1 Mapping the spatial transcriptomic signature of the hippocampus during memory

2 consolidation

- 3 Yann Vanrobeys^{1,2,3}, Utsav Mukherjee^{1,2,4}, Lucy Langmack ^{1,2,5}, Ethan Bahl ^{3,6}, Li-Chun Lin ^{1,2}
- 4 Jacob J Michaelson^{2,6}, Ted Abel^{1,2*} and Snehajyoti Chatterjee^{1,2*}

5 Affiliations:

- ⁶ ¹ Department of Neuroscience and Pharmacology, Carver College of Medicine, University of
- 7 Iowa, Iowa City, IA, USA
- 8 ² Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- ⁹ ³ Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA.
- ⁴ Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242,
- 11 USA.
- ⁵ Biochemistry and Molecular Biology Graduate Program, University of Iowa, Iowa City, IA, USA
- ⁶ Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- 14 *Corresponding authors:
- 15 ted-abel@uiowa.edu
- 16 snehajyoti-chatterjee@uiowa.edu
- 17 Keywords: Spatial transcriptomics, hippocampus, Nr4a transcription factors, memory
- 18 consolidation, spatial memory.
- 19 **Running title:** Spatial transcriptomic signature of memory

Spatial transcriptomic signature of memory

21 Abstract

22	Memory consolidation involves discrete patterns of transcriptional events in the hippocampus.
23	Despite the emergence of single-cell transcriptomic profiling techniques, defining learning-
24	responsive gene expression across subregions of the hippocampus has remained challenging.
25	Here, we utilized unbiased spatial sequencing to elucidate transcriptome-wide changes in gene
26	expression in the hippocampus following learning, enabling us to define molecular signatures
27	unique to each hippocampal subregion. We find that each subregion of the hippocampus
28	exhibits distinct yet overlapping transcriptomic signatures. Although the CA1 region exhibited
29	increased expression of genes related to transcriptional regulation, the DG showed upregulation
30	of genes associated with protein folding. We demonstrate the functional relevance of subregion-
31	specific gene expression by genetic manipulation of a transcription factor selectively in the CA1
32	hippocampal subregion, leading to long-term memory deficits. This work demonstrates the
33	power of using spatial molecular approaches to reveal transcriptional events during memory
34	consolidation.
35	

- 35
- 36
- 37
- 38
- 39
- 40
- 41
- .-
- 42

Spatial transcriptomic signature of memory

43 Introduction

44 Activity-dependent gene expression occurs in wave-like patterns following experience. The early wave of transcriptional events involves increased expression of immediate early genes (IEGs) 45 and newly synthesized proteins to regulate downstream gene expression ¹⁻³. IEGs encoding 46 transcription factors, such as Fos, Egr1, and the NR4a subfamily, regulate a larger, more 47 diverse set of effector genes that mediate the structural and functional changes underlying 48 49 synaptic plasticity. Gene expression at these critical time points is essential to drive responses 50 to experience, including memory consolidation. Newly formed memory is thought to be stored within functionally connected neuronal populations, known as engram ensembles ⁴⁻⁷, in the 51 hippocampal network, then gradually consolidated across multiple brain regions ^{4,8-10}. Dynamic 52 53 gene expression patterns represent hippocampal engram ensembles and the circuitry 54 supporting memory consolidation ^{10,11}. Neuronal populations contributing to engram ensembles are activated by learning and endure cellular changes ^{10,12}, which can later be reactivated for 55 memory retrieval ¹³ or inhibited inducing memory impairments ¹⁴. Therefore, understanding the 56 transcriptional dynamics within the hippocampal circuit following an experience would provide 57 important insights into the molecular mechanism underlying memory consolidation. 58

The circuitry within different subregions of the dorsal hippocampus has distinct roles in memory 59 60 consolidation ¹⁵⁻¹⁷. Layer II of entorhinal cortex (EC) projects to granule cells of the dentate 61 gyrus (DG) and pyramidal neurons of CA3 region through the perforant pathway (PP), and layer 62 III of EC projects to the pyramidal neurons of CA1 through the temporoammonic and alvear pathways ¹⁸⁻²⁰. The direct EC input to CA1 is essential for spatial memory consolidation and 63 64 novelty detection ²¹⁻²⁴. DG granule cells project onto CA3 pyramidal neurons through mossy 65 fibers, and CA3 pyramidal neurons send projections to CA2 and CA1 pyramidal neurons through the Schaffer collateral (SC) pathway ²⁵⁻²⁷. The axons from CA1 pyramidal neurons 66 project onto subiculum and EC neurons, forming the major output pathway of hippocampal 67

Spatial transcriptomic signature of memory

circuits ²⁸. The DG is the site of adult neurogenesis in the hippocampus ²⁹. Adult newborn 68 69 granule cells mediate pattern separation in the DG³⁰, while mature granule cells in DG and CA3 pyramidal neurons are essential for pattern completion, involving associative memory recall 70 from a partial cue ^{31,32}. Thus, hippocampal memory relies on the association between items and 71 contexts ³³, with neurons in the CA1 processing information about objects and locations ³⁴ and 72 73 DG neurons driving pattern separation to reduce overlap between neural representations of similar learning experiences ³⁵⁻³⁷. Despite the importance of circuitry in the dorsal hippocampus, 74 75 spatial transcriptomic changes in response to learning across subregions of the dorsal 76 hippocampus remain largely unknown.

77 Learning-induced gene expression has previously been shown using the whole hippocampus ^{38,39}. CA1 ^{40,41}, DG ^{42,43}, and hippocampal neuronal nuclei ^{41,44,45}, but has not been examined 78 79 across all subregions simultaneously. Hippocampal engram ensembles have been studied using the expression of individual IEGs ¹¹, while recent studies have applied targeted 80 81 recombination of active neuronal populations to study unbiased cell-type specific gene expression in the hippocampus following a learning experience ^{4,45}. Fos is one IEG that is 82 thought to link hippocampal engram and place codes underlying spatial maps ^{7,46}. Single nuclei 83 84 RNA sequencing was recently utilized to demonstrate downstream targets of Fos in CA1 pyramidal cells following neuronal stimulation ⁴⁷ and define the role of cell type-specific activity-85 86 driven expression of *Fos* in CA1 for spatial memory ^{7,46,47}. Single-nuclei transcriptomic studies from Fos+ (activated) and Fos- (non-activated) hippocampal neurons following a novel 87 environment exposure revealed transcriptomic differences between DG and CA1 neurons ⁴⁸. 88 89 Other studies have applied a similar approach in the hippocampus to capture engram cells 90 following learning ⁴⁵ or activated neurons following neuronal stimulation ^{2,43}. However, it is still unclear how gene expression in each of the spatially and functionally distinct subregions is 91 regulated after learning. The transcriptomic diversity within these subregions needs to be 92

Spatial transcriptomic signature of memory

examined more clearly to better understand the role each of these subregions in memoryconsolidation.

95 Advancements in single-cell RNA sequencing analyses allows us to sort transcriptional profiles into cell types based on canonical marker genes ^{49,50}. However, utilizing spatial coordinates 96 within intact brain tissue enables precise identification of transcriptomic changes at high spatial 97 resolution ^{51,52}. Visium spatial transcriptomics (10X Genomics) combines both histology and 98 spatial profiling of RNA expression to provide high-resolution transcriptomic characterization of 99 distinct transcriptional profiles within individual brain subregions ⁵³. We have recently used this 100 101 Visium spatial transcriptomic approach to demonstrated neuronal activation patterns within brain regions following spatial exploration using a deep-learning computational tool ⁵⁴. In this work, we 102 103 have extended this novel approach to examine activity-driven spatial transcriptomic diversity 104 within the hippocampal network. We define genome-wide transcriptomic changes in the CA1 pyramidal layer, CA1 stratum radiatum, CA1 stratum oriens, CA2+3 pyramidal layer, and 105 106 dentate gyrus (DG) granular and molecular layers of the dorsal hippocampus within the first hour following spatial exploration. Moreover, we functionally validated our findings by selectively 107 manipulating the function of Nr4a transcription factor subfamily members within CA1 pyramidal 108 109 neurons. Mapping the precise expression patterns of genes in hippocampal subregions at an 110 early timepoint after learning has enhanced our understanding of their role in memory 111 consolidation.

