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Alzheimer’s disease: An acquired neurodegenerative laminopathy
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ABSTRACT
The nucleus is typically depicted as a sphere encircled by a smooth surface of nuclear envelope. For
most cell types, this depiction is accurate. In other cell types and in some pathological conditions,
however, the smooth nuclear exterior is interrupted by tubular invaginations of the nuclear
envelope, often referred to as a “nucleoplasmic reticulum,” into the deep nuclear interior. We have
recently reported a significant expansion of the nucleoplasmic reticulum in postmortem human
Alzheimer’s disease brain tissue. We found that dysfunction of the nucleoskeleton, a lamin-rich
meshwork that coats the inner nuclear membrane and associated invaginations, is causal for
Alzheimer’s disease-related neurodegeneration in vivo. Additionally, we demonstrated that proper
function of the nucleoskeleton is required for survival of adult neurons and maintaining genomic
architecture. Here, we elaborate on the significance of these findings in regard to pathological
states and physiological aging, and discuss cellular causes and consequences of nuclear envelope
invagination.
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Nuclear architecture

The nuclear envelope is a lipid bilayer that encases the
genome and provides a physical boundary between
the cytoplasm and nucleoplasm. On its external sur-
face, the nuclear envelope anchors to the cytoskeleton
via the giant Nesprins, proteins that embed in the
outer nuclear membrane and bind directly to cyto-
plasmic actin, intermediate filaments, and microtu-
bules.1,2 On its internal surface, the nuclear envelope
anchors to the lamin nucleoskeleton via SUN proteins,
which reside on the inner nuclear membrane and bind
directly to lamin proteins.3 Together, Nesprins and
SUN proteins partner to form the LINC complex
(LInker of Nucleoskeleton and Cytoskeleton),4 a
bridge that physically connects the cytoskeleton to the
nucleoskeleton. The lamin nucleoskeleton provides a
scaffold for the anchoring of highly condensed hetero-
chromatic DNA.5 Proper regulation of nuclear and
genomic architecture thus requires harmony between
the cytoskeleton, the LINC complex, the nucleoskele-
ton, and heterochromatin (Summarized in Fig. 1).

Laminopathies

Consequences of nuclear architecture disruption can
be gleaned from the laminopathies, most of which are
caused by mutations in the gene encoding A-type lam-
ins, LMNA.6 Over 300 disease-causing mutations have
been identified in the LMNA gene, with phenotypes
including muscular dystrophy, lipodystrophy, cardio-
myopathy, and progeriod or “premature aging” syn-
dromes such as Hutchinson-Gilford Progeria
Syndrome (HGPS). While children affected by HGPS
have no disease-associated phenotype at birth, they
develop aging-related phenotypes within the first few
years of life, including hair loss, sclerotic skin, low sub-
cutaneous fat, osteoarthritis, low bone density, hearing
loss and vascular abnormalities, which generally lead
to death via cardiac disease or stroke around the age of
13.7,8 Instead of producing prelamin A, cells of patients
with HGPS produce “progerin,” a version of prelamin
A that lacks amino acids 607–656 within its C-termi-
nus. Unlike prelamin A, progerin cannot be processed
intomature Lamin A, and thus constitutively associates
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with the inner nuclear membrane.7 Progerin induces
irregularities in nuclear morphology, including
invagination and evagination of the nuclear enve-
lope.9,10 Progerin-associated deletion of amino acids
607-656 reduces its ability to bind heterochroma-
tin-associated histone modifications, which causes
relaxation of peripheral heterochromatin.11,12 Pro-
gerin has been detected at low levels in healthy
individuals, and increases with age in human skin
and liver,13,14 indicating that progerin may play a
role in physiological aging. Similar to HGPS-associ-
ated progerin, age-associated progerin accumulates
at the inner nuclear membrane and is associated
with changes in nuclear morphology and relaxation
of peripheral heterochromatin.13

