to implement smart
city policy in 2012.

Since the reform and opening up policy was implemented, China’s economy has maintained
moderate-to-rapid growth. However, this growth has led to high resource consumption and severe
pollution. China is an important case where increasing human activities are leading to environmental
degradation [7]. To change this situation, the state proposed the concept of green development in the 13th
Five-Year Plan. The plan also noted that the process and results of economic activities should be more
“green” and “ecological” to achieve sustainable development in economic, social, and environmental
terms. Total factor productivity (TFP) is an important economic concept for measuring the quality of
economic development. With increasing environmental problems, the demand for energy savings and
green adjustment is growing [8]. Green total factor productivity (GTFP) was proposed, which is to
add environmental indicators to the calculation of TFP. It takes the constraints of energy input and
pollution emissions into account [9]. Transforming the economic development mode and improving
GTFP is an important way to realize sustainable development [10].

With the intensification of environmental protection and resource conservation, people are
becoming more aware of GTFP. The public advocate the environmentally friendly economic growth
mode and the concept of sustainable development. In-depth analysis of GTFP under environmental
constraints is of considerable significance to find solutions to alleviate the contradiction between
economic growth and environmental pollution [11].

Smart cities have become a popular concept because they have the potential to create a sustainable
and livable urban future [12]. Given the accelerated growth of cities and the increasing demand for
solutions to the negative impacts of urban development, researchers have become more interested in
issues related to smart cities [13]. Recently, the theoretical research dynamics [14–16] and practical
development status [17,18] of smart cities have attracted extensive attention from academic circles and
industry internationally. There are also many documents examining the smart city policy from the
perspective of planning and policy evaluation. Caragliu et al. found that smart city policy can promote
urban innovation process through a general improvement of local knowledge production functions [19].
Yu et al. concluded that smart cities realize the interconnection and coordination of various subsystems
through the collection, statistics, and analysis of information [20]. It helps the city system coordination
and operation efficiently, reduce management costs, and improve resource allocation efficiency [20].
Through empirical researches, Shi et al. proved that the emission of pollutants in the region where
smart city policy is implemented in China had decreased significantly [21]. GTFP is just related to
these aspects, so we try to test whether or not a smart city policy can improve GTFP.

This paper aims to study the impact of smart city policies on GTFP from the perspective of an
urban development pattern. Treating smart city policy as a quasi-natural experiment, the paper uses
a difference-in-differences propensity score matching (PSM-DID) approach. The propensity score
matching (PSM) method was first proposed by Heckman [22] to eliminate sample selection bias.
The difference-in-differences method (DID) can solve the endogeneity problem and obtain the policy
treatment effect. Subsequently, researchers continued to develop and combine the two to empirically
study the policy effects [23–25]. They selected the control group through PSM and evaluated the
impact of policies by using the DID analytic approach.

The paper is structured as follows. In Section 2, we give an overview of the theoretical background,
including the smart city policy and research status, GTFP, and its calculations. In Section 3, we introduce
research materials and methodology. In Section 4, we report experimental results and implement the
robustness test. In Section 5, we analyze the experimental results and close the paper.
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2. Theoretical Foundation

2.1. Smart City Policy

The concept of a smart city stems from the idea of the smart earth proposed by IBM in 2008.
The smart earth is the product of digital cities and the Internet of Things. The construction of smart
cities uses modern information technology to promote the interconnection, efficiency, and intelligence
of urban operating systems, thereby creating a better life for citizens [26,27]. In short, the definition of
“Smart City” is the use of information technology to attack urban problems.

In 2012, China officially issued the “Notice on the Pilot Work of National Smart Cities.” The first
batch of smart city pilots involved 90 cities and county-level cities. In 2013, the Ministry of Science and
Technology and the National Standardization Management Committee identified 20 cities including
Qingdao and Jinan as “smart cities” technology and standard pilot cities (“smart cities” dual pilots).
In 2014, with the approval of the State Council, the eight ministries and commissions including the
National Development and Reform Commission, the Ministry of Public Security and the Ministry
of Finance issued the “Guiding Opinions on Promoting the Healthy Development of Smart Cities”,
requiring all regions and relevant departments to implement the tasks proposed in this guidance and
ensure smart cities healthy and orderly advancement. The opinion also suggested that by 2020, several
smart cities with distinctive characteristics will be built, and the gathering and radiation belts will be
significantly enhanced.

