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Cell migration is one of the many processes orchestrated by calcium (Ca2+) signaling, and 
its dysregulation drives the increased invasive and metastatic potential of cancer cells. 
The ability of Ca2+ to function effectively as a regulator of migration requires the generation 
of temporally complex signals within spatially restricted microdomains. The generation 
and maintenance of these Ca2+ signals require a specific structural architecture and 
tightly regulated communication between the extracellular space, intracellular organelles, 
and cytoplasmic compartments. New insights into how Ca2+ microdomains are shaped 
by interorganellar Ca2+ communication have shed light on how Ca2+ coordinates cell 
migration by directing cellular polarization and the rearrangement of structural proteins. 
Importantly, we are beginning to understand how cancer subverts normal migration 
through the activity of oncogenes and tumor suppressors that impinge directly on the 
physiological function or expression levels of Ca2+ signaling proteins. In this review, we 
present and discuss research at the forefront of interorganellar Ca2+ signaling as it relates 
to cell migration, metastasis, and cancer progression, with special focus on endoplasmic 
reticulum-to-mitochondrial Ca2+ transfer.
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inTRODUCTiOn

Pathology is frequently associated with the dysregulation of intracellular calcium (Ca2+) signaling 
(1). Cancer is no exception, with many primary tumor cells and cell lines displaying aberrant expres-
sion of Ca2+ signaling genes (2, 3). While it is unlikely that somatic mutations affecting any one 
individual Ca2+ signaling gene are sufficient to drive tumorigenesis (4, 5), remodeling of the Ca2+ 
signal in cancer appears almost universal and confers survival advantages (3, 6). And so, it may be 
that dysfunctional Ca2+ signaling is indeed a determinant of tumorigenesis when coincident with 
cancer-driving oncogene and tumor suppressor mutations.

Also, many oncoproteins and tumor suppressor proteins can themselves directly modulate Ca2+ 
signaling. They achieve this, in large part, by interacting with Ca2+ channels, pumps, and exchang-
ers localized at the plasma membrane and various intracellular compartments. The Bcl-2 family of 
oncoproteins has been the most extensively studied in this respect and found to regulate Ca2+ signal-
ing in ways that complement their roles as apoptotic regulators, as recently reviewed (7). Similarly, 
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oncogenic Ras (8, 9) and the tumor suppressors promyelocytic 
leukemia (PML) (10), p53 (11), and BRCA1 (12) can all regulate 
apoptosis by impinging on the Ca2+ signal. Many of these proteins 
are enriched in spatially restricted domains created by the close 
apposition between the endoplasmic reticulum (ER) and the 
mitochondria, known as mitochondria-associated membranes 
(MAMs), where they function to modulate the flow of Ca2+ from 
the ER to mitochondria.

Ca2+ signaling also plays a role in cancer cell invasion and 
metastasis. Several different plasma membrane and ER-localized 
Ca2+ channels regulate the activity of effectors involved in motil-
ity and adhesion. Most of this regulation occurs by modifying 
the cytoplasmic Ca2+ signal and has been reviewed previously  
(13, 14). The significance of ER-mitochondrial Ca2+ commu-
nication in invasion and metastasis, however, has only recently 
emerged. This review will assess the literature relating to 
ER-mitochondrial Ca2+ communication. Our goal is to outline 
a theoretical framework that mechanistically links cancer-driven 
changes in ER-mitochondrial Ca2+ communication to its invasive 
and metastatic properties. We have made every attempt to include 
and reference original studies specifically related to this topic. 
When discussing a well-established concept, however, we direct 
readers to an appropriate review article.

Ca2+ SiGnALinG ReGULATeS MULTiPLe 
STePS OF THe invASiOn-MeTASTATiC 
CASCADe

Tumor metastasis directly accounts for the vast majority of cancer 
deaths (15). Metastasis is characterized by a sequence of events 
known as the invasion-metastatic cascade (16, 17). During this 
process, cancer cells lose their attachment to other cells and the 
extracellular matrix (ECM), acquire migratory capabilities and 
invade neighboring tissues by degrading and moving through the 
ECM, and ultimately transit to secondary sites by finding their 
way into the blood and lymphatic circulation. Importantly, Ca2+ 
signaling plays a key role at a number of points in the invasion-
metastatic cascade.