HGPS is a segmental aging disorder, meaning that
patients manifest some typical features of aging, but
not all (e.g. neurodegeneration). Since age is the great-
est risk factor for most neurodegenerative disorders,
the lack of neurodegeneration in HGPS has been an
anomaly in aging research. Why are many tissues
affected by A-type lamin dysfunction while the brain
is spared? Evidence supports 2 non-mutually exclusive
hypotheses. First, lamin A and progerin protein levels
are very low in the brain due to a brain-specific

microRNA, mir-9, that targets the destruction of prel-
amin A and progerin transcripts.15,16 B-type lamins
are thus more highly expressed in the brain compared
to lamin A. Second, while transgenic expression of
progerin in mouse brain distorts the morphology of
neuronal nuclei in the hippocampus, no significant
effects on behavior, neurogenesis, or gene expression
are detected.17 Thus, the lack of neuropathy in HGPS
may be due to the relative lack of progerin in the
brains of affected individuals, and/or the relative
insensitivity of the brain to progerin protein.

B-type lamins, on the other hand, are expressed
widely in all stages of development and in most tis-
sues. At the cellular level, B-type lamins are important
for maintaining heterochromatin organization,18-20

DNA replication,21 mitotic spindle organization,22

positioning of chromosomes during interphase,23 gene
transcription,23-25 maintaining functional plasticity of
nucleoli,26 and managing oxidative stress.27 At the
organismal level, B-type lamins are a critical determi-
nant of neuronal development. The Drosophila B-type
lamin controls migration of photoreceptor neuronal
nuclei during eye formation.2 In mice, lamin B1 and
B2 are required for development-associated neuronal
migration and layering of neurons, and neuronal sur-
vival.28-30 Mice lacking lamin B1 or lamin B2 die
shortly after birth.28,30,31

To date, 3 mutations in B-type lamins are associ-
ated with human disease. Duplication of LMNB1
causes autosomal dominant adult-onset leukodystro-
phy, which involves progressive loss of myelin, the
fatty substance surrounding neuronal axons that aids
with neuron firing.32 A heterozygous mutation of
LMNB2 is associated with increased risk of acquired
partial lipodystrophy,33 which begins in childhood
and involves the loss of adipose tissue. A second mis-
sense mutation in LMNB2 was recently identified in 2
sisters with progressive myoclonic epilepsy-9 with
early ataxia.34

Until recently,35 it was unknown if lamin B dysfunc-
tion affects mature, adult neurons. We demonstrated
that dysfunction of B-type lamin drives heterochroma-
tin relaxation, cell cycle activation, and apoptosis of
adult Drosophila neurons in vivo.35 Furthermore, we
identified a role for acquired B-type lamin dysfunction
in mediating neuronal death in Alzheimer’s disease
and related tauopathies.35 Our study is the first to con-
nect laminopathy with an age-related neurodegenera-
tive disorder.

Figure 1. Schematic representation of nuclear anchoring. Cyto-
plasmic filamentous actin (shown here), microtubules, and micro-
filaments bind giant Nesprins. Nesprins binds to SUN proteins in
the perinuclear space. Together, Nesprins and SUN proteins
make up the LINC complex. SUN proteins bind directly to the
lamin nucleoskeleton, which anchors heterochromatin to the
internal nuclear periphery.
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Identification of a neurodegenerative
laminopathy

Tauopathies are age-related progressive neurodegen-
erative disorders, including Alzheimer’s disease,
which are pathologically characterized by aggregates
of tau protein in the brain.36 Dominant mutations
in the tau gene demonstrate that tau dysfunction is
sufficient to cause neurodegeneration in humans.37

We have previously identified widespread relaxation
of constitutive heterochromatin as a mechanism of
tau-induced neurodegeneration in tau transgenic
Drosophila, mice, and postmortem tissue from
human Alzheimer’s disease brains.38 Our studies
suggest that heterochromatin relaxation is a causal
factor in disease progression, since reversing hetero-
chromatin relaxation significantly suppresses tau
neurotoxicity, while promoting heterochromatin
relaxation significantly enhances tau neurotoxicity
in Drosophila.38