Since the implementation of the smart city policy, it has penetrated all aspects of human production
and life, such as smart medical care [28] and intelligent transportation [29]. In the process of building a
smart city, various types of smart sensors have been embedded in public water, electricity, oil, gas,
buildings, transportation and other public service resources to form the Internet of Things. Using
information and communication technologies, we will sense the core systems of urban operations,
such as hydropower, communications, government affairs, and energy. Moreover, we can use
computers to develop and analyze big data in municipal services. As a result, we can timely transmit,
integrate, exchange, and use various types of urban public information, such as economy, culture,
public resources, management services, citizen life, and ecological environment. Smart cities can
improve the ability of interconnecting things and people, and help people fully develop and utilize
information, to achieve a subtle, dynamic, and efficient resource allocation of urban. Smart city,
a new urban development model, will make urban development more comprehensive, coordinated,
and sustainable, and will make urban life healthier, more harmonious, and better.

2.2. Green Total Factor Productivity (GTFP)

GTFP is an indicator obtained by adding some factors such as environment and energy to TFP.
GTFP can more comprehensively reflect the quality of national economic growth from the aspects
of environmental protection and rational use of resources. In recent years, kinds of literature have
reported the factors affecting GTFP [30–32].

There are three common types of measurement methods on total factor productivity as follows:
Solow residual method (SRM), stochastic frontier production function method (SFA), and data
envelopment analysis (DEA). The SRM [33] was proposed by Solow, who established a neoclassical
production function Yt = AtKαt Lβt . However, the SRM has a disadvantage that it must satisfy the two
assumptions of perfect competition and profit maximization. With an econometric method to measure
total factor productivity, the SFA divides the total production function into the frontier production
function and the non-efficiency part [34,35]. Though the SFA can overcome the shortcomings of the SRM,
it shows another weakness, such as requiring a particular functional relationship and only confining
to performance assessment of single-input-multi-output (MISO) production process. The DEA is a
data-driven approach that does not require a defined production function. By combining the directional
distance function (SBM) and the productivity change index, the DEA can be reconstructed [36] to
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measure GTFP that incorporates environmental pollution emissions as undesired outputs into the
accounting system.

The measurement of GTFP includes two types of elements: Input factors and output factors.
The input factors include labor input, energy input, and capital investment. The output factors
include expected output and unexpected output. The expected output is generally measured in
terms of GDP, and the unexpected output is the environmental output that measures the degree of
environmental pollution.

2.3. Analysis of the Impact of Smart City Policy on GTFP

A smart city is an efficient and technologically advanced emerging city that combines green
ecological development and economic development [37]. Since the concept of a smart city has
been raised, it has always been closely related to the real problems faced by urban development.
Green economy development is one of the most critical goals in implementing smart city policies.
GTFP is an important indicator that combines economic growth with environmental protection to
measure the quality of economic development. Therefore, we believe that smart city policy will have
an impact on GTFP.

On the one hand, the smart city policy is conducive to optimizing and upgrading of industrial
structure, promoting the efficiency of resource allocation, thereby reducing energy waste and
improving GTFP. Under the smart city policy, the industrial structure achieves a transformation
of industrial structural factors from labor-intensive to capital-intensive, and then from capital-intensive
to technical-intensive [38]. Smart cities rely on Internet of Things, cloud computing, data mining,
and other emerging information technologies and are mainly based on factors such as knowledge and
technology. So that smart city policies can drive some development, such as information technologies,
research and development (R&D), design, software, and other productive services. Then the industrial
structure is optimized and upgraded. The smart city can sense urban development and changes in real
time, intelligently produce and process big data, so that each agent can grasp accurate information and
make scientific decisions [39]. Moreover, the smart city policy combines with existing technologies in
sectors of transportation and energy to form a new business model [40]. For example, companies can
intelligently monitor real-time monitoring, master market demand, and flexibly dispatch production
factors, such as corporate capital, labor, and energy. For each decision-making agent, the smart city
policy is conducive to adequately scheduling and adjusting human, material, financial and other
resources based on the information available, continuously improving the efficiency and utilization of
resource allocation, reducing or avoiding waste of resources, thereby improving GTFP.