Adhesion and epithelial–Mesenchymal 
Transition (eMT)
The invasion-metastatic cascade begins with the loss of cell–ECM 
and cell–cell adhesion. Cells are linked to the ECM at focal 
adhesion points by structural complexes connecting membrane 
spanning integrins to the cytoskeleton. And so, the rate of focal 
adhesion assembly and disassembly governs the cell’s migratory 
ability. The process of disassembly is Ca2+ sensitive and triggered 
by Ca2+ oscillations that promote the association of focal adhesion 
kinase (FAK), a regulator of focal adhesion turnover, with the focal 
adhesion complex (18). The Ca2+ oscillations, which are spatially 
restricted at the focal adhesions (19), increase the residency of 
FAK at these sites through Ca2+/calmodulin-dependent protein 
kinase II (CaMKII)-dependent regulation of its phosphorylation 
status (19–22).

The loss of cell–cell adhesion is also mediated through the pro-
cess of EMT (23). The EMT process converts polarized epithelial 

cells into highly motile mesenchymal cells, defined by the induc-
tion of the mesenchymal markers N-cadherin, vimentin, and 
transcription factors, Snail, Slug, and Twist. Induction of EMT 
in the MDA-MB-231 breast cancer cell line was dependent on 
increased store-operated Ca2+ entry (SOCE) driven by expression 
of the SOCE proteins, stromal interaction molecule 1 (STIM1) 
and Orai1 (24). The SOCE pathway is activated in response to 
depletion of ER Ca2+ stores, which causes the ER-localized STIM 
to bind to and open the plasma membrane Ca2+ channel Orai (25). 
In contrast, SOCE was not important for EMT in MDA-MB-468 
breast cancer cells (26). In these cells, the Ca2+ permeable tran-
sient receptor potential canonical type 1 channel was implicated 
as a sensitizer to EMT (26). Moreover, a subsequent study of 
MDA-MB-468 cells showed a requirement for Ca2+-permeable 
transient receptor potential melastatin-like 7 (TRPM7) channels 
in increasing vimentin expression through the signal transducer 
and activator of transcription 3 pathway (27). Collectively, these 
studies define a role for Ca2+ signaling in EMT and hint that EMT 
regulation by Ca2+ is likely to involve diverse mechanisms that are 
highly dependent on cell type and stimulus.

Migration and eCM Degradation
In the second step of the invasion-metastatic cascade, freely 
migrating cancer cells invade the surrounding stromal tissue. 
Migrating cells move by a cyclical process that begins with the 
extension of leading edge protrusions, known as lamellipodia. 
Lamellipodia attach to the substratum and contraction of the 
trailing rear edge moves the cell toward the lamellipodia (28, 
29). At the leading edge, local Ca2+ signals control forward 
movement by regulating lamellipodia retraction and adhesion 
cycling through the activation of actin filament contraction (30, 
31). Actin dynamics can also be influenced more indirectly by 
Ca2+ signaling, through activation of Ca2+-dependent kinases 
(30, 32) and regulation of Rac1, RhoA, and Cdc42 GTPases 
(33–36). In addition to forward motion, directional steering is 
also dependent on spatially restricted Ca2+ signals. These events, 
termed “Ca2+ flickers,” are triggered by Ca2+ influx through 
TRPM7 channels and amplified by ER Ca2+ release via inositol 
1,4,5-trisphosphate receptor type 2 activation (37). While these 
spatially localized Ca2+ fluxes play important roles at the lead-
ing edge, there is on average, a front-to-rear increase in Ca2+ 
concentration (38–40). At the trailing edge, Ca2+ signaling is 
determined, in large part, by Ca2+ influx through L-type Ca2+ 
channels, which serves to maintain contractility and stabilize 
directional movement (40).

Invasive cancer cells migrate through their surrounding tissue. 
They do this by proteolytically degrading the ECM with enzymes 
that include matrix metalloproteinases (MMPs) and cathepsins 
(41). Importantly, Ca2+ influx determines how these enzymes 
influence metastasis. In a prostate cancer cell study, the metastatic 
potential was dependent on the expression of MMP2, MMP9, 
and cathepsin B regulated by Ca2+ influx through the transient 
receptor potential melastatin 2 (TRPV2) channel (42). Another 
study identified a role for SOCE (43). Activation of STIM/Orai 
was shown to influence melanoma metastasis by maintaining 
levels of membrane type1 MMP (MT1-MMP) at the plasma 
membrane (43).
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FiGURe 1 | A schematic summary showing how cancer-associated functional and genetic changes that promote mitochondrial Ca2+ uptake are linked, or are 
predicted to link, to motility effector.
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invOLveMenT OF eR-MiTOCHOnDRiAL 
Ca2+ FLUX in CAnCeR CeLL invASiOn 
AnD MeTASTASiS

