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Abstract

Within an isogenic population, even in the same extracellular environment, individual cells

can exhibit various phenotypic states. The exact role of stochastic gene-state switching reg-

ulating the transition among these phenotypic states in a single cell is not fully understood,

especially in the presence of positive feedback. Recent high-precision single-cell measure-

ments showed that, at least in bacteria, switching in gene states is slow relative to the typical

rates of active transcription and translation. Hence using the lac operon as an archetype, in

such a region of operon-state switching, we present a fluctuating-rate model for this classi-

cal gene regulation module, incorporating the more realistic operon-state switching mecha-

nism that was recently elucidated. We found that the positive feedback mechanism induces

bistability (referred to as deterministic bistability), and that the parameter range for its occur-

rence is significantly broadened by stochastic operon-state switching. We further show that

in the absence of positive feedback, operon-state switching must be extremely slow to trig-

ger bistability by itself. However, in the presence of positive feedback, which stabilizes the

induced state, the relatively slow operon-state switching kinetics within the physiological

region are sufficient to stabilize the uninduced state, together generating a broadened

parameter region of bistability (referred to as stochastic bistability). We illustrate the oppo-

site phenotype-transition rate dependence upon the operon-state switching rates in the two

types of bistability, with the aid of a recently proposed rate formula for fluctuating-rate mod-

els. The rate formula also predicts a maximal transition rate in the intermediate region of

operon-state switching, which is validated by numerical simulations in our model. Overall,

our findings suggest a biological function of transcriptional “variations” among genetically

identical cells, for the emergence of bistability and transition between phenotypic states.
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Author summary

Identifying the mechanism underlying the coexistence of multiple stable phenotypic states

has been a challenging scientific problem for more than half a century, and an appropriate

mathematical model at the single-cell level is also in high demand. Single-cell measure-

ments conducted in the past ten years have shown that gene-state switching is slow rela-

tive to the typical rates of active transcription and translation; hence the recently proposed

fluctuating-rate model is a good candidate for describing the single-cell dynamics. We use

the classic gene regulation module of the lac operon as an archetype and build a specific

fluctuating-rate model based on the recently identified operon-state switching mecha-

nism. This model is analyzed to dissect the interplay between positive feedback and the

stochastic switching of gene states in the emergence of bistability/multistablity and the

transition between phenotypic states. We show that relatively slow operon-state switching

stabilizes the uninduced state and that the positive feedback stabilizes the induced state.

Thus, the parameter range for bistability is significantly broadened. In addition, recently

proposed landscape theory and rate formula predict opposite phenotype-transition rate

dependence on operon-state switching rates for the two types of bistability.

Introduction

Individual cells of a given genotype can exhibit various phenotypes. The phenotype of a cell

usually refers to distinct characteristics (static and dynamic, physical or chemical) and the

associative biological functions of the cell. Extending the central dogma of molecular biology,

it is now accepted that the behavior of a single cell is determined by both the genomic polynu-

cleic acid sequence and the dynamics of intracellular biochemical networks in space and time.

The biochemical reactions inside cells serve as the immediate environment for the genome,

where genotypic information resides. It is only through intracellular biochemistry that extra-

cellular conditions can interact with genes.

Based on this perspective, we propose the following: for a population of cells with identical

genomes and extracellular conditions, each phenotype can be represented by a cluster of sin-

gle-cell data defined as a peak (e.g., modal value) in the multi-dimensional histogram of bio-

molecular copy-numbers measured at steady state. In general, the peak is a sizable region in

the vast biochemical kinetic space, which is known as an attractor in chemical kinetics [1, 2].

Multiple peaks naturally discretize the space; at a given instance in time, a single cell can reside

in one of these discrete states.

More interestingly, a homogeneous cell population responds to a varying environment

through changes in the distribution among discrete phenotypic states, rather than through

gradual adaptation to an intermediate state [3]. At a single-cell level, this observation is known

as all-or-none [4]. Furthermore, it has recently been shown that a steady-state multi-modal

distribution can be recovered after a subpopulation of cells under a peak is removed [5, 6],

indicating that dynamic interconversion between phenotypic states occurs within a single cell.

In a sufficiently long time, each single cell is considered ergodic among the different pheno-

types. The coexistence of multiple phenotypic states diversifies clonal cells; and provides a

non-genetic evolutionary advantage for survival in unpredictable environments [7–9].