On the other hand, the smart city policy promotes the development of advanced monitoring
and governance technologies, monitoring pollutants and pollution sources in real time, reduce urban
environmental pollution [21], and improve GTFP. The smart city construction optimizes and upgrades
pollution control modes and technical methods by intelligent monitoring equipment. These devices
can dynamically collect information from various environmental resources such as the atmosphere and
water, and improve the monitor level of environmental pollution and the ability to acquire pollution
information. Tele-monitoring technology is used to monitor the current distribution of lawns, public
lands, and green belts [41]. It can effectively control various pollutants and pollution sources, promote
environmental protection, and thus improve GTFP.

In summary, as an efficient, technologically advanced, green, and socially inclusive city [42],
the smart city can be assessed by the GTFP to a certain extent. On the other hand, smart city policies
can have an impact on GTFP.
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3. Materials and Methods

3.1. Data

Our paper uses the data of China’s prefecture-level cities and removes the following unqualified
urban samples: (a) Provinces, municipalities or autonomous regions that are smart city pilots, such as
Hainan Province, Beijing, Shanghai, Xinjiang and Uygur Autonomous Region; (b) prefecture-level
cities with administrative changes within the study period, such as Chaohu City, Bijie City, Tongren
City, etc.; (c) prefecture-level cities with severe data loss, such as Lhasa City; and (d) prefecture-level
cities containing counties or districts that are smart city pilots, such as Tangshan City and Handan
City. The first batch of smart cities that emerged in 2012 was not eligible, so the second batch of smart
cities that emerged in 2013 was regarded as the experimental group, and other cities in the provinces
where the pilot cities were located were regarded as the control group. The third batch of pilot cities
that appeared in 2014 was also removed but later used to test the robustness of the results. Finally,
this paper selects the panel data of 200 cities in China from 2007–2016 as the research sample. The data
are mainly from the China Statistical Yearbook (2006–2016), Shandong Statistical Yearbook (2006–2016),
China Environmental Statistics Yearbook (2006–2016), the National Bureau of Statistics and provincial
statistical bureaus, and missing data are estimated by the annual average growth rate method. For the
specific experimental group and control group sample, see Table A1.

3.2. Measures

3.2.1. Dependent Variable

The explanatory variable of this paper is green TFP. Referring to the practice of Fare et al. [43],
our paper combined Malmquist’s TFP index and data envelopment analysis theory. In addition,
we use Tone’s non-radial and non-angle slack-based measure (SBM) efficiency model [44] based on
slack variables containing undesired output to construct the Malmquist productivity change index of
intertemporal changes. The SBM efficiency model formula is as follows:
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where λ is the weight vector, xik, yrk, blk represent the input variable, the expected output, and the
undesired output, respectively. sx, sy and sb represent the slack variables of the respective three types
of elements, where tx, ty and tb represent the three types of elements.

The Malmquist TFP index model is as follows:

GTFPt+1
t =

Dt
(
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)
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1
2

(2)

where GTFPt+1
t represents the total factor productivity change index. If the value is greater than 1,

the GTFP increases, and if it is less than 1, the GTFP decreases. Thus, the obtained Malmquist index
reflects the growth of GTFP. Drawing on the practice of Chen et al. [45], this paper assumes that the
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green total factor growth rate of the base period is 1, and the annual multiplication of the Malmquist
index represents the annual GTFP.

