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Inferring transcriptomic cell states 
and transitions only from time 
series transcriptome data
Kyuri Jo1*, Inyoung Sung2, Dohoon Lee2, Hyuksoon Jang1 & Sun Kim2,3,4,5*

Cellular stages of biological processes have been characterized using fluorescence-activated cell 
sorting and genetic perturbations, charting a limited landscape of cellular states. Time series 
transcriptome data can help define new cellular states at the molecular level since the analysis of 
transcriptional changes can provide information on cell states and transitions. However, existing 
methods for inferring cell states from transcriptome data use additional information such as prior 
knowledge on cell types or cell-type-specific markers to reduce the complexity of data. In this study, 
we present a novel time series clustering framework to infer TRAnscriptomic Cellular States (TRACS) 
only from time series transcriptome data by integrating Gaussian process regression, shape-based 
distance, and ranked pairs algorithm in a single computational framework. TRACS determines 
patterns that correspond to hidden cellular states by clustering gene expression data. TRACS was 
used to analyse single-cell and bulk RNA sequencing data and successfully generated cluster networks 
that reflected the characteristics of key stages of biological processes. Thus, TRACS has a potential 
to help reveal unknown cellular states and transitions at the molecular level using only time series 
transcriptome data. TRACS is implemented in Python and available at http:// github. com/ BML- cbnu/ 
TRACS/.

The emergence of high-throughput technologies enabled a large number of cellular parameters to define a cell 
state, including mRNA, histone modifications, DNA modifications and cell surface  proteins1. In particular, 
transcriptome data contain cell-specific information. In humans and other organisms, nearly every cell contains 
the same genes, but different cells show different patterns of gene expression. These differences are responsible 
for the many different properties and behaviours of various cells and tissues, both in health and  disease2. Since 
cells make transitions over time, time series transcriptome data can be useful for predicting transitions of cell 
states as well. Liu et al. used Global nuclear Run-On sequencing (GRO-seq), RNA sequencing (RNA-seq), and 
histone-modification Chromatin ImmunoPrecipitation sequencing (ChIP-seq) to reveal lag between transcrip-
tion and steady-state RNA expression and to identify dynamic transcriptional signatures across the cell cycle such 
as a large amount of active transcription during early  mitosis3. van Galen et al. used single-cell transcriptome 
data and genetic mutation information for relationship among cell types to analyse acute myeloid leukemia 
(AML) heterogeneity that resides within a complex microenvironment that complicates efforts to understand 
contribution of different cell types to disease  progression4. Leveraging the power of single-cell data and cell type 
information, Grün et al. developed VarID, a computational method that identifies locally homogenous neigh-
bourhoods in cell state space and reveals pseudo-temporal dynamics of gene expression  variability5. Although 
these studies are successful in inferring cell states using bulk RNA-seq or single-cell RNA sequencing (scRNA-
seq) data, information in addition to transcriptome data is required. In the next section, we discuss how much 
information transcriptome data can provide for inferring cell states and transitions.

Feasibility of defining cell states Recent studies showed that sophisticated computational analysis can infer 
states of cells and their transitions from transcriptome data. Analysis of scRNA-seq data typically arranges cells 
in ‘pseudotime’ by their gene expression profiles to add the time dimension to the RNA-seq data for tracking 
a trajectory of biological transition, which suggests that it is possible to define transitions of cell states from 
transcriptomes when the time domain is  defined6,7. In general, clustering of cells is incorporated as an initial 
step to guide trajectory inference for scRNA-seq  data8. However, prior knowledge is required to predict the 
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order of the clusters and to assign the cell type to each cluster. For example, a study on acute myeloid leukemia 
(AML) performed trajectory analysis on scRNA-seq data and re-clustered the results to classify the cells as 15 
cell types using the pre-defined cell-type-specific  genes4. Some of the algorithms for analysing scRNA-seq data 
try to decode directionality of trajectories as  well8. The algorithms, however, are designed to order the cells in 
differentiation such as stem cells, which limits the range of applicable  data9–11. In addition, clustering cells do 
not identify the features (genes) that contribute to define cell states.

On the other hand, defining cell states and transition is possible using bulk RNA-seq data, given that the 
data are measured in specific conditions with uniform cell populations such as a cyclic process where cells are 
synchronized and a developmental process or perturbation response with a common starting  point12. When time 
series transcriptome data is used, grouped genes and their activated time points represent key stages of biologi-
cal process such as cell cycle  phases3 or cell types during cell  differentiation4. One of the widely used methods 
to detect the gene sets characterizing cell states is clustering gene expression patterns. Chang et al. performed 
hierarchical clustering on time series mRNA profile in adenocarcinomic human alveolar basal epithelial cells 
and detected three stages in epithelial-mesenchymal transition (EMT) from the clustering result visualized as 
 heatmap13. Clustering genes from gene expression data enables identifying marker genes for each cell state but 
the requirement of prior knowledge such as the number of cell states can significantly affect the accuracy of 
clustering.

Research question We assume that time series transcriptome data itself has information sufficient enough 
to predict cell states and their transitions, as described in the previous section. With the availability of a novel 
framework that uses state-of-the-art computational methods for analysing time series transcriptome data, can 
we predict both cell states and their transitions without using additional information? In this study, we demon-
strate that our proposed computational framework with state-of-the-art clustering algorithms can determine cell 
states and transitions from bulk-cell or single-cell time series transcriptome data without using any additional 
information. In the following section, we review clustering algorithms that can be used to analyse time series 
transcriptome data.