Due to the association between lamins, hetero-
chromatin and aging, we became interested in a
potential role for lamin in mediating tau-induced
heterochromatin relaxation. Starting with a Dro-
sophila model of tauopathy,39 we found an overall
reduction of B-type lamin protein (but not A-type
lamin protein) in adult neurons in the context of
transgenic human tau. Direct visualization of the
nuclear lamina in neurons revealed invaginations of
the nuclear envelope in tau transgenic Drosophila,
similar to what had been previously described in
patients with laminopathies. Comparative analyses
in postmortem tissue from human brains affected
by Alzheimer’s disease revealed reduced levels of
lamin B1 in neurons, alongside significant invagina-
tions of the nuclear envelope based on staining with
lamin B1, the lamin B receptor, and nuclear pores.
Genetic reduction of B-type lamin levels in tau
transgenic Drosophila enhanced tau neurotoxicity,
suggesting that lamin dysfunction drives neuronal
death in tauopathy.35 We were unable to detect
changes in total B-type lamin levels or alterations in
nuclear morphology in a Drosophila model of poly-
glutamine-induced neurotoxicity. Furthermore,
genetic reduction of lamin B did not affect polyglut-
amine mediated neuronal loss, suggesting that lamin
dysfunction is not a general feature of neurodegen-
eration in Drosophila.35

Consequences of B-type lamin dysfunction in
adult neurons

Data from tau transgenic Drosophila, mice, and post-
mortem human brain suggest that pathological tau
activates a toxic cascade in which tau-induced hetero-
chromatin relaxation and aberrant expression of genes
that are normally silenced by heterochromatin activate
the cell cycle in postmitotic neurons, which causes
neuronal death.36 Since lamin dysfunction causes
relaxation of peripheral heterochromatin in other tis-
sues, we hypothesized that disruption of the lamin
nucleoskeleton is the upstream cause of heterochro-
matin relaxation in tauopathy. While lamin is clearly
important for maintaining chromatin structure and
regulating neuronal development, as discussed above,
the downstream consequences of lamin dysfunction in
adult neurons had not been investigated. We utilized a
strong loss-of-function allele, lamA25, of the Drosoph-
ila B-type lamin to investigate chromatin structure,
neuronal cell cycle activation, and neuronal death in
neurons of adult flies. LamA25 lacks the domain
responsible for targeting lamin to the nuclear enve-
lope,2 and was used in our studies as a homozygote.

In neurons of lamA25 mutant adult flies, we docu-
mented significantly reduced levels of heterochroma-
tin protein 1 and dimethylated histone 3 of lysine 9, a
histone modification associated with constitutive het-
erochromatin,35 suggesting that B-type lamin is
required for maintaining heterochromatin structure in
fully differentiated neurons. We next investigated neu-
ronal cell cycle activation in the brains of adult lamA25

Drosophila. Exogenous activation of the cell cycle in
postmitotic neurons induces cell death,40 and the
coincidence of cell cycle markers with tau pathology is
a well-described feature of tauopathies.36 Tau-induced
cell cycle activation is known to be a causal event in
tau-induced neurodegeneration. Brains of adult
lamA25 mutant Drosophila stained positively for prolif-
erating cell nuclear antigen, which detects DNA syn-
thesis, and phosphorylated histone 3, which detects
the G2/M transition, suggesting that B-type lamin dys-
function activates the cell cycle in neurons. We also
detected significant TUNEL staining in brains of adult
lamA25 Drosophila, which detects DNA fragmentation
associated with apoptotic cell death,35 indicating that
proper B-type lamin function is important for neuro-
nal survival. Together, these experiments clearly
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illustrate that dysfunction of B-type lamins is of signif-
icant consequence to fully differentiated, adult neu-
rons, and suggest that B-type lamin dysfunction is
upstream of heterochromatin relaxation, neuronal cell
cycle re-entry, and apoptosis in tauopathy.

Other groups have reported a decline in lamin B1
protein levels as fibroblasts cells enter cellular senes-
cence,41-43 a state in which cells lose replicative ability
and secrete pro-inflammatory factors. In senescent
cells, lamin B1 depletion causes global reorganization
of chromatin and subsequent changes in gene expres-
sion.44 Despite the fact that neurons are postmitotic, a
role for cellular senescence in the context of neurode-
generation has been proposed. The theory of protein-
opathy-induced neuronal senescence posits that
aggregation-prone proteins such as tau are recognized
as non-self and stimulate an immune reaction that
induces neuronal senescence, causing a pro-inflamma-
tory secretory response in the absence of decreased
proliferative potential.45 The possibility that reduced
lamin B1 protein levels cause cellular senescence is a
matter of debate,41-43 and it is currently unknown if
tau-associated reduction of B-type lamins affects cellu-
lar senescence.