The input indicators selected in this paper include the three elements of capital, labor, and energy.
We use the classic perpetual inventory method to measure capital investment. The basic formula is
as follows:

Kt = It + (1− δ)Kt−1 (3)

where Kt and Kt−1 represent the capital stock of period t and period t − 1, respectively, and δ represents
the capital depreciation rate. Based on the practice of Zhang et al. [46], the fixed investment amount of
each city in 2006 is defined at 10% as the initial capital stock, and the urban fixed assets depreciation
rate δ is set to 9.6% in this article. Labor input is expressed by the number of employed people at
the end of the year, and energy input is expressed by the total electricity consumption. Regarding
output, this paper selects the GDP of each city as the desirable output and uses the entropy method to
obtain the comprehensive index of environmental pollution based on the total amount of wastewater
discharge, sulfur dioxide emissions, and solid waste production as undesired output.

3.2.2. Key Explanatory Variable

In this paper, the key explanatory variable is smart city policies represented by du× dt. du is a
dummy variable: If i is a smart city, it belongs to the treated group, and the corresponding du takes a
value of 1. If i is not a smart city, then it belongs to the control group, and the corresponding du takes
the value 0. dt is a dummy variable for policy implementation: Before the policy implementation,
dt takes a value of 0, and after the policy is implemented, dt takes a value of 1.

3.2.3. Control Variable

The control variables of this paper include the level of economic development (ECO), the degree of
government intervention (GOV), industrial structure (IND), traffic conditions (TRAF), and technological
innovation (TECH). The level of economic development is expressed by per-capita GDP, the government
intervention capacity is expressed by the proportion of fiscal expenditure to GDP, the traffic condition
is expressed by the per-capita road area, and the industrial structure is expressed by the ratio of
secondary industry to tertiary industry.

3.3. The Estimation Model

The PSM method was first proposed by Rosenbaum and Rubin [47] in 1983. It is a statistical
method for dealing with sample selectivity bias. This method uses a calculated propensity score to find
one or more individuals with characteristics that are the same or similar to those of each individual in
the treated group and to take them as the control group. This paper uses the kernel matching method
to determine the control group.

The DID method has become increasingly popular in policy analysis [48]. It studies the differential
effect of a policy that does not affect everybody at the same time and in the same way on a treated
group versus a control group [49]. The DID model of this paper is set as follows:

lnGTFPit = α0 + α1du× dt +
N∑

i=1

βiXit + εit (4)

where du× dt is an interaction term between a group dummy variable and a policy dummy variable,
and the coefficient α1 reflects the net effect of policy implementation. X is a series of control variables,
including economic development level (ECO), government intervention capability (GOV), industrial
structure (TECH), traffic conditions (TRAF) and industrial structure (IND).



Int. J. Environ. Res. Public Health 2019, 16, 2396 7 of 15

4. Analysis and Results

In this paper, we use statistical software Stata 15.0 (Stata Corp, College Station, Tex., USA) to
implement analysis and illustrate table or graphic results.

4.1. Descriptive Statistics

Descriptive statistics were captured on the main variables of the treated group, the control group,
and the whole sample. The sample size, mean and standard deviation are shown in Table 1, and the
GTFP of the treated group is significantly higher than that of the control group (the mean of GTFP is
0.592 in the treated group and is 0.406 in the control group). This result is a preliminary indication that
smart city policies can promote urban GTFP.

Table 1. Description of main variables.

Variable Group n Mean SD

GTFP

Treated Group 300 0.551 0.339

Control Group 1480 0.441 0.309

Total Sample 1780 0.460 0.317

ECO

Treated Group 300 10.372 0.669

Control Group 1480 10.235 0.647

Total Sample 1780 10.258 0.652

TECH

Treated Group 300 −4.694 0.675

Control Group 1480 −4.696 0.741

Total Sample 1780 −4.688 0.730

IND

Treated Group 300 0.372 0.469

Control Group 1480 0.337 0.405

Total Sample 1780 0.343 0.417

TRAF

Treated Group 300 2.340 0.839

Control Group 1480 2.181 0.590

Total Sample 1780 2.191 0.639

GOV

Treated Group 300 −1.815 0.483

Control Group 1480 −1.774 0.501

Total Sample 1780 −1.781 0.498

Notes: SD— represents standard deviations, n—represents the number of samples.