Related computational methods and limitations. Clustering algorithms on gene expression data can 
detect distinctive expression patterns of genes, and most of the algorithms aim to improve accuracy by consider-
ing time-to-time dependency in expression values. Traditional clustering methods, such as K-means and hier-
archical clustering, have been used for many applications and showed high performance in a general clustering 
problem. However, these methods treat time series observations with N time points as N dimensional vectors, 
with an assumption that the time points are evenly sampled and independent.  STEM14 is a tool for clustering 
short time series gene expression data. STEM predefines 3N−1 − 1 gene expression profiles or clusters from N 
time points assuming that expression values increase/decrease or remain consistent from the previous time 
point. Due to the large number of predefined profiles, STEM is limited to short time series with 8 time points 
or fewer. K-Shape15 is an adapted clustering algorithm for time series based on the K-means algorithm. It uses a 
new distance measure called shape-based distance (SBD), clustering similar shapes shifted along the time axis. 
K-Shape is useful in datasets where similar patterns with different starting points need to be clustered together 
(e.g., sound waves of multiple species of birds that are all singing at different time points) but is not appropriate 
when the patterns of different clusters themselves are similar (e.g., expression patterns of cell cycle genes from 
different phases). Similar to K-means, the number of clusters should be given to K-Shape by the user.

Some of the clustering algorithms assume that the observed gene expression values are inherently generated 
by an underlying model such as a Gaussian process (GP) and state-space model. GP is a stochastic process with 
a collection of random variables indexed by time or space where the finite collection of the variables follow a 
multivariate normal distribution. GP regression incorporates time point information, which can be an informa-
tive source of time dependency and noise correction, especially for datasets with uneven sampling rates such as 
developmental processes and perturbation responses. Bayesian hierarchical clustering (BHC)  algorithm16 uses 
GP models and their posterior probabilities for the agglomerative hierarchical clustering with an assumption 
that gene expression values in a same cluster are generated by one GP. BHC automatically detects the optimal 
number of clusters by Bayesian model selection. However, BHC is suitable for detecting small groups of genes, 
not a general landscape of cellular states, as it tends to generate a relatively large number of gene clusters due to 
its bottom-up strategy.  GPclust17 introduces a three-level hierarchical structure (cluster-gene-replicate) of the 
GP models and each GP of clusters is generated by a Dirichlet process (DP).  DPGP18 uses DP and GP models as 
well but the number of clusters is automatically set by a model similar to the Chinese restaurant process with a 
hyperparameter α that determines how likely it is that a new cluster is chosen at a given iteration of the Chinese 
restaurant process.

ClusterNet19 introduces a state-space model to clustering, assuming the observed expression values are gen-
erated by hidden state variables. K-dimensional hidden variables that represent K clusters depend linearly on 
the previous values of all K variables, which helps to infer regulatory relationships ‘between’ clusters unlike 
the other algorithms. ClusterNet can yield a number of false positive edges due to the limitation of using only 
gene expression values for network inference. Nevertheless, ClusterNet suggests that the order and relationship 
between clusters can provide new knowledge.

Our contributions: a novel computational framework. Although the existing clustering methods try 
to detect distinctive expression patterns from time series data, the methods are not designed for inferring cell 
states. To infer cell states and transitions from bulk transcriptome data, clustering algorithm should consider 
long time series data including unobserved time points and data with temporal dependency. The predicted num-
ber of clusters is expected to reflect the number of cell states. In addition, when inferring relationship between 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12566  | https://doi.org/10.1038/s41598-021-91752-9

www.nature.com/scientificreports/

clusters, the functional analysis such as enrichment tests needs to be incorporated to filter out false positive 
relationships derived from expression patterns. Thus, we propose a novel time series clustering algorithm that 
infer TRAnscriptomic Cellular States (TRACS) with the following features :

• Selecting the number of clusters TRACS automatically determines the optimal number of clusters with adapted 
gap statistics that leverage time point information and consider time-to-time dependency (Gaussian process)

• Clustering time series By incorporating adapted gap statistics into clustering, TRACS predicts gene clusters 
based on temporal patterns of genes adjusted by Gaussian process regression. We will show that the predicted 
gene clusters correspond to cell states in our experiments.

• Analysis of the clustering result TRACS infers the transition of cell states as a cluster network, predicting the 
order of clusters by their pattern similarity (Shape-Based Distance and Ranked Pairs algorithm) and reducing 
false positive edges by functional similarity (two-group enrichment test)

Results and discussion
An overview of the proposed framework is illustrated in Fig. 1. TRACS determines the optimal clustering of 
time series gene expression data using Gaussian gap statistics (Step 1). Time series gene expression data are first 
clustered by a user-selected algorithm such as K-means. Assuming that the gene expressions in k clusters are 
generated from k Gaussian processes, Gaussian gap statistics calculate a gap between the likelihood of k Gaussian 
processes from the observed data and from the reference data that are randomly generated with no significant 
cluster formation. The optimal number of clusters kopt is determined by the gap calculated for a given range of 
k. During Gaussian process regression for each cluster, time point information of gene expression data is used 
to infer Gaussian means and variances at given time points considering time-to-time dependency. If a pathway 
of interest is given by the user, TRACS filters out clusters that are not enriched with pathway genes by statisti-
cal tests. With the clustering result from Step 1, a network of clusters is generated and visualized to track the 
dynamic expression patterns of clusters and their relationships (Step 2). For each pair of clusters, shape-based 
distance (SBD) is calculated, and a shift between two clusters that minimizes SBD is identified. The sign (+/-) of 
the optimal shift determines the order of two clusters, and all pairwise orders are combined to obtain the overall 
order of clusters. Functional similarity between neighbouring clusters is tested by a two-group enrichment test 
to identify a shared function activated over time.

