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Abstract: Sphingolipids represent a class of bioactive lipids that modulate the biophysical properties
of biological membranes and play a critical role in cell signal transduction. Multiple studies
have demonstrated that sphingolipids control crucial cellular functions such as the cell cycle,
senescence, autophagy, apoptosis, cell migration, and inflammation. Sphingolipid metabolism
is highly compartmentalized within the subcellular locations. However, the majority of steps of
sphingolipids metabolism occur in lysosomes. Altered sphingolipid metabolism with an accumulation
of undigested substrates in lysosomes due to lysosomal enzyme deficiency is linked to lysosomal
storage disorders (LSD). Trapping of sphingolipids and their metabolites in the lysosomes inhibits
lipid recycling, which has a direct effect on the lipid composition of cellular membranes, including the
inner mitochondrial membrane. Additionally, lysosomes are not only the house of digestive enzymes,
but are also responsible for trafficking organelles, sensing nutrients, and repairing mitochondria.
However, lysosomal abnormalities lead to alteration of autophagy and disturb the energy balance and
mitochondrial function. In this review, an overview of mitochondrial function in cells with altered
sphingolipid metabolism will be discussed focusing on the two most common sphingolipid disorders,
Gaucher and Fabry diseases. The review highlights the status of mitochondrial energy metabolism
and the regulation of mitochondria–autophagy–lysosome crosstalk.
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1. Mitophagy

Since the lysosomal and mitochondrial functions are intricately related and critical for maintaining
cellular homeostasis, it is intuitive to assume that autophagy-mitophagy processes are affected in
Gaucher disease (GD) [1,2]. Usually, mitophagy is initiated by the damaged mitochondrion itself to
compensate for the energy crisis [3]. In an effort to prevent cell death, damaged mitochondria trigger
mitophagy initiation via the ubiquitination of mitochondrial outer membrane proteins, which are
recognized by mitophagy receptors [4]. In the next step, activated mitophagy receptors recruit the
microtubule-associated protein 1 light chain 3 (LC3) and GABA type A receptor-associated protein
(GABARAP) proteins and trigger the autophagy flux process. During autophagic flux, cytosolic LC3-1 is
conjugated to form LC3-II, and LC3-II is incorporated into the autophagosomal membrane. Some data
suggest that ceramide (Cer) anchors LC3B-II autophagosomes to mitochondrial membranes to induce
mitophagy [5]. Sequestosome 1 (SQSTM1/p62) links autophagic cargo to the autophagic membrane [6,7].
The next step is the fusion of autophagic vacuoles with lysosomes to form autophagolysosomes, where
the macromolecular components are broken down into metabolites [8]. Autophagosomes maturate
into autolysosomes by one of the two pathways: fuse first with late endosomes to form amphisomes,
then with lysosomes, or, autophagosomes fuse directly with lysosomes [9]. Then, autophagic cargo is
delivered to lysosomes where materials are degraded by acidic lysosomal hydrolases.
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2. Gaucher Disease and Mitochondrial Function

2.1. Gaucher Disease

Gaucher disease (GD) (Online Mendelian Inheritance in Man (OMIM) 23080, 231000, 231005),
the most common lysosomal storage disorder (LSD), is caused by mutations in the glucocerebrosidase
gene (GBA) (OMIM 606463) which results in the deficiency of lysosomal enzyme glucocerebrosidase
(GCase) (Enzyme commission number (EC) 3.2.1.45). The GBA mutations lead to misfolding of GCase
protein in the endoplasmic reticulum, inhibition of protein trafficking to the lysosomes, and, as a result,
inhibition of GCase enzymatic activity [10]. The deficiency of GCase results in chronic accumulation of
its substrate glucosylceramide (Gl-1) in lysosomes. Recessively inherited GD presents with a broad
spectrum of symptoms encompassing primary nervous system, immune system involvement, enlarged
spleen and liver, anemia, low thrombocyte counts due to bone marrow involvement, and severe skeletal
disorder with pain and permanent disabilities [11,12]. Three distinguished phenotypic presentations
of GD are described based on increasing severity. GD type 1 is a non-neuropathic form of GD, GD type
2 and 3 are termed neuronopathic forms of GD.