4.2. Regression Analysis

We assess the impact of smart city policies on GTFP by using linear regression analysis, and the
results are shown in Table 2. Model 1 contains only the key explanatory variable (GTFP), and the
coefficient is significantly positive, indicating that smart city policies have a positive impact on green
total factor productivity. On the basis of Model 1, Models 2–6 are added to the control variables
one by one. It is clear that the coefficient of GTFP remains positive, and further supporting the
earlier conclusions.
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Table 2. Regression results for the impact of smart city policies on green total factor productivity (GTFP).

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

du× dt
0.285 *** 0.179 *** 0.165 *** 0.176 *** 0.176 *** 0.175 ***

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

ECO
- 0.221 *** 0.248 *** 0.237 *** 0.248 *** 0.248 ***
- (0.01) (0.01) (0.01) (0.01) (0.01)

TECH
- - −0.048 *** −0.049 ** −0.047 *** −0.046 ***
- - (0.01) (0.01) (0.01) (0.01)

IND
- - - 0.067 *** 0.065 *** 0.087 ***
- - - (0.02) (0.02) (0.02)

TRAF
- - - - −0.021 *** −0.020 *
- - - - (0.01) (0.01)

GOV
- - - - - −0.006
- - - - - (0.02)

_cons 0.441 *** −1.820 *** −2.318 *** −2.234 *** −2.294 *** −2.284 ***
(0.01) (0.10) (0.15) (0.15) (0.15) (0.15)

n 1780 1780 1780 1780 1780 1780

Notes: Standard deviations are in parentheses, *, ** and *** indicate significant differences at p < 0.01, p < 0.05 and
p < 0.001, respectively. _cons—represents a constant term, n—represents the number of samples.

4.3. Robustness Test

4.3.1. Robustness Test Based on PSM-DID Method

To eliminate the influence of sample selection bias, we should select those non-smart cities whose
characteristics are similar to those of the treated group as the control group. In this paper, the PSM
method is used to perform logit regression on the control variables, and a control group is determined
based on those cities whose propensity score is closest to that of the treated group is determined.
The results are shown in Table 3. Before implementing the “smart city”, the GTFPs of the treated
group and the control group are 0.435 and 0.383, respectively. The average treatment effect on the
treated (ATT) is 0.052, which is significant at the 1% level. After the policy, the GTFP is 0.725 in the
treated group and is 0.594 in the control group, and the ATT is 0.131. At the same time, the result
of the difference-in-differences is also significant at the 1% level. Obviously, the results passed the
robustness test.

Table 3. Robustness test based on the difference-in-differences propensity score matching (PSM-DID) method.

GTFP SE |t| p > |t|

Before
Control 0.383
Treated 0.435
Diff 0.052 0.017 3.06 0.002 ***

After
Control 0.594
Treated 0.725
Diff 0.131 0.021 6.24 0.000 ***

Diff-in-Diff 0.079 0.027 2.91 0.004 **

Notes: *, ** and *** indicate significant differences at p < 0.01, p < 0.05 and p < 0.001, respectively. SE—represents
standard error.

Before using the PSM-DID method, a joint support hypothesis test is necessary to prove its
applicability. As shown in Table 4, the control variables (ECO, TECH, GOV, IND, and TRAF) are
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all significantly different between the treated group and the control group before matching but are
not significant after matching. The dependent variable (GTFP) is significantly different before and
after matching. To see the differences between matched and unmatched samples more intuitively,
Figure 1 indicates the standard deviation before and after matching the dependent variable and control
variables. The results show that the joint support hypothesis test is passed.

Table 4. Jointly support the hypothesis test.