112 Results

113 **Pseudobulk analysis of hippocampal spatial transcriptomics following learning**

114 correlates with bulk RNA sequencing

115 The growing knowledge of transcriptomic heterogeneity in hippocampal subregions raises the 116 critical question of the gene expression dynamics during a critical early timepoint of memory

Spatial transcriptomic signature of memory

117 consolidation. To understand the learning-induced gene expression patterns exhibited by 118 different hippocampal subregions, we performed spatial transcriptomic analyses using the 10x Genomics Visium platform in coronal brain slices obtained from adult C57BL/6J male mice 1 hr 119 after training in a hippocampus-dependent learning task compared to homecage controls 120 121 (Spatial object recognition task, SOR, n=4/group, Fig. 1a). We and others have previously demonstrated that the learning-induced early wave of gene expression peaks at this timepoint 122 123 after learning 55-57. We further examined the expression profiles by integrating our previous spatial transcriptomics dataset following SOR training ⁵⁴ (n=3/group). We first obtained 124 125 cumulative transcriptomic profiles (pseudobulk analysis, total n=7/group) by combining the hippocampal subregions CA1 pyramidal layer, CA1 stratum radiatum, CA1 stratum oriens, CA2 126 and CA3 pyramidal layers and DG granular layers (Fig. 1b). Differential gene expression 127 analysis of this pseudobulk data revealed 101 upregulated and 18 downregulated genes 128 129 following learning (Fig. 1c-d). Enrichment network analysis was used to identify the pathways most represented among the differentially expressed genes. The upregulated pathways include 130 nuclear receptor activity, nucleotide transmembrane transporter activity, protein kinase inhibitor 131 132 activity, dioxygenase activity and histone demethylase activity (Fig. 1e). The nuclear receptor 133 activity members Nr4a1, Nr4a2 and Nr4a3 comprised a subfamily of transcription factors known to be involved in learning and memory ^{58,59}. Histone demethylation activity has been linked to 134 memory consolidation ⁶⁰, while mutations in *Jmjd1c* are associated with intellectual disability ⁶¹. 135 136 Protein kinase inhibitors are often found to be upregulated following learning, acting as a negative regulator of transcription activation pathways, such as MAPK pathway ⁶², and potential 137 activation of memory suppression genes ⁶³. Other immediate early genes upregulated following 138 learning include Egr1, Arc, Homer1, Per1, Dusp5, and Junb and are all associated with learning 139 140 and memory 2,38,64.

Spatial transcriptomic signature of memory

141 Over the past decade, bulk RNA sequencing (RNA-seq) has been extensively used to study transcriptional profiles from brain tissue ^{40,41,58}. Therefore, to validate our spatial transcriptomic 142 approach with conventional transcriptomic tools, we performed RNA-seq using whole dorsal 143 hippocampus tissue (bulk RNA-seq) from mice trained in SOR (1 hr) or homecage. Bulk RNA-144 145 seq analysis revealed differential expression of 224 genes (DEGs, FDR<0.05) following SOR training compared to control mice, with 147 upregulated and 77 downregulated genes after 146 learning (Fig. 2a). We next asked whether our pseudobulk spatial transcriptomics data 147 overlapped with learning-induced gene expression changes observed using the bulk RNA-seg 148 149 approach. Among the 101 upregulated genes from pseudobulk spatial transcriptomics, 29 genes were identified with bulk RNA-seq. Only one gene among 18 downregulated genes 150 appeared in bulk RNA-seq. Genes differentially expressed in pseudobulk RNA-seq significantly 151 correlate with bulk RNA-seq, and the directionality of the change in expression was maintained 152 (Fig. 2b). Of these, Nr4a1, Egr1, Egr4, Dusp5, Arc, and Sgk1 were among the top common 153 upregulated genes, while oligodendrocyte differentiation-related gene Opalin was the only 154 common downregulated gene (Fig. 2b). Pseudobulk analysis also revealed differentially 155 156 expressed genes that were not identified by bulk RNA-seq approach. Some of the novel 157 upregulated transcripts identified using pseudobulk spatial transcriptomics include genes related 158 to chromatin binding (*Ncoa2*, *Polg*, *Smc3*, Bcl6, *Jdp2*, *Sp3*), protein kinase inhibitors activity (Spred1, Trib2) and chaperone binding (Dnajc3, Sacs, Grpel2). Some of the novel 159 160 downregulated genes included myelin oligodendrocyte glycoprotein (Mog), myelin associated 161 glycoprotein (Mag) and long noncoding RNA, Mir9-3hg. These results suggests that spatial transcriptomics using the Visium platform provides findings that overlap with other 162 transcriptomic approaches yet reveals new genes that may be undetectable in other techniques. 163

164 Hippocampal subregions exhibit distinct transcriptomic signatures following learning

Spatial transcriptomic signature of memory

The dorsal hippocampus is composed of multiple anatomically and functionally distinct 165 166 subregions. Here we distinguished the major principal neuronal layers and memory-relevant 167 hippocampal regions: CA1 pyramidal layer, CA1 stratum radiatum, CA1 stratum oriens, CA2 and CA3 pyramidal layers combined, and DG granular layer based on the spatial topography by 168 169 H&E staining (Fig. 3a). Computational analysis of the transcriptomic profiles from these 170 hippocampal subregions reveals distinct clusters in a UMAP plot (Fig. 3b). Analyzing the hippocampal subregion-specific transcriptomic signature after learning revealed 58 differentially 171 172 expressed genes in the CA1 pyramidal layer, 16 genes in the CA2 and CA3 pyramidal layers, 173 and 104 genes in the DG molecular and granular layer. Among these differentially expressed genes, learning induced 46 upregulated and 12 downregulated genes in the CA1 pyramidal 174 layer, 13 upregulated and 3 downregulated genes in CA2 and CA3 pyramidal layers, and 68 175 upregulated and 36 downregulated genes in DG (Fig. 3c). In addition to the CA1 pyramidal 176 177 layer, we also investigated the transcriptomic signature exhibited by CA1 stratum radiatum and stratum oriens. CA1 stratum radiatum is the suprapyramidal region containing apical dendrites 178 of pyramidal cells where CA3 to CA1 SC connections are located. CA1 stratum oriens is the 179 180 infrapyramidal region containing basal dendrites of pyramidal cells where some CA3 to CA1 SC 181 connections are located. However, heterogenous population of interneurons and other non-182 neuronal cells are also scattered through these layers. Differential gene expression analysis from these CA1 regions identified 10 upregulated and 1 downregulated gene in stratum 183 184 radiatum and 9 upregulated and 9 downregulated genes in stratum oriens (Fig. 3c). Enrichment 185 network analysis revealed that the pathways enriched in the CA1 pyramidal layer include 186 nuclear receptor activity and MAP kinase tyrosine/serine/threonine phosphatase activity (Fig. 187 **3d**). In contrast, the pathways in DG include protein kinase inhibitor activity and protein disulfide 188 isomerase activity (Fig. 3e). Next, we utilized an upset plot to compare the differentially 189 expressed genes from each hippocampal subregion (Fig. 4c-d). This analysis identified 51 genes that were exclusively upregulated in DG, 22 genes exclusively upregulated in the CA1 190

Spatial transcriptomic signature of memory

191	pyramidal layer, and 11 genes were upregulated in both CA1 and DG, but not in other
192	hippocampal subregions (Fig. 3f). Some of these 11 common genes are involved in protein
193	folding (Xbp1, Sdf2l1, Dnajb1) and the MAPK pathway (Spred1). Genes related to activity-
194	driven transcription regulation and MAPK pathway regulation (Arc, Nr4a2, Per1, and Dusp5)
195	were upregulated both in CA1 and CA2+CA3 pyramidal layers, while Nr4a1 and Egr3 were
196	upregulated in the CA1 pyramidal layer, stratum radiatum and stratum oriens. These findings
197	suggest large-scale transcriptional changes in DG, while CA pyramidal region showed
198	increased activation state of IEGs linked to engram ensemble following spatial learning.
199	Interestingly, protein kinase Sgk1 was the only upregulated gene appearing in both the stratum
200	radiatum and oriens but not in the CA1 pyramidal layer (Fig 3f-g). Distinct upregulation of Sgk1
201	within stratum radiatum and oriens could be from interneurons or non-neuronal cells or
202	displayed in this region due to the dendritic transport of mRNA from the CA1 pyramidal neurons.
203	Similarly, <i>Tsc22d3</i> was found to be specifically induced in stratum radiatum, while <i>Rasgrp1</i> was
204	exclusively induced in stratum oriens. Thus, using spatial transcriptomics, we can begin to
205	understand how RNA is localized to subcellular compartments as a method of transcriptomic
206	regulation, while this is unavailable from bulk and single nuclei transcriptomic datasets.
207	Although fewer genes were downregulated following learning compared to upregulated genes,
208	Kcna4, Usp2, and Shisa4 were downregulated in both CA1 and DG subregions (Fig 3h). Kcna4
209	(Potassium Voltage-Gated Channel Subfamily A Member 4) expression was found to be
210	increased in Abeta-induced cognitive impairment ⁶⁵ , while <i>Usp2</i> was found to be downregulated
211	in hippocampus following sleep deprivation ⁶⁶ . As both sleep deprivation ⁶⁷ and Abeta causes
212	hippocampal memory deficits ⁶⁸ , altered expression of these genes indicate they have a
213	possible role in learning and memory. Similarly, genes encoding two evolutionarily conserved
214	RNA-binding proteins, <i>Rbm3</i> and <i>Cirbp,</i> were exclusively downregulated in DG (Fig 3h) and
215	shown to be differentially expressed in the hippocampus following sleep deprivation ^{66,69} . Among