GCase catalyzes the cleavage of the glycolipid glucosylceramide (Gl-1) into glucose and ceramide
(Cer) [13]. The lipid tails of glycolipid, GCase, and the reaction facilitator saposin C (SAPC) are
embedded within the intralysosomal membrane where cleavage occurs (Figure 1) [14]. Gl-1, as with
glycosphingolipids in general, is involved in a large number of cellular processes, including signal
transduction, membrane trafficking, or cytoskeletal processes [13,15]. Since Gl-1 is a primary precursor
of complex glycosphingolipids, synthesis and degradation of Gl-1 are crucial steps in sphingolipid
metabolism (Figure 1) [16]. In the absence of functional GCase in GD, glucosylceramide is deacetylated
to form Lyso-Gl-1 [17,18]. When sphingolipids accumulate in the lysosomes, the pH increases and
mediates lysosomal destabilization [19–21]. Therefore, dysfunctional lysosomes with excessive levels
of Lyso-Gl-1 amass in every cell and interfere with cellular pathways outside the lysosomes.
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Figure 1. Sphingolipid metabolism in Gaucher and Fabry diseases (GD, FD). Ceramide (Cer),
glucosylceramide (Gl-1) and globotriaosylceramide (Gb-3) shifts between endoplasmic reticulum ER,
Golgi apparatus, lysosomes, and cellular membranes. UDP-Glucose Ceramide Glucosyltransferase (UGCG)
converts Cer to Gl-1 in the ER. Gl-1 localized in the intralysosomal membrane is broken down by
glucocerebrosidase (GCase) enzyme in the present of SAPC. Gb-3 is synthesized from lactosylceramide
(Gal-Glc-Cer) by Golgi-localized enzyme Gb-3 synthase. Gal-Glc-Cer is synthesized by LacCer synthase
(GalT2) from Gl-1. Lysosomal accumulation of Gl-1 is linked to GD. Lysosomal accumulation of Gb-3 is
linked to FD.
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2.2. Gaucher Disease and Mitophagy

Lysosomal dysfunction in LSD is associated with mitochondrial dysregulation and accumulation
of damaged mitochondria. What happens with the mitophagy process in GD when lysosomes do
not function properly? Increased mitochondrial fragmentation due to inhibition of autophagy was
described in midbrain neurons and astrocytes in GBA−/− mice [22]. With inhibition of autophagy flux,
decreasing LC3-II level has been established in GD cells, including patients’ macrophages, peripheral
blood mononuclear cell (PBMC), and induced pluripotent stem (iPSC) neuronal cells [1,23,24]. Neuronal
accumulation of Gl-1 in mouse models of GD leads to accumulation of various autophagic cargo,
including dysfunctional mitochondria, ubiquitinated protein aggregates in autophagosomes and
lysosomes in the brain, neurons, and astrocytes [22,25,26]. Moreover, accumulation of autophagy flux
indicator, SQSTM1/p62, in GD fibroblasts, neurons, or GBA knockout mouse models, provides more
evidence of inhibition of the autophagy–lysosomal process [1,23,27].

Recently, emerging studies have demonstrated that the mechanism of inhibition of mitophagy in
GD is dual. First, as described before, accumulation of Gl-1 in lysosomes blocks the degradation of
autophagic cargo. Second, the accumulation of mutant GBA proteins are responsible for accumulation
of unwanted/misfolded proteins in endoplasmic reticulum (ER) [25–28]. This process leads to ER stress,
and evokes the unfolded protein response (UPR) and endoplasmic reticulum-associated degradation
(ERAD) [28]. The chronic activation of UPR and ERAD leads to apoptosis. [29]. Moreover, accumulation
of unfolded mutated GBA protein leads to inhibition of alpha-synuclein degradation, which directs
alpha-synuclein aggregation in GD cells [30,31]. This effect may be attributed to the endoplasmic
reticulum (ER) retention due to inability to correctly fold the mutant form of GBA protein and inhibition
of proteasomal degradation [32]. The effect of mutant GBA on mitochondrial priming and autophagy
induction indicates a gain-of-toxic-function of the mutant protein [33].