Mechanism of lamin dysfunction in tauopathy

We next determined the mechanism whereby patho-
logical tau reduces lamin levels and induces morpho-
logical changes in the nuclear envelope. Since
pathological tau induces over-stabilization and bun-
dling of filamentous actin,36,46 we hypothesized that
the actin cytoskeleton acts through the LINC complex
to disrupt the lamin nucleoskeleton in tauopathy.
While the LINC complex is distributed fairly evenly
across the nuclear envelope in neurons of adult con-
trol flies, transgenic tau or genetic stabilization of fila-
mentous actin caused clustering of the LINC complex
along the nuclear envelope. Like pathological tau,
genetically stabilizing filamentous actin also reduced
total B-type lamin protein levels and caused the
nuclear envelope to invaginate in neuronal nuclei of
adult Drosophila. Reducing the interaction between fil-
amentous actin and the LINC complex rescued B-type
lamin loss in tau transgenic Drosophila brains, and
significantly reduced tau-induced neurotoxicity.35

Nuclear envelope invaginations were filled with hyper-
phosphorylated, disease-associated tau and filamen-
tous actin in neurons from human Alzheimer’s

disease brains, suggesting that filamentous actin may
exert a physical force on the nuclear envelope, which
causes it to invaginate.35 Taken together, our data sug-
gest that pathological tau-induced stabilization of fila-
mentous actin disrupts cytoskeletal-nucleoskeletal
coupling, which leads to heterochromatin relaxation
and subsequent neuronal death.

Nucleoplasmic reticulum expansion in
pathological and physiological settings

We observed that 60% of neuronal nuclei from post-
mortem human Alzheimer’s disease brains harbored
nuclear envelope invaginations, which is a 3-fold
increase over age-matched control brains.35 In addi-
tion to Alzheimer’s disease and laminopathy, expan-
sion of a so-called “nucleoplasmic reticulum”47 is
associated with several pathological states, including
cancer, viral infection, and host-cell colonization (for
a review see ref.48). An increase in nuclear envelope
invagination is also associated with physiological
aging. Nuclei from frontal cortex and hippocampus of
aged marmosets contain a marked increase in nuclear
envelope invaginations compared to young marmo-
sets,49 as do neurons of the dorsal lateral geniculate
nucleus,50,51 and suprachiasmatic nucleus52 in rats,
pyramidal neurons of the motor cortex in hamsters,53

and cortical neurons in humans.54 However, despite
being present at high levels during development,
nuclear envelope invaginations decrease to low inci-
dence with age in facial neurons of hamsters.55 Simi-
larly, nuclear envelope invaginations do not increase
with age in neurons of C. elegans, despite obvious age-
related changes in nuclei of most non-neuronal tis-
sues.56,57 Increased incidence of nuclear envelope
invagination inversely correlates with the degree of
cellular de-differentiation in cultured cells, i.e., cells
that are more differentiated contain less invagina-
tions.58 Interestingly, expression of tau in neuroblas-
toma cells induces nuclear lobulation, but this
phenomenon is not associated with reduced A- or B-
type lamin protein, changes in the cell cycle, or cell
death.59 Presence of a nucleoplasmic reticulum may
thus differ based on differentiation status, age, species
and neuronal type. Significant advances in micros-
copy have occurred in the decades since many of
these studies were first published, and could facilitate
more rigorous studies of how neuronal nuclei change
with age.

278 B. FROST



Functional consequences of nucleoplasmic
reticulum expansion

The nuclear envelope is at the crossroads of communi-
cation between the cytoplasm and the nucleus. In
addition to its role in nuclear anchoring and maintain-
ing genome architecture, the nuclear envelope regu-
lates many cellular processes, including nuclear
calcium signaling and macromolecular trafficking of
RNAs and proteins. The nucleoplasmic reticulum is
thought to bring functions of the peripheral nuclear
envelope into the deep nuclear interior (Fig. 2).