Variable Unmatched/Matched
Mean

t p > |t|
Treated Group Control Group

ECO
U 10.372 10.235 3.31 0.001 ***

M 10.352 10.318 0.68 0.496

TECH
U −4.694 −4.686 −0.18 0.859

M −4.688 −4.677 −0.20 0.844

GOV
U −1.815 −1.774 −1.29 0.198

M −1.811 −1.801 −0.25 0.804

IND
U 0.372 0.337 1.34 0.181

M 0.372 0.357 0.41 0.685

TRAF
U 2.240 2.181 1.45 0.148

M 2.215 2.207 0.14 0.891

GTFP
U 0.551 0.442 5.49 0.000 ***

M 0.550 0.467 3.16 0.002 ***

Notes: *, ** and *** indicate significant differences at p < 0.01, p < 0.05 and p < 0.001, respectively.Int. J. Environ. Res. Public Health 2019, 16, 2396 9 of 15 
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Before the regression analysis, we tested the matching effect between the treated and control
groups using the kernel density propensity matching method (see Figure 2). The probability density of
the propensity scores of the treated and control groups after matching has essentially been consistent,
indicating that the matching effect is better, which further proves the applicability and reasoning for
the use of PSM-DID in this paper.



Int. J. Environ. Res. Public Health 2019, 16, 2396 10 of 15

Int. J. Environ. Res. Public Health 2019, 16, 2396 9 of 15 

 

 

Figure 1. The standard deviation before and after matching the dependent and control variables. 

Before the regression analysis, we tested the matching effect between the treated and control 
groups using the kernel density propensity matching method (see Figure 2). The probability density 
of the propensity scores of the treated and control groups after matching has essentially been 
consistent, indicating that the matching effect is better, which further proves the applicability and 
reasoning for the use of PSM-DID in this paper. 

 
Figure 2. The probability density of the propensity scores. 

4.3.2. Changing the Treated Group 

We now offer a further robustness test using the third batch of smart cities that emerged in 2014 
as the new treated group. As before, we implement a regression analysis and obtain some valuable 
results, as shown in Table 5. After changing the treated group, smart city policies still play a 
significant role in promoting GTFP. 

Figure 2. The probability density of the propensity scores.

4.3.2. Changing the Treated Group

We now offer a further robustness test using the third batch of smart cities that emerged in 2014
as the new treated group. As before, we implement a regression analysis and obtain some valuable
results, as shown in Table 5. After changing the treated group, smart city policies still play a significant
role in promoting GTFP.

Table 5. Regression results after changing the treated group.

Variable Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

du× dt
0.177 *** 0.147 *** 0.149 *** 0.160 *** 0.164 *** 0.158 ***

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

ECO
- 0.214 *** 0.240 *** 0.230 *** 0.245 *** 0.247 ***
- (0.01) (0.01) (0.01) (0.01) (0.01)

TECH
- - −0.046 *** −0.048 *** −0.045 *** −0.040 ***
- - (0.01) (0.01) (0.01) (0.02)

IND
- - - 0.081 *** 0.077 *** 0.086 ***
- - - (0.02) (0.02) (0.02)

TRAF
- - - - −0.032 ** −0.032 **
- - - - (0.01) (0.01)

GOV
- - - - - 0.025
- - - - - (0.02)

_cons −0.439 *** −1.742 *** −2.224 *** −2.157 *** −2.222 *** −2.190 ***
(0.01) (0.10) (0.14) (0.14) (0.14) (0.15)

n 1700 1700 1700 1700 1700 1700

Notes: Standard deviations are in parentheses, *, ** and *** indicate significant differences at p < 0.01, p < 0.05 and
p < 0.001, respectively.

4.3.3. Further Testing

To determine whether the increase in GTFP is affected by “smart city” or other policies, Figure 3
shows the trend in the GTFP of the treated and control groups. It can be seen in Figure 2 that before
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2013 (when the “smart city” was implemented), the trends of the treated and control groups remain
basically the same. After the implementation of the policy, the GTFP gap between the two groups
significantly widened, providing further support for the conclusions of this paper.
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Figure 3. Trends in GTFP of the treated and control groups.