Spatial transcriptomic signature of memory

216	the genes downregulated exclusively in CA1 stratum oriens, <i>Mbp</i> , <i>Mobp</i> and <i>Plp1</i> are
217	associated with structural constituents of myelin sheath, and Opalin is involved in
218	oligodendrocyte differentiation. While adult oligodendrogenesis and myelination in the cortex
219	are required for memory consolidation ⁷⁰ , the role of downregulation of these oligodendrocyte
220	related genes in hippocampal subregion CA1 stratum oriens is not clear.
221	Functional validation of spatial transcriptomic findings by subregion-specific
222	manipulation of gene expression
223	The nuclear receptor 4a (Nr4a) subfamily of transcription factors are critical mediators of
224	memory consolidation. They are robustly upregulated in the hippocampus within minutes after
225	learning to regulate downstream gene expression ^{57,71,72} . We have previously generated a
226	dominant negative mouse model of Nr4a transcription factors which expresses a mutant form of
227	Nr4a1 (Nr4ADN) lacking a key transcriptional activation domain ⁵⁸ blocking downstream gene
228	expression of all the Nr4a subfamily members ⁷³ . Our spatial transcriptomics data revealed
229	upregulation of all the three members of the Nr4a subfamily (<i>Nr4a1</i> , <i>Nr4a2</i> and <i>Nr4a3</i>) in the
230	CA1 pyramidal layer following learning (Fig 3). This signature was absent in other hippocampal
231	subregions. Previous reports suggest that selectively knocking down the expression of either
232	<i>Nr4a1</i> or <i>Nr4a2</i> in CA1 impairs spatial memory ⁷² . Therefore, we sought to understand whether
233	blocking the transcriptional activation function of all the three Nr4a family members exclusively
234	in CA1 excitatory neurons would impair long-term memory consolidation. We used an adeno-
235	associated viral construct of Nr4ADN (AAV-Nr4ADN; 2/2 stereotype to enable minimum
236	diffusion across different subregions) under a CaMKII α promoter to restrict expression to only
237	excitatory neurons in CA1 (Fig 4a, b and c). To determine whether local expression of Nr4ADN
238	in CA1 affects memory, AAV-Nr4ADN or control (AAV-eGFP) was infused into the dorsal CA1 of
239	wild-type mice 4 weeks before SOR training (Fig 4d). Control mice showed a significant

240 increase in preference for the displaced object during the 24 hr SOR test session relative to

Spatial transcriptomic signature of memory

training, while AAV-Nr4ADN mice failed to show a preference for the displaced object (Fig 4e),
demonstrating a long-term memory impairment in Nr4ADN expressing mice. Total exploration of
the objects during the test session was unchanged and did not affect preference for the
displaced object (Fig 5f). This finding functionally validates our spatial transcriptomics data;
blocking Nr4a transcriptional function exclusively within CA1 excitatory neurons was sufficient to
impair long-term memory.

247 Discussion

248 In this study, we uncover a precise transcriptomic signature exhibited by different hippocampal subregions at a critical early timepoint during memory consolidation. While previous work has 249 focused on studying gene expression changes in the whole hippocampus ^{38,39,56,74} and individual 250 subregions ^{40-42,44}, our study provides the first comprehensive analysis of the simultaneous 251 transcriptomic changes spatially distributed across the hippocampal subregions in response to 252 learning. Moreover, we functionally validated spatial transcriptomic analyses demonstrating that 253 254 blocking the activity of Nr4a subfamily of transcription factors selectively within CA1 leads to 255 long-term memory deficits.

256 Within the dorsal hippocampus, the CA1 pyramidal layer, stratum radiatum, and stratum oriens are critical for encoding spatial memory 75. While these principal layers plays a role in 257 generating spatial maps of the environment ^{7,46}, the granule cells within the DG are thought to 258 provide stable representations of a specific environment ⁷⁶⁻⁷⁸. In this study, we identified 259 260 differential expression patterns for some of the most extensively studied IEGs related to 261 transcriptional regulation in the CA principal layers (CA1 and CA2/3) after spatial exploration. Nr4a1 and Egr3 were predominantly induced in CA1 subregions, whereas Arc, Nr4a2, Per1, 262 and Dusp5 were upregulated in CA1 and CA2/3 regions. IEGs Egr1 and Homer1 were found to 263 be upregulated in all sub-regions studied, while Gadd45b and Per2 were induced exclusively in 264

Spatial transcriptomic signature of memory

265	DG. Differential gene induction has been correlated with activation of engram ensembles ⁴⁻⁷ and
266	place codes underlying spatial maps ^{7,46} . We also noted a greater number of differentially
267	expressed genes in DG compared to CA1 following spatial exploration, consistent with single
268	nuclei data from activated and non-activated neurons from DG and CA1 ⁴⁸ , although we found
269	that the CA1 subregion exhibited a greater number of IEGs associated with activated engram
270	ensembles ⁵⁻⁷ . Additionally, our study highlights transcriptomic signatures within the two
271	relatively understudied hippocampal compartments, stratum radiatum and stratum oriens, which
272	have been challenging to delineate using conventional single-cell sequencing strategies.
273	Overall, our study elucidates the transcriptomic diversity that prevails between hippocampal
274	subregions during an early window of spatial memory consolidation.
275	The nuclear receptor 4a (Nr4a) subfamily, <i>Nr4a1, Nr4a2,</i> and <i>Nr4a3</i> , serve as major regulators
276	of gene expression in the hippocampus during memory consolidation ^{58,59,72,73,79,80} . <i>Nr4a1</i> has
277	been implicated in regulating object location memory, while both <i>Nr4a1</i> and <i>Nr4a2</i> are
278	necessary for object location and object recognition memory in the dorsal hippocampus ⁷² .
279	Impairments in Nr4a function ^{58,81} leads to long-term memory deficits ^{57,58} and impairments in
280	transcription-dependent long-term potentiation (LTP) in CA1 ⁸² . On the contrary, overexpression
281	or pharmacological activation of Nr4a family members ameliorates memory deficits in mouse
282	models of Alzheimer's disease and related dementias (ADRD) and age-associated memory
283	decline 58,59,71,83. Our identification of increased expression of Nr4a subfamily members after
284	learning in CA1 confirms findings from previous studies using hippocampus-dependent learning
285	tasks 71,72,84,85. Further, we validated our findings by demonstrating the functional relevance of
286	CA1-specific Nr4a expression in long-term spatial memory. Thus, integrating the spatial
287	component of learning-induced transcriptomic heterogeneity in the hippocampal cell layers
288	strongly supports the concept of subregion-specific dissociation in the molecular mechanisms
289	underlying memory consolidation.

Spatial transcriptomic signature of memory

290 The basal dendrites of CA1 pyramidal neurons make up stratum oriens while stratum radiatum 291 consists of apical dendrites. Both stratum radiatum and oriens receive inputs from CA3 Schaffer 292 collaterals ⁸⁶. We found upregulation in Nr4a1, Homer1, Egr1, Egr3, Egr4, Dnajb5, and Hspa5 in 293 the CA1 pyramidal layer, CA1 stratum radiatum and oriens. Interestingly, Sgk1 was restricted 294 only to the stratum oriens and stratum radiatum-suggesting Sqk1 could be enriched in the 295 dendritic region to enable local translation of this regulatory kinase in response to synaptic 296 activity 87. However, interneuron and non-neuronal cells within stratum radiatum and oriens 297 layers could also exhibit learning-induced upregulation of Sgk1. Importantly, Sgk1 plays a 298 functional role in memory consolidation. Expression of a dominant negative Sgk1 within CA1 impaired spatial memory ³², whereas constitutively active Sgk1 enhanced spatial memory ³¹. 299 Furthermore, in an APP/PS1 based ADRD model, Sgk1 was downregulated in the 300 301 hippocampus, whereas overexpression of Sgk1 could ameliorate spatial memory deficits ³⁴. Sgk1 regulates the expression of *zif268/Eqr1*⁸⁸, an IEG that we found upregulated in all 302 subregions of the hippocampus following learning. Studying the spatial patterns of learning-303 304 responsive genes like Sqk1 helps us define the role of specific hippocampal subregions in 305 memory consolidation.