2.3. Ceramides and Mitochondria Membrane Damage in GD

Is the mitochondrial membrane damaged in GD cells? One of the markers of mitochondrial damage
is a change of mitochondrial membrane potential (ΨM). The generation of ΨM by the mitochondrial
electron transport chain drives the adenosine di-phosphate (ADP) to adenosine tri- phosphate (ATP).
The loss of mitochondrial function, inhibition of oxygen consumption due to decreasing ΨM, has
been demonstrated in GD neuroblastoma cells [34], fibroblasts from GD patients (L444P/L444P) [35].
The reason for that is that Cer is a structural component of the cell membrane with an important role in
maintaining barrier function and fluidity. Both Cer and Gl-1 define the biophysical properties of the
cellular membranes and their functional plasticity [36,37]. Cer and Gl-1 are regulated by the opposite
actions of two enzymes: GCase and UDP-glucosylceramide synthase (UGCG) (Figure 1). UGCG forms
Gl-1 in the ER by converting Cer (Figure 1). In spite of the significant chemical difference between
Cer and Gl-1, they both affect the properties of fluid model membranes but differ in their capacity to
promote changes in the cellular membrane shape [38,39]. Gl-1 induces membrane perturbation in a
pH-dependent manner. Thus, the analysis of the Cer/Gl-1 ratio suggests decreased membrane fluidity
in primary GD cells and cells treated with GBA inhibitors [40]. If instability of Cer/Gl-1 ratio in GD
cells may play a role in the formation of number and shape of lysosomes, then it may add a further
layer of complexity to the mitochondrial membrane structure too. Moreover, Cer can self-assemble
in the mitochondrial outer membrane to form large stable channels capable of releasing apoptotic
proteins, for example, allow passage of cytochrome c [41,42]. For example, Cer directly activates
apoptosis via the formation of Cer channels in the mitochondrial outer membrane favoring Bcl-2
homologous antagonist/killer-BCL2 associated X protein (BAK/BAX ) activation and regulates caspase
3 by compartmentalization in the late endosomes [43,44].
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2.4. Ambroxol Therapy for GD Patients and Mitochondrial Function

Enzyme replacement therapy (ERT) is successful for the treatment of type 1 GD with systemic
symptoms, including splenomegaly, hepatomegaly, thrombocytopenia, and platelet disorders [45].
However, ERT is not effective for the neurological form of GD due to the weak entry of the recombinant
GCase enzyme through the blood-brain barrier (BBB) [46]. Enzyme-enhancement therapy (EET) is based
on the ability of small molecules, named molecular chaperones, to fold the misfolded mutant enzyme.
This treatment approach has the potential to cross the BBB and to treat the neurological symptoms of
GD [47]. One of these small molecules with the prediction of good BBB penetration, ambroxol, was
identified as a pharmacological chaperone for GCase [48,49]. Ambroxol therapy also has an excellent
safety record, even with high doses [50–52]. Ambroxol has unique chaperone characteristics: it works
at neutral and acidic pH of the endoplasmic reticulum (ER) and lysosomes. At pH 4.3, near lysosomal
pH, ambroxol does not inhibit the enzyme but actually becomes an activator of GCase activity [48,53].
Ambroxol demonstrated the dual independent mechanism of action: increasing GCase activity and
activation of the autophagy–lysosomal pathway [53–55]. Moreover, a study of the effect of ambroxol
on primary cortical neurons suggests that ambroxol increases mitochondrial content via activation of
peroxisome proliferator-activated gamma coactivator 1-alpha (PGC1-α) [55]. These emerging findings
demonstrate that additional studies are needed to explore the underlying mechanism of activation
of mitochondria in the presence of ambroxol. Additionally, ambroxol showed significant enhancing
activity of wild-type and mutant (p.A156V and p.R301Q) forms of α-Gal A enzyme, suggesting that
ambroxol could potentially be used in the treatment of Fabry diseases [56].

3. Fabry Disease and Mitochondrial Function

3.1. Fabry Disease Introduction

Fabry disease (FD) is an X-linked disorder, where mutations in the GLA gene result in a deficiency
of the enzyme α-galactosidase A (α–Gal A) (EC entry 3.2.1.22). α–Gal A catalyzes the lysosomal
hydrolysis of globotriaosylceramide (Gb-3) to lactosylceramide and digalactosylceramide (Gal-Gal-Cer)
to galactosylceramide (Gal-Cer) [57,58]. The deficiency of this enzyme leads to an accumulation of Gb-3,
its metabolite, globotriaosylsphingosine (Lyso-Gb-3), and Gal-Gal-Cer in lysosomes (Figure 1) [59].
Detection of Gb-3, Lyso-Gb-3, and Gal-Gal-Cer in urine and plasma are the standard diagnostic
methods for FD [58]. The abnormal buildup of Gb-3 and Lyso-Gb-3 links to cellular dysfunction,
that triggers a cascade reaction that causes progressive damage in multiple organs. Hemizygous FD
males have a progressive buildup of Gb-3, particularly in the endothelial cells, and Lyso-Gb-3 in the
kidneys (smooth muscle cells, and podocytes) and cardiac tissue (including valves, cardiomyocytes,
nerves, and coronary arteries) [60–62]. Recent metabolic studies showed that Lyso-Gb-3 analogs
(Lyso-Gb-3(−28), Lyso-Gb-3(−2), Lyso-Gb-3(+16), Lyso-Gb-3(+18), Lyso-Gb-3(+34), Lyso-Gb-3(+50))
are higher in GLA knockout mice and also present in plasma and urine samples in FD patients with
the highest Lyso-Gb-3 levels [63–65]. However, the role of Lyso-Gb-3 analogs in FD cellular pathology
is unknown.