Cancer causes transcriptional and functional changes that often 
affect regulators of cytoplasmic Ca2+, including the TRP channels 
and components of STIM/Orai-mediated Ca2+ entry, for reviews 
see Ref. (2, 13, 14, 44). These changes are likely to have the great-
est impact on the spatiotemporal profile of the cytoplasmic Ca2+ 
signal and affect the invasion-metastatic cascade by impinging 
on the cytoplasmically localized effectors outlined above (22, 45).  
As alluded to earlier, cancer is also associated with altered mito-
chondrial Ca2+ handling, brought about by changes in the expres-
sion profile of the mitochondrial Ca2+ uptake machinery, as well 
as oncoproteins and tumor suppressors at the MAM (46). Recent 
investigations using primary tumor models and cancer cell 
lines support the concept that the survival advantages of altered 
mitochondrial Ca2+ derive from effects on cellular metabolism 
(47) and apoptosis sensitivity (48–52). In the following section, 
we assess the evidence that altered ER-mitochondrial Ca2+ is also 
a determinant of increased invasive and metastatic potential 
(Figure 1).

Mitochondria-Associated Membrane
The ER-localized inositol 1,4,5-trisphosphate receptor (IP3R) 
and ryanodine receptor Ca2+ release channels deliver Ca2+ to the 
mitochondria (53–55). Structural elements, which include physi-
cal tethers linking both membranes (56, 57) and protein–protein 
interactions that bridge the ER release and mitochondrial uptake 
machinery (58, 59), facilitate the Ca2+ transfer. To get to the 
matrix, Ca2+ first moves across the outer mitochondrial membrane 
through the voltage-dependent anion channel (VDAC) (60–62). 
The VDAC is a porin channel and diffusion pathway for ions and 

metabolites (62). Despite its large pore size, VDAC can function 
as a highly regulated Ca2+ permeability (63, 64) that directly cou-
ples to IP3R-dependent Ca2+ release through interactions with the 
mitochondrial chaperone GRP75 (58). From the intermembrane 
space, Ca2+ moves across the inner membrane through the mito-
chondrial Ca2+ uniporter (MCU) (65, 66). Cancer remodels the 
MAM architecture by changing the expression levels of ER and 
mitochondrial Ca2+ channel proteins or their associated binding 
partners and regulators (46). Restructuring the MAMs and the 
resultant effects on mitochondrial Ca2+ homeostasis impinges on 
many processes including metabolism, bioenergetics, cell death, 
proliferation, mitochondrial dynamics, and cytoplasmic Ca2+ 
signaling. For the purpose of this review, we restrict our focus to 
those effects that most profoundly impact, or are likely to impact, 
invasion and metastasis.

voltage-Dependent Anion Channel
Expression of the VDAC1 isoform is robustly increased in many 
cancer cell types (67) and reliably predicts survival outcomes 
in breast, colon, and lung cancers (68, 69). Increased VDAC 
likely promotes cancer cell growth primarily by influencing 
mitochondrial metabolism and apoptosis (70–72), processes that 
are also tightly regulated by VDAC interactions with hexokinase 
and members of the Bcl-2 family (72–74). Importantly, VDAC1 
knockdown reduced cancer cell migration in vitro and suppressed 
tumor growth in vivo (75, 76). A decrease in VDAC expression 
would be expected to limit mitochondrial Ca2+ uptake (61). 
Indeed, VDAC influences cell migration by a mechanism that 
involves the regulation of mitochondrial Ca2+ uptake by interac-
tions with Bcl-2 family proteins. The structural determinants and 
functional correlates of the VDAC-Bcl-2 protein interactions have 
been well characterized, as reviewed in Ref. 67. Antiapoptotic 
Bcl-XL and MCL1 both bind to VDAC1 and VDAC3 isoforms 
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to promote mitochondrial Ca2+ uptake and drive cell migra-
tion (77–80). Importantly, disrupting the Bcl-XL-VDAC and 
MCL1-VDAC interactions was found to inhibit migration of 
triple negative breast cancer cells (80) and non-small cell lung 
carcinoma cells, respectively (78). These data raise the possibility 
of suppressing invasion and metastasis by targeting VDAC-Bcl-2 
protein interactions.

inositol 1,4,5-Trisphosphate Receptors
The type 3 IP3R isoform (IP3R-3), which is absent in normal colo-
rectal mucosa, is expressed in colorectal carcinoma. Moreover, 
the expression is greatest at the invasive margin and strongly 
correlated with metastasis and patient survival (81). The IP3R-3 is 
also overexpressed in human glioblastoma tissue (82). Inhibiting 
IP3Rs in glioblastoma cell lines reduced invasion in vitro; it also 
reduced invasion in vivo and prolonged survival by suppressing 
tumor growth (82). These studies, however, did not define the 
mechanisms by which increased IP3R-3 expression directs inva-
sion and metastasis. Interestingly, the IP3R-3 is enriched in at the 
MAM in some cell types (83), and it may preferentially deliver 
Ca2+ to the mitochondria under certain conditions (84). It is 
possible then that increased IP3R abundance promotes invasion 
and metastasis by increasing Ca2+ delivery to the mitochondria.