Our study has identified two upregulated pathways in DG that are involved in protein kinase inhibitor activity and protein processing in the endoplasmic reticulum (ER). We have recently shown that learning induces the expression of molecular chaperones localized at the ER, and this protein folding machinery is critical in synaptic plasticity and long-term memory consolidation ⁵⁸. Here, our spatial transcriptomics data shows upregulation of genes encoding chaperones in distinct subregions; *Hspa5* and *Dnajb5* across all the hippocampal subregions, *Xbp1*, *Sdf2l1* and *Dnajb1* in areas CA1 and DG, and *Pdia6* and *Creld2* exclusively in DG. This

313 suggests that DG could have a prominent role in ER protein processing during an early

timepoint after spatial learning; although global upregulation of ER chaperones across all the

Spatial transcriptomic signature of memory

315	subregions supports our previous findings that ER chaperones are indeed critical mediators of
316	long-term memory storage ⁵⁸ . This work also suggests that there may be distinct protein
317	processing complexes in different hippocampal subregions during memory consolidation that
318	may be involved in the folding and surface presentation of distinct proteins.

319 Our work demonstrates that the subregions of the dorsal hippocampus respond to learning by 320 exhibiting distinct transcriptomic signatures. These subregions differ by their circuitry, cell types, and electrophysiological features. However, a criticism of this spatial transcriptomic approach is 321 that it lacks cell-type specific information, yet we see changes in some non-neuronal genes after 322 323 learning. Therefore, future studies will need to address heterogeneity between cell types and how each of them responds to learning. Thus, combining spatial transcriptomics with single-cell 324 325 transcriptomics and high throughput in situ approaches such as MERFISH ⁸⁹ will provide further 326 insights into cell-type specific changes in gene expression across different hippocampal subregions during memory consolidation. Although this study focused on spatial transcriptomic 327 328 signatures at an early critical time-window of spatial learning, the differential gene expression patterns we identified may well lead to diverse profiles of target gene activation across brain 329 regions at later timepoints. Our attempt to elucidate the spatial transcriptomic signature of 330 331 memory provides the groundwork for future studies to understand the precise gene expression 332 patterns underlying memory consolidation, and whether these signatures are affected in 333 neurological disorders associated with memory impairments.

334 Acknowledgments

Spatial gene expression using the *10X Genomics Visium* platform was performed at the Iowa
NeuroBank Core in the Iowa Neuroscience Institute, and the Genomics Division in the Iowa
Institute of Human Genetics which is supported, in part, by the University of Iowa Carver
College of Medicine. We thank the Neural Circuits and Behavior Core at the Iowa Neuroscience

Spatial transcriptomic signature of memory

- 339 Institute for use of their facilities. We thank Emily N. Walsh for technical assistance, Dr. Mahesh
- 340 S. Shetty and Dr. Lisa Lyons for advice on the manuscript. We thank Xiaowen Wang (Partek
- Inc.) for technical support which was crucial for Visium spatial gene expression data analysis.

342 Funding

- This work was supported by grants from the National Institute of Health R01 MH 087463 to T.A.,
- The National Institute of Health K99 AG 068306 to S.C., and The University of Iowa Hawkeye
- 345 Intellectual and Developmental Disabilities Research Center (HAWK-IDDRC) P50 HD103556 to
- T.A. T.A. is also supported by the Roy J. Carver Charitable Trust.

347 Author contributions

- 348 SC and TA conceived the idea. SC, LL and UM wrote the manuscript with inputs from all the
- 349 authors. SC performed viral infusion, behavior, biochemical and molecular biology experiments,
- analyzed and interpreted the data. YV performed all the bioinformatic analysis, generated plots
- and analyzed the data with inputs from EB and JJM. LCL processed the tissue for Visium. UM
- 352 performed imaging, UM and LL performed biochemical experiments.

353 Competing interests

354 The authors declare no competing interests.

355 Materials and methods

- 356 **Data reporting:** No statistical methods were used to predetermine sample size.
- 357 *Mouse lines*: Adult male C57BL/6J mice were purchased from Jackson Laboratories were 2-3
- 358 months age during behavioral or biochemical experiments. All mice had free access to food and
- 359 water, and lights were maintained on 12h light/dark cycle. All behavioral testing was performed
- 360 during the light cycle between Zeitgeber time (ZT) 0-2. For all behavioral and biochemical

Spatial transcriptomic signature of memory

361	experiments, mice were randomly assigned to groups, were house individually, and were
362	handled for 2 min per day for 5 days. All experiments were conducted according to US National
363	Institutes of Health guidelines for animal care and use and were approved by the Institutional
364	Animal Care and Use Committee of the University of Iowa, Iowa.
365	Adeno-associated virus (AAV) constructs and stereotactic surgeries: AAV _{2.2} -CaMKIΙα-
505	
366	Nr4ADN and AAV _{2.2} -CaMKII α -EGFP were purchased from VectorBuilder (VectorBuilder Inc).
367	Stereotactic surgeries were performed as previously described 58. Briefly, mice were
368	anaesthetized using isoflurane and 1 μI of respective AAVs were injected into the dorsal
369	hippocampus (coordinates: anteroposterior, -1.9 mm, mediolateral, ±1.5 mm, and 1.5 mm
370	below bregma). Following viral infusion, drill holes were closed with bone wax (Lukens) and the
371	incisions were sutured.

372 **Spatial object recognition (SOR) task:** SOR was performed as previously described ⁵⁸.

Animals were handled for 5 consecutive days before training. On the day of training, animals were briefly habituated in an open field, followed by three 6-minute sessions inside an arena containing three different objects. 24 hr later, the animals were returned to the arena with one of the objects displaced to a novel spatial coordinate. Exploration time around all the objects were then manually scored.

Visium sample preparation: After rapidly euthanized by cervical dislocation, the brains from 8 mice were rapidly extracted and flash- frozen with -70°C isopentane for 5 minutes. Frozen brains were stored at -80C until sectioning. Mouse frozen brains were embedded in optimal cutting temperature medium (OCT) and cryosectioned at -20 °C with the Leica CM3050 S Cryostat. 10-microns of coronal sections from the brain region with dorsal hippocampus were placed on chilled Visium Tissue Optimization Slides (10X Genomics) and Visium Spatial Gene Expression Slides (10X Genomics). Visium slides with the sections were fixed, stained, and

Spatial transcriptomic signature of memory

385 imaged with Hematoxylin and Eosin using a 20X objective on an Olympus BX61 Upright 386 Microscope. Tissue was then permeabilized for 18 min, which was established an optimal 387 permeabilization time based on tissue optimization time-course experiments. The poly-A mRNAs from the slices were released and captured by the poly(dT) primers and precoated on 388 389 the slide, including a spatial barcode and a Unique Molecular Identifiers (UMIs). After reverse 390 transcription and second strand synthesis, the amplificated cDNA samples from the Visium 391 slides were transferred, purified, and quantified for library preparation. The fragmented cDNA 392 samples were used to construct sequencing for Visium spatial transcriptome on a NovaSeq 393 6000 (Illumina) at a sequencing depth of 150 million total read pairs per mouse Visium sample.

Visium library preparation and sequencing: Sequencing libraries were prepared by the Iowa Institute of Human Genetics (IIHG) Genomics Division, according to the Visium Spatial Gene Expression User Guide. Each pooled library was sequenced on an Illumina NovaSeq 6000 using SBS chemistry v1.5 for 100 cycles, at a sequencing depth of 200 million total read pairs. Data processing of Visium data, raw FASTQ files and images were output with Space Ranger software (Version 1.3.1) and analyzed downstream by Partek Flow (Partek Inc.) with their single-cell analysis pipeline, mm10 reference genome was used for gene alignment.

401 Visium data analysis: The read counts were normalized by the counts per million (CPM) 402 method and transformed to log2(CPM + 1). A general linear model was applied to correct for 403 batch effect between the two sets of experiment. Hippocampal subregions were selected based 404 on biological knowledge using anatomical structures apparent on the H&E staining images. The pyramidal layers of CA1, CA2+CA3 and granular and molecular layer of DG were selected for 405 406 their role in neuronal excitability, synaptic plasticity and memory. Additionally, CA1 stratum 407 radiatum and oriens were also selected due to their roles in neuronal circuitry. Differential gene 408 expression analysis was performed using the non-parametric Kruskal-Wallis rank sum test 409 because this type of tests have been the most widely used approach in the field of single-cell

Spatial transcriptomic signature of memory

transcriptomics (Squair et al. 2021). Because each cell is assumed to be a biological replicate in
scRNA-seq, the same assumption is made here for each visium spot which generates a big
sample size that is handled correctly by Kruskal-Wallis test. Gene-specific analyses were
filtered with false discovery rate (FDR) < 0.05 and fold change > |1.4|.