Figure 1.  Overview of TRACS. From time series gene expression data, TRACS determines the optimal 
clustering of time series gene expression data using Gaussian gap statistics (Step 1). With the optimal clustering 
result, a network of clusters is generated and visualized to track the dynamic expression patterns of clusters 
and their relationships (Step 2). The final output of TRACS is a cluster network describing dynamic cell states 
and transitions by ordered clusters, where cluster genes imply representative genes of each cell state. Functional 
relationships between clusters (cell states) are statistically tested and annotated on network edges.
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Descriptions of datasets. The performance of TRACS was evaluated with three sets of gene expression 
data from scRNA-seq and bulk RNA-seq. We used scRNA-seq data from the research on  AML4. ScRNA-seq 
was carried out using Seq-Well protocol to acquire transcriptional data from bone marrow (BM) aspirates. 6915 
cells from healthy donors characterized the baseline cellular diversity in BM and the authors distinguished 15 
different hematopoietic cell types. The putative differentiation trajectories were inferred by the gene expression 
similarities of cells, including a continuum of cells from hematopoietic stem cells (HSCs) to monocytes. The 
authors defined three successive stages of normal hematopoietic development as HSC/Prog, GMP and differen-
tiated myeloid that correspond to five cell types (HSC, progenitor (Prog), granulocyte-macrophage progenitor 
(GMP), promonocyte (ProMono), monocyte (Mono)) as they show clearly distinguished expression patterns. To 
generate a time series gene expression data from scRNA-seq data, 2317 cells from the five cell types were sampled 
and the average gene expression values of each cell type were calculated leading to 5 time points in the order of 
HSC-Prog-GMP-ProMono-Mono. Based on the process in the original paper, the most variably expressed genes 
were determined and 21 cell-type-specific genes were added. Removing the genes with zero expression values 
in more than four time points, the final gene expression data consisted of 360 genes. The original dataset were 
retrieved from Gene Expression Omnibus (GEO) database (GSE116256).

Two sets of bulk RNA-seq time series data represent a cyclic process and a developmental process, respectively. 
Cho et al. measured genome-wide mRNA transcript levels during the cell cycle of the budding yeast Saccharo-
myces  cerevisiae20. Cdc28-13 cells were collected at 17 time points taken at 10 min intervals, covering nearly two 
cell cycles. Gene expression data of 6149 genes were downloaded from the Saccharomyces Genome Database 
(SGD)21, among which 220 genes were characterized for each cell cycle phase (early G1, late G1, S, G2, M phase) 
by the authors according to their transcript levels and biological functions. The dataset from this study has been 
used as a benchmark for clustering time series as there are few datasets with cluster labels for time series. Chang 
et al. observed time series mRNA profile in A549 cells (adenocarcinomic human alveolar basal epithelial cells) 
from TGF-β-induced EMT samples during 0, 6, 12, 24, 36, 48, 72 and 96 hours. EMT is a metastable process that 
enables polarized epithelial cells lose their epithelial cell characteristics and acquire a mesenchymal phenotype. 
The pleiotropic cytokine TGF-β is one of the environmental cues and signals that can initiate the EMT process 
in epithelial cells during wound healing or tumor invasive migration, resulting in the delocalization and/or dis-
solution of cell-cell junctions and a loss of epithelial  integrity22. The study reported a three-state model including 
the partial-EMT state between epithelial and mesenchymal transition and 1,632 genes corresponding to the three 
 states13. Gene expression data were downloaded from Gene Expression Omnibus (GEO) (GSE69667). For all 
datasets, expression values were log- and z-normalized before clustering.

Cluster networks inferred from time series transcriptome data. Single‑cell RNA‑seq dataset. Fig-
ure 2 shows the cluster network inferred by TRACS from the scRNA-seq data. TRACS detected three stages of 
hematopoietic development (HSC/Prog, GMP and differentiated myeloid stage) in the correct order. The result 
shows that TRACS can group cell types with similar gene expression patterns and detect distinct cell states re-
gardless of the number of time points (cell types) in the data. According to the original  paper4, the three stages 
of hematopoietic development detected by TRACS were the main signature that differentiate normal cells of 
healthy donors from malignant cells of AML patients. 20 out of 21 cell-type-specific genes clustered correctly 
to their stages are shown below the network. In particular, CD34 is a predominant marker of HSC and hemat-
opoietic progenitor cells that can represent the HSC/Prog state and CD14 is a typical blood monocyte markers 
expressed on cells of the myelomonocyte  lineage23,24. To demonstrate the stability of the proposed method, an 
additional gene expression data was generated with the increased number of time points by dividing cells from 
three cell types (HSC, Prog, ProMono) with large populations. In the experiment on the extended data with 
eight time points, TRACS generated three clusters that represent three stages of hematopoietic development 
(Supplementary Fig. S1). In addition, TRACS detected Antigen processing and presentation (hsa04612) pathway 
between GMP and differentiated myeloid stages. Antigen processing capacity is known to be induced through 
differentiation of BM cells starting from GMP to monocytes and monocyte-derived dendritic cells, which is 
consistent with the TRACS  result25.