Mitochondrial Ca2+ Uniporter
The MCU machinery includes the MCU pore-forming subunit 
(65, 66) or its dominant-negative MCUb (85), together with 
associated regulators EMRE (86, 87) and MICU1-3 (88–91). 
Analysis of gene expression databases revealed that MCU levels 
are increased in several subtypes of breast cancer and correlated 
with tumor size, invasive and metastatic indices, and patient 
survival (92–94). While expression changes in the MCU regula-
tors MCU1-3 and EMRE did not correlate with tumor size and 
invasiveness (92), poorer patient survival did correlate with 
increased MCU in combination with decreased MICU1 (94). The 
involvement of MCU in cancer progression was demonstrated 
in vivo by Tosatto et al., who showed that breast cancer tumor 
xenografts derived from MCU-deleted cells grew more slowly 
and were less likely to metastasize (92). In vitro experiments 
that knocked-down or inhibited MCU in breast cancer cell lines 
decreased mitochondrial Ca2+ uptake to inhibit migration and 
invasive potential without affecting cell survival (92, 94), prolif-
eration, or apoptosis (95).

MeCHAniSMS OF MiTOCHOnDRiAL 
Ca2+-ReGULATeD invASiOn AnD 
MeTASTASiS

Store-Operated Ca2+ entry (SOCe)
Subplasmalemmal mitochondria regulate the activation and 
inactivation properties of SOCE by buffering incoming Ca2+ 
(96–98). Activation of SOCE is dependent on ER Ca2+ depletion, 
suggesting that ER, SOCE, and mitochondria are functionally 
coupled. Indeed, by limiting Ca2+ accumulation around the mouth 
of the IP3R, mitochondrial Ca2+ uptake prevents Ca2+-dependent 
inactivation of IP3Rs, which further depletes ER Ca2+ stores to 

promote SOCE (99). Given the Ca2+ communication between 
ER, mitochondrial and SOCE pathways, it is not surprising that 
MCU knockdown in MDA-MB-231 (93) and Hs578t (95) breast 
cancer lines inhibited both mitochondrial Ca2+ accumulation and 
SOCE. In the Hs578t cells, this caused a loss of cell polarity and 
migration associated with decreased RhoA, Rac1, and calpain 
activities (95). In these experiments, inhibiting SOCE (93, 95) or 
chelating intracellular Ca2+ (95) recapitulated the effects of MCU 
knockdown on migration. These data are consistent with studies 
defining STIM and Orai as key players in regulating invasion and 
metastasis (43, 100, 101) and suggest that altered MCU expres-
sion in cancer cells can influence downstream motility effectors 
by regulating SOCE.

Mitochondrial Dynamics
Mitochondria redistribute to the leading edge of cancer cells to 
support the increased bioenergetic demands at the invadopodia 
(102–105). Interestingly, the translocation of mitochondria to 
subplasmalemmal sites also plays a critical role during immune 
cell activation, where they regulate Ca2+ influx through SOCE 
(106). It is yet to be determined, however, if mitochondrial posi-
tioning, and its influence on Ca2+ influx, affects the polarization 
of cytoplasmic Ca2+ signaling in migrating cancer cells.

The translocation of mitochondria is dependent on increased 
mitochondrial fission, a process also promoted by mitochondrial 
Ca2+ accumulation (107, 108). Evidence that MCU plays a role 
in fission comes from the observation that fission is inhibited by 
the pharmacological block of the MCU (109, 110) and enhanced 
by loss-of-function mutations in MICU1, which promote 
mitochondrial Ca2+ uptake (111). Mechanistically, mitochon-
drial Ca2+ might influence fission by regulating the activity of 
dynamin-related protein 1 (Drp1). The ability of Drp1 to promote 
fission is dependent on phosphorylation at serine 616 (S616) and 
dephosphorylation of serine 637 (S637) (112, 113). Cytoplasmic 
Ca2+ signaling is known to regulate the phosphorylation status 
of Drp1 through calcineurin-dependent dephosphorylation of 
S637 (112, 114), and more recently it was found that blocking the 
MCU suppressed fission by decreasing Drp1 phosphorylation at 
S616 (115). These observations are relevant to this review because 
Drp1 is widely associated with tumor invasion and metastatic 
potential (104, 116–118), and increased S616 is found in breast 
cancer and lymph node metastases (104). Although speculative, 
it is possible that increased mitochondrial Ca2+ uptake in cancer 
cells links to invasion and metastasis through the processes of 
fission and mitochondrial localization.