Recent experiments have revealed that the dynamics of a single cell are essentially stochas-

tic, as there is only a single copy of DNA inside a typical cell, which leads to stochastic mRNA

and protein production [10, 11]. Both transcriptional and translational events have been

shown to occur in stochastic bursts [10, 12–20] indicating that the gene state switches
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stochastically and is relatively slow compared with the typical rates of active transcription and

translation. The stochastic operon-state switching of the lac operon has also been shown to be

crucial for the change in a cell’s phenotype [3, 13], which highlights the importance of single-

molecule events inside the cell.

In terms of quantitative biochemical kinetics, the temporal evolution of the probability dis-

tribution of a well-mixed reaction system is governed by a Chemical Master Equation (CME)

[21], from which the corresponding stochastic trajectory of a single cell can be computationally

simulated. We have recently shown, using a toy model of gene regulation, that when the rate of

gene-state switching is low relative to the typical rates of active transcription and translation,

the full CME can be reduced to a single-molecule fluctuating-rate model, in which the dynam-

ics of mRNA and protein copy numbers at each given gene state follow deterministic dynamics

while transcription rates fluctuate due to stochastic gene-state switching [22], which is neces-

sary for spontaneous phenotypic state transitions.

In the full Chemical Master Equation, the copy-number fluctuations of mRNA and protein

resulting from stochastic synthesis and degradation are present, which prevent us from study-

ing the role of only the stochastic gene-state switching. However, in fluctuating-rate models,

stochastic gene-state switching is the only source of randomness, the conclusions drawn from

which are much more clean and unambiguous. On the other hand, although numerical simu-

lations of full Chemical Master Equation can be practical, theoretical analysis is still difficult to

implement; while solid theoretical foundations have already been proposed for fluctuating-

rate models, which are also called piecewise deterministic Markov processes [22, 23]. The fluc-

tuating-rate model is easier to implement both theoretically and numerically. Therefore, it is a

good candidate for studying single-cell dynamics, especially towards investigating the role of

only the stochastic gene-state switching.

So far, the exact role of stochastic gene-state switching that occurs during the transition

between phenotypic states in a single cell is unclear, especially in the presence of positive feed-

back. In the present study, we address this problem using the lac operon as an archetype.

Recent experiments have shown that the switching of operon states of the lac operon is slow

compared with typical rates of active transcription and translation. Thus, in such a region of

operon-state switching, we propose to explore the single-molecule fluctuating-rate model in

quantitative detail, by incorporating the previous described operon-state switching mechanism

[3]. This mathematical model illustrates the emergence of discrete phenotypic states from

detailed nonlinear biochemical kinetics, and the robustness of such cellular states follows natu-

rally. Although in general, positive feedback is necessary for bistability in a biochemical net-

work, we show that the stochasticity in operon-state switching of an individual cell is able to

not only trigger stochastic transitions between phenotypic states, but also significantly broaden

the range of environmental parameters under which bistability occurs. The bistability that

occurs in the absence of stochasticity is called deterministic bistability, while the bistability

which occurs in the presence of stochasticity but beyond the parameter range of deterministic

bistability is called stochastic bistability.

We further show that stochastic operon-state switching must be extremely slow to trigger

stochastic bistability (bimodal distribution) by itself in the absence of positive feedback. On

the other hand, positive feedback is known to be able to maintain a stable state [24–26], hence

with the help of positive feedback, the induced state is stabilized beyond the range of determin-

istic bistability, even when the rates of stochastic operon-state switching is only within the

physiological region. However, positive feedback is not able to stabilize the uninduced state

within the same parameter region. We show that the uninduced state is instead stabilized by

the relatively slow operon-state switching. Together, the mechanism of significantly broadened

parameter range of bistability is explained. We further predict how the phenotype-transition
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rates vary with operon-state switching rates under each type of bistability. We also illustrate

that the maximal transition rates between different phenotypic states are achieved with an

intermediate rate of operon-state switching, which is a phenomenon that was predicted previ-

ously [27] and is explained using a recently proposed phenotype-transition rate formula.

Finally but not the least, we not only explained the previously reported experimental dis-

coveries in the present study, but also further refined some earlier conclusions that were not as

precisely presented, such as the effect of DNA looping as well as the concept and quantification

of thresholds of phenotype transitions.