414 Bulk RNA extraction, cDNA preparation and gene expression analysis: Dorsal hippocampi

415 were dissected and immediately stored at -80°C in RNAlater solution (Ambion). For RNA total extraction, hippocampi were homogenized in Qiazol (Qiagen) using stainless steel beads 416 417 (Qiagen). Chloroform was then added, and the homogenate was centrifuged at 12,000 x g at RT 418 for 15 min. Aqueous phase containing RNA was precipitated using ethanol and then cleaned 419 using the RNeasy kit (Qiagen). RNA was eluted in nuclease-free water, treated with DNase 420 (Qiagen) at RT for 25 min and precipitated in ethanol, sodium acetate (pH 5.2) and glycogen 421 overnight at -20°C. Precipitated RNA samples were centrifuged at top speed at RT for 20 min. washed with 70% ethanol and centrifuged at top speed for 5 min, dried and resuspended in 422 nuclease free water. RNA concentrations were estimated using a Nanodrop (Thermo Fisher 423 424 Scientific). cDNAs were prepared from 1 µg RNA using the SuperScript™ IV First-Strand 425 Synthesis System (Ambion). Real-time RT-PCR reactions were performed in a 384-well optical 426 reaction plate with optical adhesive covers (Life Technologies). Each reaction was composed of 427 2.25µl cDNA (2 ng/ul), 2.5µl Fast SYBR™ Green Master Mix (Thermo Fisher Scientific), and 428 0.25µl of primer mix (IDT). Three technical replicates per reaction was performed on the 429 QuantStudio 7 Flex Real-Time PCR system (Applied Biosystems, Life Technologies). Data was normalized to housekeeping genes (Tubulin, Pgk1 and Hprt) and 2^(-ΔΔCt) method was used for 430 431 gene expression analysis.

Library preparation and sequencing from bulk RNA: RNA libraries were prepared at the
lowa Institute of Human Genetics (IIHG), Genomics Division, using the Illumina TruSeq
Stranded Total RNA with Ribo-Zero gold sample preparation kit (Illumina, Inc., San Diego, CA).

Spatial transcriptomic signature of memory

435	Library concentrations were measured using KAPA Illumina Library Quantification Kit (KAPA
436	Biosystems, Wilmington, MA). Polled libraries were sequenced on Illumina NovaSeq6000
437	sequencer with 150-bp Paired-End chemistry (Illumina) at the IIHG core.
438	Bulk RNA-seq analysis: Sequencing data was processed with the bcbio-nextgen pipeline
439	(https://github.com/bcbio/bcbio-nextgen). The pipeline uses STAR ⁹⁰ to align reads to the
440	genome and quantifies expression at the gene level with featureCounts ⁹¹ . All further analyses
441	were performed using R. For gene level count data, the R package EDASeq was used to
442	account for sequencing depth (upper quartile normalization) ⁹² . Latent sources of variation in
443	expression levels were assessed and accounted for using RUVSeq (RUVs) ⁹³ . Appropriate
444	choice of the RUVSeq parameter k was determined through inspection of RLE plots and PCA
445	plots. Differential expression analysis was conducted using edgeR ⁹⁴ .

446 Molecular function enrichment analysis

The identified DEGs were analyzed for molecular function enrichment analysis by using the 447 ClueGO and CluePedia plug-ins of the Cytoscape 3.9.0 software in "Functional analysis" mode 448 against the Gene Ontology Molecular Function (4691 terms) database. The GO Tern Fusion 449 was used allowing for the fusion of GO parent-child terms based on similar associated genes. 450 The GO Term Connectivity had a kappa score of 0.4. The enrichment was performed using a 451 two-sided hypergeometric test. The p-values were corrected with a Bonferroni step down 452 approach. Only significant molecular function with corrected p-values < 0.05 were displayed. 453 454 UpSet plots were generated using an online software ExpressAnalyst. Data was plotted using 455 the distinct mode.

Western blot analysis: Protein extracts were transferred to polyvinylidene difluoride
membranes as previously described ⁷⁴. Membranes were blocked with Odyssey® Blocking
Buffer in TBS (LI-COR) and incubated overnight at 4°C with the following primary antibodies:

Spatial transcriptomic signature of memory

459	pan-HA (1:1000, Cell signaling), YFP (1:1000, Abcam), and Actin (1:10,000, ThermoFisher
460	Scientific). Membranes were washed and incubated with appropriate IRDye IgG secondary
461	antibodies, including anti-rabbit IRDye 800LT (1:5,000, LI-COR) and anti-mouse IRDye 680CW
462	(LI-COR). Images were acquired using the Odyssey Infrared Imaging System (LI-COR).
463	Quantification of western blot bands was performed using Image Studio Lite ver5.2 (LI-COR).
464	Immunohistochemistry and confocal imaging: Animals were perfused with 4% PFA, and 20
465	μm coronal brain sections were made in a cryostat. Free-floating sections were washed with
466	PBS and mounted on on Superfrost™ Plus microscope slides (Fisherbrand). The sections were
467	air-dried, followed by coverslip mounting with Vectashield® Antifade Mounting Medium with
468	DAPI (Vector Laboratories). Slides were then imaged using the Olympus FV3000 confocal
469	microscope with a 10X NA = 0.4 objective at 800 × 800-pixel resolution.
470	Statistics: Behavioral and biochemical data were analyzed using unpaired two-tailed t-tests and

either one-way or two-way ANOVAs (in some cases with repeated measures as the within

472 subject variable). Sidak's tests were used for post-hoc analyses where needed. Differences

473 were considered statistically significant when p<0.05. As indicated for each figure panel, all data

are plotted in either bar graphs, in which symbols represent each data point, or in dot plots,

where each symbol represents an individual data point. Graphs were plotted as mean ± SEM.

476 Figure legend

477 Figure 1: Pseudobulk RNA-seq analysis of spatial transcriptomic data defines learning-

induced gene expression in the hippocampus. a. Schematic of the spatial learning
paradigm, followed by a graphic description of the Visium pipeline. n=4/group, males only b.

480 Visual depiction of spots across all the hippocampal subregions used for pseudobulk RNA-seq

- 481 analysis. **c.** Bar graph illustrating the total number of upregulated and downregulated genes
- 482 computed from the pseudobulk RNA-seq data. **d.** Heat map generated from individual Visium

Spatial transcriptomic signature of memory

483	spots of the 40 top significant differentially expressed genes after learning. Red: upregulated,
484	and blue: downregulation genes. e. Gene Ontology (GO) enrichment analysis performed on all
485	the differentially expressed genes based on their molecular function (MF).
486	Figure 2: Comparison of the pseudobulk RNA-seq with the bulk RNA-seq dataset after
487	learning. a. Volcano plot illustrating the most significant differentially expressed genes after
488	learning from a bulk RNA-seq experiment performed from the dorsal hippocampus 1 hour after
489	learning. homecage (n=4), SOR (n=4). b. Quadrant plot depicting the correlation between
490	differentially expressed genes identified in bulk RNA-seq and pseudobulk RNA-seq.
491	Figure 3: Utilizing spatial transcriptomics to dissect subregion-specific transcriptomic
492	signature of learning in the hippocampus. a. Representative depiction of the Visium spots
493	considered to distinguish hippocampal subregions. b. UMAP plot showing spot-clusters
494	demarcating the most prominent hippocampal subregions. c. Bar graph depicting the total
495	number of differentially expressed genes corresponding to hippocampal subregions. d. Gene
496	Ontology (GO) enrichment analysis performed on the differentially upregulated genes in area
497	CA1 pyramidal layer. e. Gene Ontology (GO) enrichment analysis of all differentially
498	upregulated genes in Dentate Gyrus (DG). f. UpSet plot illustrating the spatial pattern of all the
499	significantly upregulated learning-induced genes throughout the hippocampus. g. Venn diagram
500	showing the overlap of upregulated genes exclusive to area CA1 pyramidal layer, Stratum
501	Oriens, and Stratum Radiatum. h. UpSet plot depicting the spatial map of all the significantly
502	downregulated genes in the hippocampus.
503	Figure 4: Functional validation of spatially reserved signatures of learning-induced gene
504	expression. a. Design of the constructs packaged into Adeno-associated viruses (AAV) to
505	ectopically express the dominant negative (DN) mutant of Nr4a and EGFP in the CA1
506	hippocampal sub-region. b. Western Blot analysis showing the time course of viral expression at