The shared lumen of the endoplasmic reticulum, the
nuclear envelope, and the nucleoplasmic reticulum is
rich in calcium, which is a critical regulator of nuclear
function. (for a review see ref.60). Alongside high
calcium concentrations, nuclear envelope invaginations
also contain inositol triphosphate receptors47 and
ryanodine receptors,61 which provide a mechanism
whereby calcium can be released from the nucleoplas-
mic reticulum into the nucleus (Fig. 2). In neurons, syn-
aptic activity can induce formation of a nucleoplasmic

reticulum, which increases the rate at which calcium
signals are relayed from the synapse to the nuclear
interior.62 It is currently unknown if nucleoplasmic
reticulum expansion in Alzheimer’s disease and related
tauopathies affects nuclear calcium signaling.

Type II nuclear envelope invaginations involve both
the inner and outer nuclear membranes, are lined with
nuclear pores, and contain a cytoplasmic core. Type II
invaginations often associate with nucleoli,63,64 which
are sites of high rRNA synthesis. While the coupling
of a pore lined, cytoplasm-filled nuclear envelope
invagination to a transcriptionally active nuclear com-
partment could facilitate the nuclear export of RNAs
(Fig. 2), the functional significance of nuclear envelope
invaginations in regard to nucleocytoplasmic trans-
port is currently unknown. ABC50, a protein involved
in translation initiation, has been detected inside
nuclear invaginations in cultured cells, suggesting that
translation may occur within the nucleoplasmic retic-
ulum itself.65

Finally, type I nuclear envelope invaginations,
which involve only the inner nuclear envelope, were
recently shown to contain lipid droplets.66 While lipid
droplets are known to store lipid esters and participate
in lipid metabolism, protein storage, and protein deg-
radation,67 the significance of lipid droplet enrichment
in nuclear envelope invaginations is not known.

Concluding remarks

Neurons of tau transgenic Drosophila and of postmor-
tem human Alzheimer’s disease brains harbor signifi-
cant invaginations of the nuclear envelope and have
reduced levels of B-type lamin protein compared to
controls. Dysfunction of B-type lamins has functional
consequences in adult neurons in regard to hetero-
chromatin formation, cell cycle activation, and neuro-
nal survival.35 Taken together, our results suggest that
pathological tau-induced stabilization of filamentous
actin disrupts the LINC complex, which reduces lamin
protein levels and causes the nuclear envelope to
invaginate. Lamin reduction or dysfunction, in turn,
causes constitutive heterochromatin to relax, allowing
expression of genes that are normally silenced by het-
erochromatin and activating the cell cycle in postmi-
totic neurons, which causes their death.

Our findings suggest that Alzheimer’s disease and
associated tauopathies are, in fact, acquired neurode-
generative laminopathies. We demonstrate that loss of

Figure 2. Schematic representation of potential consequences of
nuclear envelope invaginations. Type I nuclear invaginations
(left) are composed of the internal nuclear membrane, whereas
type II nuclear invaginations (right) involve the inner and outer
nuclear membranes. The perinuclear space is contiguous with
the endoplasmic reticulum, and both are enriched in calcium.
Ryanodine receptors and Ins3 receptors are present in the endo-
plasmic reticulum and in nuclear envelope invaginations, provid-
ing a mechanism whereby calcium can be deposited into the
nucleus. Type II nuclear invaginations are lined with nuclear
pores, are filled with cytoplasm, often associate with nucleoli,
and may facilitate transport of macromolecules between the
nucleus and cytoplasm.
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lamin function can lead directly to age-related neuro-
degeneration, indicating that basic mechanisms of
aging are conserved between neurons and other
somatic tissues.35 The lamin nucleoskeleton is thus a
plausible molecular link between aging, the single
most important risk factor for developing common
neurodegenerative diseases, including Alzheimer’s dis-
ease, and basic mechanisms of cellular senescence.

Functional consequences of nucleoplasmic reticulum
expansion in physiological aging and pathological con-
ditions including cancer andAlzheimer’s disease remain
to be determined. Investigating a potential role for
increased nuclear calcium signaling and nucleocytoplas-
mic transport in Alzheimer’s disease and related tauopa-
thies is of particular interest to our group. It will also be
of great value to apply recent advances in microscopy to
many of the intriguing electron microscopy-based
observations that were made in the late 1900s regarding
the nucleoplasmic reticulum and aging.18,49,51,53-55,64

Abbreviations
HGPS Hutchinson-Gilford progeria syndrome
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