Bioenergetics
Mitochondrial Ca2+ activates several Ca2+-dependent enzymes 
involved in the tricarboxylic acid (TCA) cycle (119). Work by 
Cárdenas et al. showed that constitutive low-level ER-mitochondrial 
Ca2+ transfer maintains flux through the TCA cycle to fuel oxida-
tive phosphorylation and ATP production (120). In a follow-up 
study, the same group showed that blocking IP3Rs in cancer cells 
impaired oxidative phosphorylation, which killed cells by necrosis 
and reduced tumor growth in vivo (47). Although not examined 
in these studies, one might expect a similarly invoked bioenergetic 
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crisis to inhibit cancer cell invasion and metastasis. Such an 
outcome is predicated based on the requirement for functional 
oxidative phosphorylation in tumor metastasis (121, 122), as well 
as the spatially restricted bioenergetic demands needed for cell 
migration (102–105).

Reactive Oxygen Species (ROS)
Mitochondrial ROS are generated as a consequence of normal 
respiration. As electrons supplied by the TCA cycle are passed 
down the electron transport chain, they escape, mostly at com-
plex I and III, to react with O2 and produce ROS. Mitochondrial 
Ca2+ uptake can increase ROS production at complexes I, III and 
IV under a variety of conditions. Although the mechanisms are 
still unclear, a number of possibilities have been proposed, as 
reviewed previously (123, 124). Also, mitochondrial Ca2+ can 
promote the release of ROS accumulated in cristae and inter-
membrane spaces through Ca2+-dependent increases in matrix 
volume (125).

Increased mitochondrial ROS production is a known deter-
minant of tumor growth and metastasis (126, 127) that likely 
drives invasion and metastasis by increasing cell migration 
(128–130). Importantly, increased migration is repeatedly cor-
related with increased ER-mitochondrial Ca2+ uptake (92–95). 
While excessive ROS production is toxic and excessive mito-
chondrial Ca2+ uptake inhibits rather than promotes migration 
(78, 131), physiological Ca2+-dependent ROS production is a 
major mitochondrially derived signal involved in regulating 
downstream effectors. In one study, increased ER-mitochondrial 
Ca2+ transfer in non-small cell lung carcinoma cells was caused 
by MCL1–VDAC interactions that promoted cell migration by 
increasing mitochondrial ROS production (78). In another study, 
increased mitochondrial Ca2+ uptake increased breast cancer cell 
xenograft growth and metastasis by increased ROS-dependent 
expression of HIF-1α (92). To our knowledge, HIF-1α is the only 
cell migration regulator that has been specifically linked to mito-
chondrial Ca2+-dependent ROS production. Nevertheless, many 
migration effectors are sensitive to ROS signaling (132). Perhaps 

more intriguingly, many of these, including the Rho GTPases, 
FAK, MMPs, and mediators of EMT, are sensitive to both ROS 
and Ca2+ signals, see Ref. (13, 132) for complete listings of ROS 
and Ca2+-sensitive targets, respectively. The degree of overlap 
between ROS and Ca2+-sensitive effectors highlights a need to 
carefully differentiate between ROS and Ca2+-dependent effects 
when probing the role of ER-mitochondrial Ca2+ transfer.

COnCLUSiOn

The molecular identification of the SOCE and MCU machinery, 
the introduction of powerful molecular tools, and the evolu-
tion of cancer genetics have all contributed to developing our 
understanding of how Ca2+ signals regulate cancer cell invasion 
and metastasis. As we have seen, a picture has emerged in which 
ER Ca2+ release, mitochondrial Ca2+ uptake, and plasmalemmal 
Ca2+ influx work together to exquisitely regulate cell motility. This 
complexity, however, should not dissuade efforts to examine the 
possibility of therapeutically targeting ER-mitochondrial Ca2+ 
transfer to affect metastasis. Encouragingly, many of the studies 
reviewed here have already demonstrated the feasibility of such 
an approach, showing reduced metastasis in  vivo after target-
ing IP3Rs (47), STIM/Orai (22, 45), or MCU (92). In addition, 
therapeutics originally designed to promote cell death might also 
be useful for limiting metastasis. In this case, the Bcl-2 inhibi-
tors, both BH3 and BH4 mimetics (80, 133), as well as recently 
developed MCL1 inhibitors (134), would be expected to suppress 
cell migration by limiting ER-mitochondrial Ca2+ transfer.
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