Figure 2.  Cluster network of normal BM cells inferred by TRACS. 20 cell-type-specific genes that represent 
successive stages of normal hematopoietic development (HSC/Prog, GMP and differentiated myeloid stage 
(ProMono, Mono)) are shown below the assigned cluster. Here and in all following figures, each cluster is 
represented with a Gaussian process mean (solid red line) and variance (red area, 95% confidence interval) and 
edges between clusters are annotated with shared biological pathways.
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Cell cycle dataset. A cluster network is generated by TRACS as shown in Fig. 3. The K-means algorithm is used 
as a clustering method to find the optimal clustering with Gaussian gap statistics. According to the reference 
 paper20, 31, 81, 44, 31 and 34 genes belong to early G1, late G1, S, G2 and M phases, respectively. As the cell cycle 
dataset contains only 220 genes with labels, which is a relatively small number compared to the total number 
of genes in yeast, two experiments were designed to evaluate the performance of TRACS using DEGs and 220 
labelled genes. The number of genes and the number of clusters used in the two experiments are summarized in 
Supplementary Table S1. In the first experiment, DEGs are estimated from the gene expression values of the cell 
cycle dataset and used as input to the TRACS algorithm to show that TRACS can produce informative clusters 
from larger gene sets that are not limited to functionally labelled genes. As shown in Fig. 3a, TRACS predicted 12 
clusters among which 5 clusters were matched 5 cell cycle phases (bold text above circles). The order of clusters 
predicted by TRACS is still consistent with the order of cell cycle phases. The completeness  score26 is calculated 
to check DEGs with the same predefined label (5 cell cycle phases) that are clustered together (Supplementary 
Table S1). Analysis with DEGs does not degrade the clustering quality of cell cycle genes but rather increases the 
completeness score since DEGs that are not labelled as cell cycle genes have notably different expression patterns 
from cell cycle DEGs. As DEGs include genes that are not relevant to cell cycle mechanism, we performed an 
additional experiment with a context-specific filtering option in TRACS specifying a relevant KEGG pathway as 
cell cycle (sce04111) and a threshold as 0.1. As shown in Fig. 3b, 4 out of 11 clusters that contain cell cycle genes 
remained after filtering and the order of the clusters were predicted correctly as well.

In the second experiment, 220 genes that are functionally characterized for each cell cycle phase were used 
to generate a cluster network (Fig. 3c). Each cluster was assigned to a single-cell cycle phase considering which 
cell cycle phase the largest portion of cluster genes belongs to. Some of the clusters were assigned to the same 
phase, as the clusters show different expression patterns and biological functions. For example, both cluster 3 
and 7 are assigned to the early G1 phase but enriched in different pathways such as DNA replication and fatty 
acid metabolism, respectively.

TRACS predicted pathways that are activated in two neighbouring cell cycle phases, DNA replication (early 
G1-late G1), DNA mismatch repair (late G1-S-G2), fatty acid biosynthesis (early G1-late G1) and carbohydrate 
metabolism (S-G2 and M-early G1). It is known that the formation of the pre-replication complex (pre-RC) 
occurs during G1 phase and is required for the appropriate initiation of DNA replication in the subsequent S 
 phase27. TRACS identified cell division cycle 6 (CDC6) and every component of the MCM2-7 replicative helicase 
complex except MCM6. The MCM2-7 complex is known as a component of pre-RC that is loaded onto DNA by 
CDC6 in G1 phase and activated for DNA  unwinding28. The result implies that TRACS was able to capture the 
pre-replicative state of cells in G1 phase. The DNA replication checkpoint prevents the accumulation of DNA 
damage, such as replication blocks or damaged DNA templates, and the checkpoint signal in turn promotes 
G1-S phase  transcription29. Checking DNA damage from replication is continued through the intra-S-phase 
 checkpoint30 and G2  checkpoint31, which corresponds to the functional relationship between clusters suggested 

Figure 3.  Cluster network of yeast cell cycle dataset by TRACS using (a) DEGs (P-value > 0.05), (b) remaining 
DEGs after filtering clusters enriched with cell cycle pathway (sce04111) from the result of (a), and (c) 220 
labelled genes. In (c), repetitive pathway (cell cycle pathway, sce04111) is omitted.
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from the network. Lipid biosynthesis is also known to coordinate with cell cycle. Inhibition of fatty acid synthesis 
induces a cell cycle delay at early G1 phase, and a commitment point monitoring the synthesis of lipids is expected 
to be at the late G1  phase32, which explains why pathways related to fatty acid biosynthesis are enriched in early 
G1-late G1 clusters. Finally, sugar is the most important nutrient for yeast, and the storage of carbohydrates is 
under cell-cycle control. Storage carbohydrates rise to high levels in the early G1 phase and decrease in late G1 
by liquidation to glucose, slowly growing again after S  phase33.