4.4. Heterogeneity Analysis

Table 6 shows that it is significant in promoting GTFP regardless of medium-sized cities or large
cities. However, the larger the city size, the higher the promotion of smart city policy to GTFP, and the
more significant the promotion effect. This may be because the information development level in
medium-sized cities is weaker than that in large cities. It also shows that the urban problems in the
development of traditional cities, such as congestion and environmental pollution, may be mitigated
after the reform of the governance model and the deepening of urban innovation.

Table 6. Regression results of different city sizes.

Medium City Large City Megacity

du× dt
0.103 ** 0.145 *** 0.169 ***
(0.05) (0.03) (0.03)

ECO
0.329 *** 0.316 *** 0.215 ***

(0.03) (0.02) (0.02)

TECH
−0.0240 −0.107 *** −0.031 **

(0.02) (0.01) (0.02)

IND
0.0470 0.087 *** 0.0260
(0.03) (0.02) (0.03)

TRAF
−0.079 *** −0.0100 −0.00400

(0.02) (0.02) (0.02)

GOV
−0.075 *** 0.171 *** 0.181 ***

(0.03) (0.02) (0.02)

_cons −3.049 *** −2.932 *** −1.496 ***
(0.28) (0.23) (0.21)

n 797 491 406

Notes: Standard deviations are in parentheses, *, ** and *** indicate significant differences at p < 0.01, p < 0.05 and
p < 0.001, respectively.
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The above results show that the smart city policy can significantly improve the GTFP. Next, we will
further answer the following two questions: Does the GTFP increase significantly for different city
sizes? Is there a difference in the degree of improvement?

As we know, compared with small cities, larger cities have more complete functions,
stronger innovation capabilities, and higher resource allocation, and utilization efficiency. However,
overpopulation will lead to urban congestion and more serious environmental pollution. The smart city
policy can not only improve the efficiency of urban resource allocation but also solve urban problems
by technological innovation. As a result, GTFP has also be improved. So it is necessary for us to further
verify the impact of GTFP on cities of different sizes. The division of the city in this paper is based
on the latest standard in the “Notice on Adjusting the Dividing Standards of Urban Size” issued by
the State Council in 2014. Due to the limited sample size, there are fewer small-scale cities, resulting
in unreliable regression results, so only the results of cities above medium-sized scale are reported.
The regression results are shown in Table 6.

5. Discussion

From an empirical perspective, we take the panel data of 200 cities in China from 2007–2016 as the
research object and regards the smart city policy as a quasi-natural experiment, using the PSM-DID
method to estimate the impact of “smart city” policies on GTFP. From the regression results, the smart
city policy has a significant positive effect on GTFP. To verify the result accuracy, the robustness test is
carried out by jointly supporting the hypothesis test and changing the control group. These tests have
passed. Ultimately, we conclude that smart city policies can significantly improve urban GTFP.

To enrich research conclusions, we analyze the heterogeneity of urban scale to test whether the
impact of different city-scale smart city policies on GTFP is different. Regression results indicate that
the larger the city size, the higher the promotion of smart city policy to GTFP, and the more significant
the promotion effect. It may be because the larger the city, the more complete the city’s functions,
and the better the conditions for implementing the smart city policy.

Our contribution includes two aspects. First, from the perspective of the urban development
pattern, we offer the first study of the impact of smart city policies on GTFP. It is a theoretical supplement
to smart city policies and enriches the research on the factors affecting GTFP. Second, the resource
and environmental problems stemming from the process of economic development appear not only
in China but also in other countries. The environmental problems in developing countries have
received very little attention. At present, research on GTFP is mainly concentrated on China. Certainly,
this paper will also be useful for other countries.