Results

The lac operon of E. coli, which involves multiple transcription factors, was the first complex

model of gene regulation to be elucidated. It consists of a promoter, a terminator, an operator

and three adjacent structural genes (lacZ, lacY, and lacA). lacZ encodes β-galactosidase, an

intracellular enzyme that catalyzes the transformation of the disaccharide lactose to glucose

and galactose, while lacY encodes β-galactoside permease, a membrane-bound transport pro-

tein that transports extracellular lactose into the cell. The lac operon remains inactive when

there is no extracellular lactose available, or if there is a more readily-available energy source,

such as glucose. However, it is rapidly activated when lactose is present(in the absence of glu-

cose), due to positive feedback.

In the absence of lactose, the production of β-galactosidase is inhibited: an intracellular

regulatory protein known as the lactose repressor (lacI gene product) binds to the lac opera-

tor. In the presence of lactose, the repressor’s affinity for the lac operator is decreased by allo-

lactose, whose production from lactose is catalyzed by β-galactoside. As the repressor’s

affinity decreases, RNA polymerase transcribes the lac genes, leading to a high level of the

encoded proteins and consequent digestion of more lactose (Fig 1A). In wet-lab experiments,

inducers such as the lactose analog thiomethyl β-D-galactoside (TMG) are used instead of

lactose, because such inducers are not readily digested and therefore remain at a constant

concentration.

The lac repressor molecule is a tetramer of identical subunits. Under repressed conditions,

one dimer binds to the major lac operator O1, and a second dimer binds to one of the weaker

auxiliary operators, O2 or O3, together forming a DNA loop. Choi et al. [3] have investigated

the molecular mechanism of the transition of E. coli cells from one phenotype to another

via lac operon. At intermediate inducer concentrations, a population of genetically identical

cells will exhibit two distinct phenotypes: fully induced cells and uninduced cells. Choi et al.

observed a basal level of expression in uninduced cells as a result of the partial dissociation

of the tetrameric repressor from the operator O1 on looped DNA. In contrast, the rare occur-

rence of complete dissociation of the repressor results in large bursts of permease expression,

which trigger the induction of the lac operon. Therefore, stochastic single-molecule switching

between operon states is responsible for the change in the phenotype of the cell.

Single-molecule fluctuating-rate model with recently identified operon-

state switching mechanism

Stochastic gene-state switching is a major source of stochasticity inside a single cell [10, 13,

28], and even responsible for the phenotype transition [3]. By evoking the recently identified

stochastic gene-state switching mechanism, we propose a single-molecule fluctuating-rate

model for the lactose operon, introducing the fluctuating transcription rates into the determin-

istic dynamics described in previous studies [4, 29, 30].
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The deterministic dynamics of all other chemical species under each operon state in the

fluctuating-rate model consist of several differential equations representing the temporal evo-

lution of mRNA, LacY polypeptides, and the intracellular inducer concentrations. The stochas-

tic kinetics of the operon states are described in Fig 1B and 1C, and are modeled by a simple

Markovian jumping process. The state O denotes the free operon; the state O�R denotes the

operon with the repressor bound only at the auxiliary lac operator(partial dissociation); the

state OR denotes the operon with the repressor bound at both the major and auxiliary lac oper-

ators; and the state O�RIm denotes the operon bound by both the repressor at the auxiliary lac
operator and inducer molecules. While the inducer is unlikely to interact with the fully bound

tetrameric repressor, it could conceivably bind to the inducer once a dimer head of the repres-

sor dissociates.

Traditionally, the O�RIm complex, which contains both the repressor and the inducers

bound on the operon, is omitted in mathematical models. Such an over-simplified model

cannot explain why the repressor binds stably to DNA in the absence of inducer, and is

released rapidly in the presence of inducer. Previous models, assuming either O + R⇋OR or

O + R⇋O�R⇋ OR, imply that the rate of the complete dissociation of the repressor is inde-

pendent of the intracellular inducer concentration. However, data show that when the intracel-

lular inducer concentration is high, the frequency of complete dissociation can also be high

(0.01 minute−1) (Fig 2A in [3]). Alternatively, when the intracellular inducer concentration is

low, the frequency of complete dissociation events is low and shows very weak concentration

dependence (Fig 3D in [3]). Therefore it appears that the repressor also binds the inducer

when bound to the operon.