Epithelial‑to‑mesenchymal transition dataset. TRACS generated a cluster network for the EMT dataset 
(K-means, kopt=3), as shown in Fig. 4. The network is sparsely connected by functional similarity, with no label 
between the epithelial and partial-EMT clusters. This result is not unexpected because each state of EMT is 
rather distinct in that state-specific transcription factors cooperatively regulate the transcriptomic  dynamics13. 
Additionally, the result is consistent with the GO enrichment test result in the original paper that showed no 
common function between three groups of genes. Specifically, genes actively transcribed in the epithelial state 
were enriched for cell cycle process, while the mesenchymal state was characterized by genes related to cell 
adhesion. Meanwhile, the partial-EMT state was marked by genes associated with cell motility. Given the results 
of the GO enrichment test, it is understandable that TRACS assigned the ECM‑receptor interaction pathway 
(hsa04512) as the only common function between the partial-EMT and mesenchymal clusters because the inter-
action between cells undergoing EMT and extracellular matrix (ECM) protein is known to regulate EMT pro-
cesses including cell adhesion and  migration34. For example, certain ECM proteins, such as type I collagen, are 
known to facilitate the EMT process through integrin signalling and disrupt cell-cell adhesions. Furthermore, 
mesenchymal-like cells migrate along the type I collagen  matrix35.

In summary, TRACS generated three most distinct clusters that represent epithelial, partial-EMT and mes-
enchymal states based on the gene expression data with eight time points. Currently, a different number of 
partial-EMT states in various cancer cell lines have been  characterized36–38. These studies indicate there would 
be multiple intermediate states during the EMT process, forming a continuum of cell states. Given the high 
resolution data with a larger number of (pseudo-)time points such as single cell expression data from EMT, 
TRACS is expected to help reveal more concrete dynamics of EMT process with multiple partical-EMT states.

Performance evaluation and comparison with existing tools. The performance of TRACS is evalu-
ated differently in scRNA-seq data and two bulk RNA-seq data. As the scRNA-seq dataset does not provide clus-
ter labels of every gene, the accuracy of clustering cannot be measured with evaluation scores such as F1 score. 
Therefore, the result was compared with biclustering algorithms to visually inspect the gene expression patterns 
of clusters. Biclustering is a method to clustering rows and columns of a data matrix simultaneously. With time 
series gene expression data, biclustering algorithms can be used to generate a gene set related to a certain cluster 
of time points that might represent a potential cellular state.

Cell cycle and EMT dataset that provide true cluster labels of genes are evaluated with the accuracy of cluster-
ing measured by the inferred number of clusters and evaluation scores (F1 score, adjusted Rand index, silhouette 
score). To see how accurately the Gaussian gap statistics using Gaussian process likelihood can infer the number 
of clusters, the optimal number of clusters inferred by TRACS is compared with that from the original gap sta-
tistics using Euclidean distance. The clustering performance of TRACS is compared with the performance of six 
algorithms for time series clustering (Supplementary Table S2). Two classic clustering algorithms (K-means and 
agglomerative clustering) that do not consider time dependency are used in TRACS to verify the independent 
effect of Gaussian gap statistics on time series. BHC, DPGP and STEM provide the optimal number of clusters 
with which the evaluation scores are calculated. True kopt s are given to K-Shape, GPclust and ClusterNet that 
take the number of clusters as an input.

Single‑cell RNA‑seq dataset. Gene expression generated from scRNA-seq data was analysed with bicluster-
ing algorithms implemented in the R package biclust including a plaid  model39, bimax  biclustering40, CC 
 biclustering41, questmotif  biclustering42. biclust package was selected as the implemented functions does not 
require the number of clusters, comparable to TRACS. Figure 5 shows the result of the plaid model bicluster-
ing algorithm and TRACS. The plaid model generated one cluster with 91 genes and 2 time points and TRACS 
detected three clusters, each of which are marked with a green box. Three clusters of TRACS can represent three 
successive stages of normal hematopoietic development (HSC/Prog, GMP and differentiated myeloid) and 20 
out of 21 cell-type-specific genes belong to the correct stages they represent. The cluster detected by the plaid 
model biclustering included 11 out of 14 cell-type-specific genes of the second and third stages highlighting the 
inactivated time points of the genes, which shows the algorithm could not detect the individual clusters associ-

Figure 4.  Cluster network of human EMT dataset inferred by TRACS.
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ated with cell states. The other algorithms generated no cluster (questmotif), one cluster with all genes (CC), or 
highly overlapping 17 clusters that cannot be visualized (bimax).

Cell cycle dataset. Table  1 shows the clustering performance evaluation results with the cell cycle dataset. 
Gaussian gap statistics using the Gaussian process predicted the number of clusters more accurately (7) than the 
Euclidean distance (17–18) when the true kopt was 5. Consequently, performance evaluation scores (F1 score, 
adjusted Rand index, silhouette score) were higher when the kopt s from TRACS were closer to 5. BHC and DPGP 

Figure 5.  Heatmap of the clustering results of scRNA-seq data by plaid model biclustering algorithm (left) and 
TRACS (right). Detected clusters are marked as green boxes. 21 cell-type-specific genes that represent successive 
stages of hematopoietic development are specified on the left side of the heatmaps.

Table 1.  Optimal number of clusters ( kpred ) inferred from cell cycle dataset ( ktrue=5) with a given range of 
[1, 20] and clustering performance evaluation with inferred kpred. As K-shape, GPclust and ClusterNet do not 
predict the number of clusters, the true number of clusters is given ( kgiven = ktrue ). (F1 F1 score, ARI adjusted 
Rand index, Sil. Silhouette score, KM K-means clustering, AC agglomerative clustering, KS K-shape).

Algorithm

Gap statistics using GP Gap statistics using ED

kpred F1 ARI Sil. kpred F1 ARI Sil.

TRACS (KM) 7 0.536 0.410 0.216 18 0.239 0.158 0.100

TRACS (AC) 7 0.559 0.428 0.218 17 0.353 0.260 0.130

BHC 40 0.119 0.065 − 0.156

DPGP 48 0.209 0.148 0.087

STEM – – – –

Algorithm kgiven F1 ARI Sil.