The signs and symptoms of FD are quite heterogeneous and include not only renal failure or
cardiovascular disease, but also cerebrovascular complications, including ischemic or hemorrhagic
strokes, dermatologic manifestations, ocular and hearing complications, auditory, and neurologic
complications, all of which are associated with reduced quality of life and early mortality [66]. The first
clinical symptoms, such as pain in bones and/or joints, occur during childhood or adolescence. Common
misdiagnosis for FD is rheumatic fever or somatoform pain disorders. The involvement of the central
nervous system in FD increases the incidence of ischemic strokes, a significant cause of the short
lifespan in Fabry patients. The life expectancy of male patients with FD, if untreated, is approximately
40–42 years. Heterozygous females have higher residual α–Gal A activities. However, females develop
clinical manifestations of varying severity and also have a reduced life span [67]. The subsequent
lysosomal dysfunction due to Gb-3 accumulation alters cell signaling pathways [1,24,60]. Since the
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functional integrity of lysosome–autophagy–mitochondria crosstalk is vital for cell “health,” it is
obvious that mitochondrial metabolism will be affected [68]. However, unfortunately, mitochondrial
function and energy metabolism were never systematically studied in aspects of FD pathology.

3.2. Cardiac Energy Metabolism in Fabry Disease

Cardiovascular pathology is a hallmark of FD. The deposition of Gb-3 and less Lyso-Gb-3 inside
the myocardium of FD patients affects the cardiac function, but secondary functional alterations also
play a role in progressive cardiovascular pathology [69]. Deposition of Gb-3 in FD cardiomyocytes
(CMs) displayed an increased excitability, with altered electrophysiology and calcium handling [70].
The importance of mitochondrial function for the maintenance of energy metabolism for the normal
cardiac function is well documented. Machann et al. show that inhibition of mitochondrial function,
and thus energy metabolism, play a significant role in FD cardiomyopathy [69]. Magnetic resonance
spectroscopy showed a reduction of phosphocreatine (PCr), ADP, AMP, and ATP in the left ventricular
mass in FD patients [69]. Electron microscopic evaluation of cardiomyocytes from FD patient′s hearts
demonstrated that the percentage area of mitochondria in the cytoplasm was reduced and Gb-3
accumulation was increased in 2 from 3 cases [71]. Clinical studies confirmed that dysfunction of
cardiac energy metabolism and increased oxygen requirements via left ventricular (LV) hypertrophy
are linked to reducing ischaemic tolerance in FD patients [69,71]. How does a lysosomal enzyme
deficiency translate into mitochondrial dysfunction in patients with FD. ? Gb-3 accumulation induced
reactive oxygen species (ROS) production, suppressed mitochondrial antioxidant superoxide dismutase
2 (SOD2), and enhanced AMP-activated protein kinase (AMPK) activation in vascular endothelial
cells and iPS cells derived from FD patients [72,73]. The cardiomyocytes (CM) differentiated from
GLA-null embryonic stem cells (ESCs) showed accelerated level apoptosis due to impairment of
protein degradation and autophagic flux in the presence of Gb-3 accumulation [74]. Also, MitoSOXRed
staining demonstrated an increased level of residual oxygen consumption (ROX)production in
GLA-null CMs [74]. Therefore, dysfunctional mitochondria could be a source of ROS elevation.
Moreover, CM membrane lipid composition is altered in FD and leads to a direct effect on the
mitochondrial inner membrane [75]. The respiratory chain complexes I, II, III, and IV are embedded in
the mitochondrial membrane and thus could be affected by membrane lipid composition status [76].
Fabry CMs have a lower ΨM compared with control, which could indicate a functional mitochondrial
deficiency [70].