Spatial transcriptomic signature of memory

- 507 3-weeks and 4-weeks after viral infusion. One-way Anova: Šídák's multiple comparisons test:
- 608 eGFP vs Nr4ADN. n=2-3/group. c. Immunohistochemistry against YFP to detect the localization
- and spread of the AAV in the dorsal hippocampus. **d.** Experimental timeline of AAV-infusion into
- 510 CA1 excitatory neurons followed by spatial learning paradigm. **e.** Long-term memory
- assessment by evaluating preference for the displaced object (DO) in a spatial object
- recognition (SOR) task. 2-way Anova: Significant sessions (Train-Test) x virus (Nr4ADN-eGFP)
- 513 interaction: F (1, 18) = 4.537, p=0.0472, main effect of sessions: F (1, 18) = 29.93, p<0.0001
- and main effect of virus: F (1, 18) = 10.26, p=0.0049. Šídák's multiple comparisons test: eGFP:
- 515 train vs test: p<0.0001, eGFP (test) vs Nr4ADN (Test): p=0.0014. n=10/group **f.** Total
- 516 exploration time of all the objects during SOR for both the experimental groups.
- 517

518 **References**

Yap, E. L. & Greenberg, M. E. Activity-Regulated Transcription: Bridging the Gap 519 1 between Neural Activity and Behavior. Neuron 100, 330-348 (2018). 520 https://doi.org:10.1016/j.neuron.2018.10.013 521 Fernandez-Albert, J. et al. Immediate and deferred epigenomic signatures of in vivo 522 2 neuronal activation in mouse hippocampus. Nat Neurosci 22, 1718-1730 (2019). 523 https://doi.org:10.1038/s41593-019-0476-2 524 Tyssowski, K. M. et al. Different Neuronal Activity Patterns Induce Different Gene 525 3 Expression Programs. Neuron 98, 530-546 e511 (2018). 526 527 https://doi.org:10.1016/j.neuron.2018.04.001 528 4 Roy, D. S. et al. Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nat Commun 13, 1799 (2022). 529 https://doi.org:10.1038/s41467-022-29384-4 530 5 Josselyn, S. A. & Tonegawa, S. Memory engrams: Recalling the past and imagining the 531 future. Science 367 (2020). https://doi.org:10.1126/science.aaw4325 532 533 6 Reijmers, L. G., Perkins, B. L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science 317, 1230-1233 (2007). 534 https://doi.org:10.1126/science.1143839 535 Pettit, N. L., Yap, E. L., Greenberg, M. E. & Harvey, C. D. Fos ensembles encode and 536 7 537 shape stable spatial maps in the hippocampus. Nature 609, 327-334 (2022). https://doi.org:10.1038/s41586-022-05113-1 538 Redondo, R. L. et al. Bidirectional switch of the valence associated with a hippocampal 8 539 contextual memory engram. Nature 513, 426-430 (2014). 540 https://doi.org:10.1038/nature13725 541 9 Cowansage, K. K. et al. Direct reactivation of a coherent neocortical memory of context. 542 Neuron 84, 432-441 (2014). https://doi.org:10.1016/j.neuron.2014.09.022 543

544	10	Kitamura, T. et al. Engrams and circuits crucial for systems consolidation of a memory.
545		Science 356, 73-78 (2017). https://doi.org:10.1126/science.aam6808
546	11	Guzowski, J. F., McNaughton, B. L., Barnes, C. A. & Worley, P. F. Environment-specific
547		expression of the immediate-early gene Arc in hippocampal neuronal ensembles. <i>Nat</i>
548	4.0	Neurosci 2, 1120-1124 (1999). <u>https://doi.org:10.1038/16046</u>
549	12	Tonegawa, S., Liu, X., Ramirez, S. & Redondo, R. Memory Engram Cells Have Come of
550		Age. Neuron 87, 918-931 (2015). https://doi.org:10.1016/j.neuron.2015.08.002
551	13	Liu, X. <i>et al.</i> Optogenetic stimulation of a hippocampal engram activates fear memory
552		recall. <i>Nature</i> 484 , 381-385 (2012). <u>https://doi.org:10.1038/nature11028</u>
553	14	Han, J. H. et al. Selective erasure of a fear memory. Science 323 , 1492-1496 (2009).
554	. –	https://doi.org:10.1126/science.1164139
555	15	Broadbent, N. J., Squire, L. R. & Clark, R. E. Spatial memory, recognition memory, and
556		the hippocampus. <i>Proc Natl Acad Sci U S A</i> 101 , 14515-14520 (2004).
557		https://doi.org:10.1073/pnas.0406344101
558	16	Moser, M. B., Moser, E. I., Forrest, E., Andersen, P. & Morris, R. G. Spatial learning with
559		a minislab in the dorsal hippocampus. <i>Proc Natl Acad Sci U S A</i> 92 , 9697-9701 (1995).
560	. –	https://doi.org:10.1073/pnas.92.21.9697
561	17	Moser, M. B. & Moser, E. I. Functional differentiation in the hippocampus. <i>Hippocampus</i>
562		8, 608-619 (1998). https://doi.org:10.1002/(SICI)1098-1063(1998)8:6<608::AID-
563		HIPO3>3.0.CO;2-7
564	18	Hainmueller, T. & Bartos, M. Dentate gyrus circuits for encoding, retrieval and
565		discrimination of episodic memories. <i>Nat Rev Neurosci</i> 21 , 153-168 (2020).
566		https://doi.org:10.1038/s41583-019-0260-z
567	19	Witter, M. P., Griffioen, A. W., Jorritsma-Byham, B. & Krijnen, J. L. Entorhinal projections
568		to the hippocampal CA1 region in the rat: an underestimated pathway. <i>Neurosci Lett</i> 85,
569	~~	193-198 (1988). https://doi.org:10.1016/0304-3940(88)90350-3
570	20	Deller, T., Adelmann, G., Nitsch, R. & Frotscher, M. The alvear pathway of the rat
571		hippocampus. <i>Cell Tissue Res</i> 286 , 293-303 (1996).
572		https://doi.org:10.1007/s004410050699
573	21	Vago, D. R. & Kesner, R. P. Disruption of the direct perforant path input to the CA1
574		subregion of the dorsal hippocampus interferes with spatial working memory and novelty
575		detection. <i>Behav Brain Res</i> 189 , 273-283 (2008).
576	~~	https://doi.org:10.1016/j.bbr.2008.01.002
577	22	Remondes, M. & Schuman, E. M. Role for a cortical input to hippocampal area CA1 in
578		the consolidation of a long-term memory. <i>Nature</i> 431 , 699-703 (2004).
579	~~	https://doi.org:10.1038/nature02965
580	23	Place, R. <i>et al.</i> NMDA signaling in CA1 mediates selectively the spatial component of
581		episodic memory. <i>Learn Mem</i> 19 , 164-169 (2012).
582	~ (https://doi.org:10.1101/lm.025254.111
583	24	Huerta, P. T., Sun, L. D., Wilson, M. A. & Tonegawa, S. Formation of temporal memory
584		requires NMDA receptors within CA1 pyramidal neurons. <i>Neuron</i> 25 , 473-480 (2000).
585	05	https://doi.org:10.1016/s0896-6273(00)80909-5
586	25	Steward, O. Topographic organization of the projections from the entorhinal area to the
587		hippocampal formation of the rat. <i>J Comp Neurol</i> 167 , 285-314 (1976).
588	00	https://doi.org:10.1002/cne.901670303
589	26	Arrigoni, E. & Greene, R. W. Schaffer collateral and perforant path inputs activate
590		different subtypes of NMDA receptors on the same CA1 pyramidal cell. <i>Br J Pharmacol</i>
591	07	142 , 317-322 (2004). <u>https://doi.org:10.1038/sj.bjp.0705744</u>
592	27	Anand, K. S. & Dhikav, V. Hippocampus in health and disease: An overview. Ann Indian
593		Acad Neurol 15, 239-246 (2012). <u>https://doi.org:10.4103/0972-2327.104323</u>