K-shape 5 0.578 0.442 0.261

GPclust 5 0.410 0.236 0.123

ClusterNet 5 0.280 0.081 − 0.021
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generated a large number of clusters as 40 and 48, achieving the lowest performance. STEM did not report any 
significant clusters. The probable reason is that STEM could not distinguish gene distribution in clusters from 
uniform (random) distribution owing to the large number of possible profiles generated from 17 time points. 
The K-shape showed the best performance, with true kopt most similar to the TRACS results with 7 clusters. 
Even though the true kopt was given, the performance scores of GPclust and ClusterNet were lower than those of 
TRACS. Especially, the clusters produced by ClusterNet show high within-cluster variances, as shown in Table 1 
and Fig. 6. In particular, the top cluster in Fig. 6 has no specific expression pattern shared by cluster genes, 
thereby resulting in a straight line as a mean after Gaussian process regression.

Using the same gene expression data, a cluster network was generated by  ClusterNet19 with k = 5 for com-
parison with TRACS (Fig. 6). ClusterNet performs clustering and predicts activation ( → ) and inhibition ( ⊣ ) 
relationships between clusters. If ClusterNet predicts an activation (inhibition) edge from cluster A to cluster 
B, this implies that the gene expression profile of cluster B at time point t is based on the profile of cluster A at 
time point t − 1 multiplied by a positive (negative) weight. As shown in Fig. 6, some of the clusters show high 
within-cluster variances in gene expression patterns, making it hard to match the clusters with cell cycle phases 
(Table 1). ClusterNet inferred 10 relationships among 5 clusters, but the relationship is complicated to explain 
in the absence of a specific order of the clusters.

Epithelial‑to‑mesenchymal transition dataset. The clustering results of the EMT dataset are summarized in 
Table 2. For TRACS, Gaussian gap statistics using the Gaussian process predicts a more accurate number of 
clusters (3–4) than Euclidean distance (10), achieving higher values for the F1 score, adjusted Rand index and 
silhouette score. BHC and DPGP inferred a large number of clusters (624 and 37, respectively) for the EMT 
dataset, most of which were clusters with a single gene. STEM reported 7 significant clusters out of 50 clusters, 
which is a default parameter for the maximum number of model profiles. All possible profiles of the EMT dataset 
are actually 3(8−1) − 1 = 2186 , and 50 out of 2186 clusters are considered candidate profiles. K-Shape showed 
similar but slightly lower performance than K-means with the same k. This suggests that the concept of cluster-
ing shifted patterns in K-Shape has less importance in the EMT dataset. STEM selected 7 clusters as significant 
out of 50 clusters. We evaluated STEM results with true label of 1,386 genes that belong to 7 significant clusters. 
ClusterNet did not produce clustering results due to an ‘Out of memory’ error, which might stem from the larger 
number of genes than in the cell cycle dataset.

Figure 6.  Cluster network of cell cycle dataset inferred by  ClusterNet19. Triangle arrows and diamond arrows 
indicate activation and inhibition, respectively. Self-regulations are omitted. Each cluster is labeled with 
corresponding cell cycle phase based on the true cluster labels of genes. The percentages of genes belonging to 
the labeled cell cycle phase are marked for each cluster.
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Conclusions
In this study, TRACS, a novel time series transcriptome data analysis framework, was presented. The novelty 
of this framework is its ability to generate cell states and transitions of cell states by analysing time series tran-
scriptome data only. TRACS discovers hidden patterns that correspond to hidden cellular states by clustering 
gene expression data, without any prior knowledge on cell types, cell-type-specific markers or the number of cell 
states. The proposed algorithm infers cell states with high accuracy by Gaussian process regression, shape-based 
distance and ranked pairs algorithm. Gaussian gap statistics are implemented in TRACS to infer the optimal 
number of clusters. The Gaussian gap statistics using the Gaussian process are able to consider time-to-time 
dependency, leading to the more accurate prediction of the number of clusters. TRACS provides a network of 
clusters where relationships between clusters are inferred by the shape-based distance, the ranked pairs algorithm 
and the two-group enrichment test on biological pathways. In three gene expression datasets from scRNA-seq 
and bulk RNA-seq, TRACS generated correctly ordered networks of clusters, each cluster matching one of the 
known cell states. Furthermore, several biological studies support the predicted functional link at each cell 
state change between clusters, showing the utility of TRACS for biological interpretation. Our proposed model 
is based on the Gaussian assumption for gene expression data that include signal intensities from microarray 
or log-transformed normalized read counts from RNA-seq. Future work of this study will involve accounting 
for different types of gene expression data such as raw read counts of RNA-seq that are assumed to follow the 
negative binomial distribution.

Methods
Data pre-processing for feature extraction. TRACS provides an optional step for feature extraction 
by principal component analysis (PCA) before clustering.  PCA43 finds the eigenvectors of a covariance matrix 
of data to project an initial set of features from a high-dimensional space into a reduced set of features while 
preserving as much of the variation of data as possible. To perform feature extraction on time series, TRACS 
incorporates the functional  PCA44 that investigates the modes of variation of functional data and represents the 
data using a fixed number of eigenfunction basis.