3.3. Gb-3 and Metabolic Pathways Heavily Implicate FD Nephropathy

Although end-stage renal disease is one of the leading causes of death in male FD patients,
the mechanism of kidney failure is not well understood. Progressive Lyso-Gb-3 and less Gb-3
accumulation lead to histological damage of kidney cells, resulting from lysosome rupture [77].
Histological studies have demonstrated that the buildup of Gb-3 in podocytes plays an essential role
in the pathogenesis of glomerular damage [78]. Moreover, the study of urine-derived FD kidney
epithelial cells and podocytes in vitro showed that the cause of this damage might lie in deregulated
autophagy pathways [78,79]. An increase in the autophagosomal activity in FD kidney epithelial
cells and podocytes was linked to the upregulation of LC3-II and the downregulation of mechanistic
target of rapamycin kinase (mTOR) kinase activity [79]. Also, a high level of Lyso-Gb-3 plays an
essential pro-inflammatory role in cultured podocytes, mainly through activation of the Notch-1
signaling pathway [61]. Furthermore, the upregulation of Notch-1 leads to podocyte injury in vivo and
kidney fibrosis. Interestingly, the Notch-1 signaling pathway regulates energy metabolism, including
glycolysis, Krebs cycle, oxidative phosphorylation, and glutamine metabolism [80].

Medullary thick ascending limbs (mTALs) plays a critical role in the urine concentrating mechanism.
TALs are located outside the vascular bundles with limited oxygen supply, which makes them vulnerable
to hypoxic injury [81]. TALs cells in GlatmTg(CAG-A4GALT) mice demonstrated flattened cristae and
round mitochondria [82]. In contrast, control cells present extensive cristae with a high number of
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elongated mitochondria. This result suggests that mitochondrial dysfunction due to Gb-3 accumulation
may affect mTAls’ function [82]. Overall, this data indicates that dysregulation of sphingolipid
metabolism may complicate mitochondrial function in FD kidney cells. It is important to emphasize
that the role of mitochondrial metabolism in FD nephropathy remains unknown.

4. mTOR Pathway in Gaucher and Fabry Pathology

Lysosomal abnormalities lead to alteration of autophagy and disturb the energy balance and
mitochondrial function. The effect is similar in both pathologies, although the type of substrate
accumulating in lysosomes differs in Gaucher and Fabry disorders. One of the critical regulators of
both the autophagy–lysosomal fusion process and mitochondrial function is the mTOR-dependent
signaling pathways [83]. mTOR is docked on the lysosomal surface in its active state inhibiting
autophagy and lysosomal fusion until the accumulation of amino acids in the lysosomal lumen triggers
autophagy activation [84,85]. Reduction of mTOR activity has been shown in FD fibroblasts and
podocytes [78,86], in GD PBMC, and several models of neuronopathic and non-neuronopathic GD,
including the Drosophila melanogaster GD model [1,87–90]. It is apparent that the accumulation of
sphingolipid substrates in lysosomes inhibits autophagy–lysosome fusion and disrupts the mTOR
activation/inactivation cycle.

mTOR acts as a sensor of nutrients and growth factors in the cells and its activity is controlled by the
ATP:ADP balance. In response to decreasing ATP levels, AMP-activated protein kinase (AMPK) inhibits
mTOR activity [91]. Next, mTOR promotes dephosphorylates TFEB, and TFEB changes subcellular
localization from cytoplasm to nucleus and status of transcription activity to trigger autophagy [92,93].
Moreover, mTOR regulates mitochondrial metabolism and biogenesis by promoting the translation
of nuclear-encoded mitochondria-related proteins, including mitochondrial transcription factor 1
(Tfam), cytochrome c oxidase subunit 1( CoxI), and mitochondrial cytochrome c oxidase subunit IV
(CoxIV) [94]. Studies of energy metabolism in the GD mouse model demonstrated that ATP level
and basal mitochondrial oxygen consumption were decreased in neuronal cells [30]. FD fibroblasts
show the reduced activity of respiratory chain enzymes and decreased levels of cytochrome C oxidase
activity [95]. In vivo studies of PBMC suggest that GD and FD display mitochondrial dysfunction
due to malfunction of the mTOR pathway. Therefore, the deregulation of the autophagy–lysosomal
pathway inhibits mTOR-mediated control of mitochondrial metabolism in GD and FD cells.

5. Conclusions

Altered sphingolipid metabolism complicates mitochondrial function in LSD, including GD
and FD. Dysregulation of the autophagy–lysosomal signaling pathway plays an essential role in the
inhibition of mitochondrial metabolism in GD and FD cells. In addition to autophagy–lysosomal
abnormalities, a non-proportional ratio of sphingolipids (Cer, Gl-1, Gb-3) added a further layer
of complexity to mitochondrial function due to defects of mitochondrial membrane composition.
Therefore, the secondary functional alterations, as mitochondrial metabolism, play a vital role in GD
and FD pathology, including neurological, cardiovascular, and renal complications.
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