6. Conclusions

With a deep expansion and integration of information technology and the Internet of Things,
smart cities are realizing intelligence in transportation, energy utilization, resource allocation, and urban
pollution discharge through a large number of innovative technologies. As a new urban development
pattern, smart cities establish operational command centers and use the Internet of Things technologies
(such as intelligent transportation and modern information communication) to collect information
and analyze data. The green concept and advanced technology are perfectly integrated into urban
planning, which promotes the improvement of urban resource allocation efficiency [20], the upgrading of
industrial structure and the improvement of innovation capability [19], thereby ultimately promoting the
transformation of urban production and lifestyle and promoting the development of a green economy.

In addition, the city heterogeneity analysis shows that the key to the city development is not its
large scale, but whether the model of the city management and development pattern is innovative.
Therefore, in the process of implementing the new urbanization strategy, the introduction of smart
technology is conducive to improving urban innovation capacity and resource allocation efficiency and
reducing pollution. On the one hand, big cities give full play to their powerful urban functions and
vigorously develop smart technologies. Therefore, we should apply advanced information technology
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to all aspects of production and life to alleviate and eliminate urban problems. On the other hand,
small and medium-sized cities make full use of the advantages of smart city policies to develop
smart projects that are suitable for the characteristics of the city and maximize urban governance and
operational efficiency.

There are some implications, limitations, and future directions: (a) Due to the limited sample size,
the potential limitation may affect regression results, so we can extend the evidence scope from China
to the whole world in order to show spatiotemporal effects; (b) the smart city policies can significantly
improve urban GTFP but it does not mean that we need to invest as much as possible in smart cities,
so we can pay attention to the appropriate investment scale and the crowding-out effect of smart city
policies; (c) we should pay attention to spillover and siphon effects in smart city construction.
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Appendix A

Table A1. Distribution of smart cities.

Treated Group Control Group

2013

Shanxi Province (2), Inner Mongolia
Autonomous Region (2), Liaoning Province
(1), Jilin Province (1), Shandong Province (1),
Heilongjiang Province (2), Sichuan Province

(2), Ningxia Hui Autonomous Region (1),
Anhui Province (2), Guangdong Province (2),

Shaanxi Province (3), Guangxi Zhuang
Autonomous Region (3), Jiangsu Province (1),

Henan Province (1), Hubei Province (2),
Fujian Province (2), Gansu province (4)

Shanxi Province (5), Liaoning Province (11),
Heilongjiang Province (7), Zhejiang Province (8),

Shandong Province (8), Yunnan Province (6), Inner
Mongolia Autonomous Region (5), Jilin Province (2),
Sichuan Province (11), Anhui Province (6), Shaanxi
Province (5), Guangdong Province (14), Guangxi

Zhuang Autonomous Region (7), Jiangsu Province
(3), Hebei Province (5), Henan Province (13), Hubei
Province (7), Hunan Province (6), Gansu province (6),

Ningxia Hui Autonomous Region (2), Fujian
Province (10), Qinghai Province (1)

2014

Shanxi Province (1), Inner Mongolia
Autonomous Region (1), Jilin Province (1),

Anhui Province (3), Fujian Province (2),
Shandong Province (1), Henan Province (2),

Hubei Province (1), Guangxi Zhuang
Autonomous Region (2), Sichuan Province (3),

Yunnan Province (1), Shaanxi Province (1),
Gansu province (2), Ningxia Hui

Autonomous Region (1)

Shanxi Province (5), Liaoning Province (11),
Heilongjiang Province (7), Zhejiang Province (8),

Shandong Province (8), Yunnan Province (6), Inner
Mongolia Autonomous Region (5), Jilin Province (2),
Sichuan Province (11), Anhui Province (6), Shaanxi
Province (5), Guangdong Province (14), Guangxi

Zhuang Autonomous Region (7), Jiangsu Province
(3), Hebei Province (5), Henan Province (13), Hubei
Province (7), Hunan Province (6), Gansu province (6),

Ningxia Hui Autonomous Region (2), Fujian
Province (10), Qinghai Province (1)
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