Gap statistics using distance measure for the Gaussian process for predicting the number of 
clusters. Gap statistics are used to estimate the optimal number of clusters kopt in a set of  data45. The algo-
rithm defines ‘gap’ as a difference of within-cluster variance calculated from observed data and from a reference 
null distribution. An optimal number of clusters kopt in a given range [1,Nk] is determined where the gap between 
two within-cluster variances is maximized. Different criteria to determine the kopt using gap statistics have been 
developed such as choosing the minimum k where the gap is within the standard deviation of the global maximum 
 gap46. Assume that gene expression of one gene is represented as a vector x =

{

xiq|i = 1, . . . ,Nt , q = 1, . . . ,Nr

}

 
where Nt is the number of time point and Nr is the number of replicates in each time point. The within-cluster 
variance Wk given k clusters is defined as a sum of squared Euclidean distances between all pairs of expression 
vectors from each cluster r in [1, k], which can be calculated by a sum of distances between all data points xr in 
the rth cluster and as cluster mean µr multiplied by 2nr where nr is the number of data points in cluster r (Eqs. 1, 
2). To calculate the distance between data points, averaged values of the replicates at each time point are used 
such as x = {x̄i|i = 1, . . . ,Nt}.

(1)Dr =
∑

xi∈Cr

∑

xj∈Cr

||xi − xj||2 = 2nr
∑

xr∈Cr

||xr − µr||2

(2)Wk =
k

∑

r=1

1

2nr
Dr

Table 2.  Optimal number of clusters ( kpred ) inferred from EMT dataset ( ktrue=3) with a given range of [1, 20] 
and clustering performance evaluation with inferred kpred . Abbreviations are same as in Table 1.

Algorithm

Gap statistics using GP Gap statistics using ED

kpred F1 ARI Sil. kpred F1 ARI Sil.

TRACS (KM) 3 0.884 0.796 0.476 10 0.407 0.269 0.233

TRACS (AC) 4 0.768 0.635 0.327 10 0.401 0.258 0.187

BHC 624 0.014 0.007 − 0.373

DPGP 37 0.152 0.087 − 0.010

STEM 7 0.470 0.270 0.044

Algorithm kgiven F1 ARI Sil.

K-shape 3 0.802 0.632 0.456

GPclust 3 0.876 0.781 0.478

ClusterNet 3 – – –
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Gap statistics are calculated as Gap(k) = E∗
{

log(Wk)
}

− log(Wk) by comparing log(Wk) with E∗
{

log(Wk)
}

 
that is an expected log(Wk) under a null reference distribution from randomly sampled data. Reference data are 
sampled within the same range of observed data such that there is no obvious clustering pattern. TRACS uses 
adapted gap statistics (hereafter referred to as Gaussian gap statistics) as a metric for within-cluster variance to 
reflect temporal dependency in gene expression. We assume that gene expressions in a cluster are generated from 
a Gaussian process. Cluster mean µ̂ =

{

µ̂ti , i = 1, . . . ,Nt

}

 and variance σ̂ =
{

σ̂ti , i = 1, . . . ,Nt

}

 at each time 
point ti are estimated using the expression vectors of all genes x in the cluster including the replicated values. 
Unlike the original gap statistics that calculates Euclidean distance between a data point and a cluster mean, 
TRACS uses the log marginal likelihood of a data point being generated from a Gaussian process with µ̂ , σ̂ and 
noise variance σN at time points P = {ti|i ∈ 1, . . . ,Nt} with kernel matrix K . (Eqs. 3, 4).

A larger likelihood indicates smaller within-cluster variance. The kopt is determined where the gap between 
likelihoods of the reference data and of the observed data is maximized, as shown below.

The advantage of using the likelihood based on the Gaussian process model is that the likelihood of an observed 
data point is calculated according to the variance of the time point as well as the distance from means, unlike the 
original within-cluster variance based on Euclidean distance that considers only the distance between a data point 
and a cluster mean. Variances and covariances from the Gaussian process are inferred based on the observed data 
points and a given kernel function that describes the relationship between time points. Supplementary Fig. S2 
shows examples of the increased and decreased likelihood of k being increased by one when a cluster is divided 
into two clusters. When the data points are divided into two smooth Gaussian processes and become closer to 
the new confidence intervals, the likelihood increases. The likelihood decreases when an existing cluster is not 
properly divided into two clusters when k increases. The Gaussian process of a new top cluster has larger variances 
from regression because the scatteredness of the data points generated an improbable fluctuation. A change in 
the variances of a Gaussian process results in a decrease of the likelihood, which might not be captured with the 
Euclidean distance measure.

Gaussian process regression for each cluster is performed with the Scikit-learn47 Python package. The radial-
basis function kernel KR and White kernel KW are jointly used to reflect covariance and Gaussian noise as in Eq. 
(7). The hyperparameters of kernel function, including the length scale l and noise variance σN , are optimized 
during fitting of the GaussianProcessRegressor function by maximizing the log-marginal-likelihood, given 
the range of the length scale as [0, tNt ] . When inferring means and variances of a Gaussian process, unobserved 
time points as well as observed ones are included to interpolate the data. The interval between time points for 
interpolation is set to 1, where observed time points are integers.

After selecting the optimal clustering results with Gaussian gap statistics, TRACS offers users to filter out non-
relevant clusters based on the pathway of interest that user provides. When provided with pathway identifier in 
Kyoto Encyclopedia of Genes and Genomes (KEGG)  database48, TRACS performs enrichment test on the cluster 
genes and filters out clusters that are not enriched with pathway genes based on the given threshold of P-value. 
The filtering process is helpful when the number of genes used in the analysis is large such as using differentially 
expressed genes (DEGs) detected from the gene expression analysis that are expected to include genes related 
to other simultaneously activated biological pathways with the pathway of interest.