594	28	Amaral David, L. P. in <i>The Hippocampus Book</i> (ed Richard Morris Per Andersen, David
595		Amaral, Tim Bliss, John O'Keefe) Ch. 3, (Oxford University Press, 2006).
596	29	Drew, L. J., Fusi, S. & Hen, R. Adult neurogenesis in the mammalian hippocampus: why
597		the dentate gyrus? <i>Learn Mem</i> 20 , 710-729 (2013).
598		https://doi.org:10.1101/lm.026542.112
599	30	McHugh, T. J. et al. Dentate gyrus NMDA receptors mediate rapid pattern separation in
600		the hippocampal network. Science 317 , 94-99 (2007).
601		https://doi.org:10.1126/science.1140263
602	31	Nakazawa, K. et al. Requirement for hippocampal CA3 NMDA receptors in associative
603		memory recall. Science 297, 211-218 (2002). <u>https://doi.org:10.1126/science.1071795</u>
604	32	Nakashiba, T. et al. Young dentate granule cells mediate pattern separation, whereas
605		old granule cells facilitate pattern completion. Cell 149 , 188-201 (2012).
606		https://doi.org:10.1016/j.cell.2012.01.046
607	33	Stevenson, R. F., Reagh, Z. M., Chun, A. P., Murray, E. A. & Yassa, M. A. Pattern
608		Separation and Source Memory Engage Distinct Hippocampal and Neocortical Regions
609		during Retrieval. <i>J Neurosci</i> 40 , 843-851 (2020).
610		https://doi.org:10.1523/JNEUROSCI.0564-19.2019
611	34	Komorowski, R. W., Manns, J. R. & Eichenbaum, H. Robust conjunctive item-place
612		coding by hippocampal neurons parallels learning what happens where. J Neurosci 29,
613		9918-9929 (2009). https://doi.org:10.1523/JNEUROSCI.1378-09.2009
614	35	Dimsdale-Zucker, H. R., Ritchey, M., Ekstrom, A. D., Yonelinas, A. P. & Ranganath, C.
615		CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within
616		human hippocampal subfields. <i>Nat Commun</i> 9 , 294 (2018).
617		https://doi.org:10.1038/s41467-017-02752-1
618	36	Favila, S. E., Chanales, A. J. & Kuhl, B. A. Experience-dependent hippocampal pattern
619		differentiation prevents interference during subsequent learning. Nat Commun 7, 11066
620		(2016). https://doi.org:10.1038/ncomms11066
621	37	Schlichting, M. L., Mumford, J. A. & Preston, A. R. Learning-related representational
622		changes reveal dissociable integration and separation signatures in the hippocampus
623		and prefrontal cortex. Nat Commun 6, 8151 (2015). https://doi.org:10.1038/ncomms9151
624	38	Poplawski, S. G. et al. Contextual fear conditioning induces differential alternative
625		splicing. Neurobiol Learn Mem 134 Pt B, 221-235 (2016).
626		https://doi.org:10.1016/j.nlm.2016.07.018
627	39	Peixoto, L. L. et al. Memory acquisition and retrieval impact different epigenetic
628		processes that regulate gene expression. BMC Genomics 16 Suppl 5, S5 (2015).
629		https://doi.org:10.1186/1471-2164-16-S5-S5
630	40	Benito, E. et al. HDAC inhibitor-dependent transcriptome and memory reinstatement in
631		cognitive decline models. J Clin Invest 125, 3572-3584 (2015).
632		https://doi.org:10.1172/JCI79942
633	41	Halder, R. et al. DNA methylation changes in plasticity genes accompany the formation
634		and maintenance of memory. Nat Neurosci 19, 102-110 (2016).
635		https://doi.org:10.1038/nn.4194
636	42	Gregoire, C. A. et al. RNA-Sequencing Reveals Unique Transcriptional Signatures of
637		Running and Running-Independent Environmental Enrichment in the Adult Mouse
638		Dentate Gyrus. Front Mol Neurosci 11, 126 (2018).
639		https://doi.org:10.3389/fnmol.2018.00126
640	43	Chen, P. B. et al. Mapping Gene Expression in Excitatory Neurons during Hippocampal
641		Late-Phase Long-Term Potentiation. Front Mol Neurosci 10, 39 (2017).
642		https://doi.org:10.3389/fnmol.2017.00039
643	44	Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular signatures of
644		activation. Nat Commun 7, 11022 (2016). https://doi.org:10.1038/ncomms11022

645	45	Marco, A. et al. Mapping the epigenomic and transcriptomic interplay during memory
646		formation and recall in the hippocampal engram ensemble. Nat Neurosci 23, 1606-1617
647		(2020). https://doi.org:10.1038/s41593-020-00717-0
648	46	O'Keefe, J. Place units in the hippocampus of the freely moving rat. Exp Neurol 51, 78-
649		109 (1976). https://doi.org:10.1016/0014-4886(76)90055-8
650	47	Yap, E. L. et al. Bidirectional perisomatic inhibitory plasticity of a Fos neuronal network.
651		Nature 590, 115-121 (2021). https://doi.org.10.1038/s41586-020-3031-0
652	48	Jaeger, B. N. et al. A novel environment-evoked transcriptional signature predicts
653		reactivity in single dentate granule neurons. Nat Commun 9, 3084 (2018).
654		https://doi.org:10.1038/s41467-018-05418-8
655	49	Hrvatin, S. <i>et al.</i> Single-cell analysis of experience-dependent transcriptomic states in
656	-	the mouse visual cortex. Nat Neurosci 21, 120-129 (2018).
657		https://doi.org:10.1038/s41593-017-0029-5
658	50	Wu, Y. E., Pan, L., Zuo, Y., Li, X. & Hong, W. Detecting Activated Cell Populations Using
659		Single-Cell RNA-Seq. <i>Neuron</i> 96 , 313-329 e316 (2017).
660		https://doi.org:10.1016/j.neuron.2017.09.026
661	51	Maynard, K. R. <i>et al.</i> Transcriptome-scale spatial gene expression in the human
662	01	dorsolateral prefrontal cortex. <i>Nat Neurosci</i> 24 , 425-436 (2021).
663		https://doi.org:10.1038/s41593-020-00787-0
664	52	Farris, S. <i>et al.</i> Hippocampal Subregions Express Distinct Dendritic Transcriptomes that
665	02	Reveal Differences in Mitochondrial Function in CA2. <i>Cell Rep</i> 29 , 522-539 e526 (2019).
666		https://doi.org:10.1016/j.celrep.2019.08.093
667	53	Chen, W. T. <i>et al.</i> Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer's
668	55	Disease. <i>Cell</i> 182 , 976-991 e919 (2020). <u>https://doi.org:10.1016/j.cell.2020.06.038</u>
669	54	Bahl E, C. S., Elsadany M, Vanrobaeys Y, Lin L-C, Giese KP, Abel T, Michaelson JJ.
670	54	NEUROeSTIMator: Using Deep Learning to Quantify Neuronal Activation from Single-
		Cell and Spatial Transcriptomic Data. <i>bioRxiv</i> (2022).
671		
672	55	https://doi.org:https://doi.org/10.1101/2022.04.08.487573 Peixoto, L. L. <i>et al.</i> Memory acquisition and retrieval impact different epigenetic
673	55	
674 675		processes that regulate gene expression. <i>BMC Genomics</i> 16 Suppl 5 , S5 (2015).
675	EG	https://doi.org:10.1186/1471-2164-16-S5-S5
676	56	Chatterjee, S. <i>et al.</i> The CBP KIX domain regulates long-term memory and circadian
677		activity. <i>BMC Biol</i> 18 , 155 (2020). <u>https://doi.org:10.1186/s12915-020-00886-1</u>
678	57	Hawk, J. D. <i>et al.</i> NR4A nuclear receptors support memory enhancement by histone
679		deacetylase inhibitors. <i>J Clin Invest</i> 122 , 3593-3602 (2012).
680	50	https://doi.org:10.1172/JCI64145
681	58	Chatterjee, S. <i>et al.</i> Endoplasmic reticulum chaperone genes encode effectors of long-
682		term memory. <i>Sci Adv</i> 8 , eabm6063 (2022). <u>https://doi.org:10.1126/sciadv.abm6063</u>
683	59	Chatterjee, S. <i>et al.</i> Pharmacological activation of Nr4a rescues age-associated memory
684		decline. Neurobiol Aging 85, 140-144 (2020).
685		https://doi.org:10.1016/j.neurobiolaging.2019.10.001
686	60	Kim, H. J. et al. Histone demethylase PHF2 activates CREB and promotes memory
687		consolidation. <i>EMBO Rep</i> 20 , e45907 (2019). <u>https://doi.org:10.15252/embr.201845907</u>
688	61	Saez, M. A. et al. Mutations in JMJD1C are involved in Rett syndrome and intellectual
689		disability. <i>Genet Med</i> 18, 378-385 (2016). <u>https://doi.org:10.1038/gim.2015.100</u>
690	62	Phoenix, T. N. & Temple, S. Spred1, a negative regulator of Ras-MAPK-ERK, is
691		enriched in CNS germinal zones, dampens NSC proliferation, and maintains ventricular
692		zone structure. Genes Dev 24, 45-56 (2010). <u>https://doi.org:10.1101/gad.1839510</u>
693	63	Abel, T., Martin, K. C., Bartsch, D. & Kandel, E. R. Memory suppressor genes: inhibitory
694		constraints on the storage of long-term memory. Science 279, 338-341 (1998).
695		https://doi.org:10.1126/science.279.5349.338