Inference of a cluster network by shape-based distance (SBD) and ranked pairs algo-
rithm. Shape-based distance (SBD) is a distance metric developed for time series considering the shifted pat-

(3)

Lr =
∑

xr∈Cr

logP(xr|P, µ̂, σ̂ 2
)

=
∑

xr∈Cr

−1

2
(xr − µ̂)T (K + σN 2

I)−1(xr − µ̂)

− 1

2
log|K + σN 2

I| − Nt

2
log2π

(4)WGP
k =

k
∑

r=1

Lr

(5)GapGP(k) =log
(

WGP
k

)

− E∗
{

log
(

WGP
k

)}

(6)kopt = argmax
k

GapGP(k)

(7)

K(ti , tj) = KR(ti , tj)+ KW (ti , tj)

KR(ti , tj) = exp

(

−|| til −
tj
l ||2

2

)

KW (ti , tj) =
{

σN 2
if ti = tj

0 otherwise
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tern of two  series15. Among all possible shifts w ∈ [1−m,m− 1] between two sequences with the length m, SBD 
selects an optimal shift where the cross-correlation ( CCw ) is maximized. When SBD is used as a distance metric 
in a clustering algorithm, such as K-shape15, two shifted time series (e.g. Late G1 and S phase genes in Fig. 3) can 
be merged into a single cluster. In this study, shifted patterns are divided into different clusters and SBD is used 
after clustering to order every pair of two clusters a and b with their sample means µa , µb:

By calculating SBD between every pair of clusters, we can derive cluster-cluster distances and their optimal 
expression shift w. We assume cluster a is followed by cluster b when w < 0 where w is the optimal delay found 
in SBD(a, b) and vice versa. The order of each pair of clusters can be used to derive the overall order of clusters by 
ranked pairs  algorithm49. The ranked pairs algorithm was developed for an electoral system to create a sorted list 
of winners from the votes comparing each pair of candidates. Using a sequential order of clusters, we can reduce 
the number of candidate edges of the cluster network from 

(K
2

)

 to K-1 edges, where K is the number of clusters.

Two-group enrichment test for detecting functional similarity between clusters. Once a clus-
ter network is constructed using SBD, the edges between clusters are annotated in terms of the functional simi-
larity between groups of genes in two clusters. The statistical test is to measure the significance of pathways being 
assigned to clusters. First, we perform a hypergeometric test on every pair consisting of a cluster and a pathway. 
The hypergeometric distribution is used to model the behaviour of drawing objects (pathway genes) from a bin 
(cluster). Assume that N is the total number of genes and Np is the total number of pathway genes. The random 
variable X of the hypergeometric distribution represents the number of pathway genes Cip in Ci cluster genes 
from the total population (Eq. 9). Pathway information is downloaded from KEGG database.

When Cij is the union of clusters i  and j ,  We define the edge between two clusters if 
P(X ≥ Cijp) <= 0.05 < min(P(X ≥ Cip),P(X ≥ Cjp)) and Np > 10 , which means the union of clusters i and j 
is enriched in pathway p, and an enrichment p-value becomes lower when two clusters are merged, excluding 
small pathways with 10 or fewer genes. This indicates the ratio of genes relevant to a pathway (function) becomes 
more significant when two clusters are merged. Cluster genes that meet the criterion are divided into two clusters 
due to their different expression patterns but they might have activated a same pathway together through the 
interaction propagation from the previously activated genes to the others over time.

Performance evaluation of clustering algorithms. To evaluate and compare the performance of clus-
tering algorithms, three metrics are used: F1 score, adjusted Rand index and silhouette score. F1 score and 
adjusted Rand index compares the ground truth class assignment X and the assignment Y from the clustering 
algorithm. The number of pairs of data points that are in the same cluster in X and in the same cluster in Y is 
defined as true positive (TP) and the number of pairs of data points that are in the different cluster in X and in 
the same cluster in Y is defined as false positive (FP). In a similar fashion, we can define true negative (TN) and 
false negative (FN) as well. F1  score50 is the harmonic mean of precision and recall:

Rand index (RI)51 measures the percentage of correct cluster assignments made by the algorithm. However, RI 
does not guarantee that random assignments have a RI score close to zero. Adjusted Rand index (ARI) is the 
corrected-for-chance version of RI that establishes a baseline using the expected RI, E[RI], by a random model.

Silhouette  score52 is used to evaluate the clustering results when the ground truth labels are not known. The 
silhouette coefficient s(i) for a single data point i is defined as:

where a(i) is the mean distance between i and all other data points in the same cluster and b(i) is the smallest 
mean distance of i to all points in any other cluster where i is not a member. The silhouette score is the mean s(i) 
over all data points, which is higher when clusters are dense and well separated.
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(8)SBD(a, b) = 1−max
w

CCw(µa ,µb)√
CCo(µa ,µa) · CCo(µb,µb)

(9)P(X = Cip) = f (Cip;N ,Np,Ci) =

(

Np

Cip

)(

N − Np

Ci − Cip

)

(

N
Ci

)

(10)F1 = 2
precision · recall
precision+ recall

precision = TP

TP + FP
recall = TP

TP + FN

(11)RI = TP + TN

TP + FP + FN + TN
ARI = RI − E[RI]

1.0− E[RI]

(12)s(i) = b(i)− a(i)

max(a(i), b(i))
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