606	~ 1	Kunnin II. A of Chinematic nonulation of the size dispersion David contributes to ano
696	64	Kwapis, J. L. <i>et al.</i> Epigenetic regulation of the circadian gene Per1 contributes to age-
697		related changes in hippocampal memory. <i>Nat Commun</i> 9 , 3323 (2018).
698	05	https://doi.org:10.1038/s41467-018-05868-0
699	65	Pan, Y., Xu, X., Tong, X. & Wang, X. Messenger RNA and protein expression analysis of
700		voltage-gated potassium channels in the brain of Abeta(25-35)-treated rats. <i>J Neurosci</i>
701	00	Res 77, 94-99 (2004). <u>https://doi.org:10.1002/jnr.20134</u>
702	66	Vecsey, C. G. <i>et al.</i> Genomic analysis of sleep deprivation reveals translational
703		regulation in the hippocampus. <i>Physiol Genomics</i> 44 , 981-991 (2012).
704	~-	https://doi.org:10.1152/physiolgenomics.00084.2012
705	67	Havekes, R. et al. Sleep deprivation causes memory deficits by negatively impacting
706		neuronal connectivity in hippocampal area CA1. <i>Elife</i> 5 (2016).
707	~~	https://doi.org:10.7554/eLife.13424
708	68	Serneels, L. <i>et al.</i> gamma-Secretase heterogeneity in the Aph1 subunit: relevance for
709		Alzheimer's disease. Science 324 , 639-642 (2009).
710		https://doi.org:10.1126/science.1171176
711	69	Gaine, M. E. et al. Altered hippocampal transcriptome dynamics following sleep
712		deprivation. <i>Mol Brain</i> 14, 125 (2021). <u>https://doi.org:10.1186/s13041-021-00835-1</u>
713	70	Steadman, P. E. et al. Disruption of Oligodendrogenesis Impairs Memory Consolidation
714		in Adult Mice. <i>Neuron</i> 105 , 150-164 e156 (2020).
715		https://doi.org:10.1016/j.neuron.2019.10.013
716	71	Kwapis, J. L. et al. HDAC3-Mediated Repression of the Nr4a Family Contributes to Age-
717		Related Impairments in Long-Term Memory. J Neurosci 39 , 4999-5009 (2019).
718		https://doi.org:10.1523/JNEUROSCI.2799-18.2019
719	72	McNulty, S. E. <i>et al.</i> Differential roles for Nr4a1 and Nr4a2 in object location vs. object
720		recognition long-term memory. <i>Learn Mem</i> 19 , 588-592 (2012).
721		https://doi.org:10.1101/lm.026385.112
722	73	Hawk, J. D. & Abel, T. The role of NR4A transcription factors in memory formation. Brain
723		Res Bull 85, 21-29 (2011). <u>https://doi.org:10.1016/j.brainresbull.2011.02.001</u>
724	74	Chatterjee, S. et al. Reinstating plasticity and memory in a tauopathy mouse model with
725		an acetyltransferase activator. EMBO Mol Med 10 (2018).
726		<u>https://doi.org:10.15252/emmm.201708587</u>
727	75	Grienberger, C., Milstein, A. D., Bittner, K. C., Romani, S. & Magee, J. C. Inhibitory
728		suppression of heterogeneously tuned excitation enhances spatial coding in CA1 place
729		cells. <i>Nat Neurosci</i> 20 , 417-426 (2017). <u>https://doi.org:10.1038/nn.4486</u>
730	76	GoodSmith, D. et al. Spatial Representations of Granule Cells and Mossy Cells of the
731		Dentate Gyrus. <i>Neuron</i> 93 , 677-690 e675 (2017).
732		https://doi.org:10.1016/j.neuron.2016.12.026
733	77	Senzai, Y. & Buzsaki, G. Physiological Properties and Behavioral Correlates of
734		Hippocampal Granule Cells and Mossy Cells. <i>Neuron</i> 93 , 691-704 e695 (2017).
735		https://doi.org:10.1016/j.neuron.2016.12.011
736	78	Hainmueller, T. & Bartos, M. Parallel emergence of stable and dynamic memory
737		engrams in the hippocampus. Nature 558, 292-296 (2018).
738		https://doi.org:10.1038/s41586-018-0191-2
739	79	Safe, S. et al. Nuclear receptor 4A (NR4A) family - orphans no more. J Steroid Biochem
740		Mol Biol 157, 48-60 (2016). <u>https://doi.org:10.1016/j.jsbmb.2015.04.016</u>
741	80	Bridi, M. S., Hawk, J. D., Chatterjee, S., Safe, S. & Abel, T. Pharmacological Activators
742		of the NR4A Nuclear Receptors Enhance LTP in a CREB/CBP-Dependent Manner.
743		Neuropsychopharmacology 42, 1243-1253 (2017). https://doi.org:10.1038/npp.2016.253
744	81	McQuown, S. C. et al. HDAC3 is a critical negative regulator of long-term memory
745		formation. J Neurosci 31, 764-774 (2011). https://doi.org:10.1523/JNEUROSCI.5052-
746		10.2011

747 748	82	Bridi, M. S. & Abel, T. The NR4A orphan nuclear receptors mediate transcription- dependent hippocampal synaptic plasticity. <i>Neurobiol Learn Mem</i> 105 , 151-158 (2013).
749		<u>https://doi.org:10.1016/j.nlm.2013.06.020</u>
750	83	Moon, M. et al. Nurr1 (NR4A2) regulates Alzheimer's disease-related pathogenesis and
751		cognitive function in the 5XFAD mouse model. Aging Cell 18, e12866 (2019).
752		https://doi.org:10.1111/acel.12866
753	84	Pena de Ortiz, S., Maldonado-Vlaar, C. S. & Carrasquillo, Y. Hippocampal expression of
754		the orphan nuclear receptor gene hzf-3/nurr1 during spatial discrimination learning.
755		Neurobiol Learn Mem 74, 161-178 (2000). https://doi.org:10.1006/nlme.1999.3952
756	85	von Hertzen, L. S. & Giese, K. P. Memory reconsolidation engages only a subset of
757		immediate-early genes induced during consolidation. J Neurosci 25, 1935-1942 (2005).
758		https://doi.org:10.1523/JNEUROSCI.4707-04.2005
759	86	Ishizuka, N., Weber, J. & Amaral, D. G. Organization of intrahippocampal projections
760		originating from CA3 pyramidal cells in the rat. J Comp Neurol 295, 580-623 (1990).
761		https://doi.org:10.1002/cne.902950407
762	87	Holt, C. E. & Schuman, E. M. The central dogma decentralized: new perspectives on
763		RNA function and local translation in neurons. <i>Neuron</i> 80 , 648-657 (2013).
764		https://doi.org:10.1016/j.neuron.2013.10.036
765	88	Tyan, S. W., Tsai, M. C., Lin, C. L., Ma, Y. L. & Lee, E. H. Serum- and glucocorticoid-
766		inducible kinase 1 enhances zif268 expression through the mediation of SRF and
767		CREB1 associated with spatial memory formation. J Neurochem 105 , 820-832 (2008).
768		https://doi.org:10.1111/j.1471-4159.2007.05186.x
769	89	Zhang, M. et al. Spatially resolved cell atlas of the mouse primary motor cortex by
770		MERFISH. Nature 598, 137-143 (2021). <u>https://doi.org:10.1038/s41586-021-03705-x</u>
771	90	Dobin, A. & Gingeras, T. R. Mapping RNA-seq Reads with STAR. Curr Protoc
772		Bioinformatics 51, 11 14 11-11 14 19 (2015).
773		https://doi.org:10.1002/0471250953.bi1114s51
774	91	Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for
775		assigning sequence reads to genomic features. <i>Bioinformatics</i> 30 , 923-930 (2014).
776		https://doi.org:10.1093/bioinformatics/btt656
777	92	Risso, D., Schwartz, K., Sherlock, G. & Dudoit, S. GC-content normalization for RNA-
778		Seq data. BMC Bioinformatics 12, 480 (2011). https://doi.org:10.1186/1471-2105-12-480
779	93	Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor
780		analysis of control genes or samples. Nat Biotechnol 32, 896-902 (2014).
781		https://doi.org:10.1038/nbt.2931
782	94	Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
783		differential expression analysis of digital gene expression data. Bioinformatics 26, 139-
784		140 (2010). https://doi.org:10.1093/bioinformatics/btp616
785		
,00		

Graphical abstract