Fig 1. Overview of the model. (A) Regulatory mechanism of the lac operon. Expression of permease increases the intracellular concentration of the inducer TMG

(thiomethyl β-D-galactoside), which removes the repressor LacI from the promoter, leading to increased expression of permease. Hence the repressor LacI and

permease LacY form a positive feedback loop. (B) Cartoon showing the dynamics of operon states. (C) Diagram of the Markovian jumping process of operon states.

The O state denotes the free operon; the O�R state denotes the operon bound to the repressor at the auxiliary lac operator O2 or O3(partial dissociation); the OR state

denotes the repressor bound to the operon at both the major and auxiliary lac operators; the O�RIm state denotes the repressor bound to the operon at the auxiliary lac
operator O2 or O3 and to the inducer.

https://doi.org/10.1371/journal.pcbi.1006051.g001
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In addition, the repressor has 2 different binding constants (i.e. K and 1/K3, see S1 Text for

details) for the inducer, depending on whether the repressor is already bound to DNA [31, 32],

which are 10 to 100-fold apart. Accordingly, when inducer concentrations are below the lower

binding constant, there is weak concentration dependence of the complete dissociation rate,

whereas once the inducer concentration approaches the higher binding constant (100 μM), the

complete dissociation rate increases dramatically via the OR! O�R! O�RIm! O pathway

shown in Fig 1B and 1C. This is the basic type of lac operon induction with which most molec-

ular biologists are familiar. However, the role of single-molecule fluctuations of DNA tran-

scription under intermediate concentrations of inducer was unclear prior to the work of Choi,

et al. [3].

The parameters of our model were obtained either directly from experimental measurements

or through fitting the predictions of the model to experimental data, as explained in S1 Text.

Relatively slow gene-state switching induces stochastic bistability with a

much broadened parameter range

Positive feedback induces deterministic bistability. When stochastic operon-state

switching is very rapid, the dynamics of a single cell are well-described by a deterministic

mean-field equation (See Eq 3). Theoretical chemists refer to this as the adiabatic limit [27,

33]. Such systems exhibit bistability over a certain range of environmental parameters (i.e., co-

existence of two phenotypic states), as long as the synthesized gene product positively regulates

its own synthesis in a sigmoidal fashion [34]. Positive feedback increases protein levels, which

leads to a higher rate of synthesis and an even greater protein levels. However, positive feed-

back also implies lower protein levels resulting in reduced synthesis and a further decrease in

protein levels (with the presence of degradation). Therefore, there must exist a critical protein

level (threshold) in a single cell above which protein levels increase until complete saturation

(on-state or induced state) is reached and below which protein levels drop until nearly reach-

ing zero (off-state or uninduced state). Hence, there exist three steady states in the presence of

strong positive feedback: two stable states that are separated by an unstable state, which is

referred to as the “threshold” (or saddle point, similar to a transition state in molecular bio-

physics). When a system deviates from the unstable threshold, the deviation becomes even

greater due to positive feedback until the system reaches a stable steady state. This mechanism

is referred to as deterministic bistability, in contrast to the case below, which is caused by sto-

chastic fluctuations without a deterministic counterpart.

In addition to the all-or-none bistable system, there is another common decision-making

mechanism in cells: the ultrasensitive system with a graded response. These mechanisms are

not incompatible with each other, and cells have the ability to convert one to the other and vise

versa [4]. Hence, a bifurcation diagram can be utilized to precisely represent the complete

range of environmental parameters over which the system is bistable. Fig 2A shows the steady-

state copy number of permease as a function of the extracellular concentration, Ie, of inducer

in the wild-type lac operon in the presence of positive feedback. The bifurcation diagram is

always accompanied by a hysteresis loop [34, 35]. In the absence of intrinsic stochasticity,

when the environmental parameter increases, the system remains in the off-state until it is no

longer stable. Similarly, when the parameter decreases but remains within the bistable region,

the on-state remains stable, although the off-state reappears. Hysteresis protects the bistable

system from repeatedly transiting back and forth between the two phenotypic states when the

environmental parameter is near one of the critical values at which the bifurcations occur. Phe-

notype transitions involving hysteresis are driven by slow external modulation, while sponta-

neous transitions under fixed parameters require randomness.
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Fig 2. Bistability with and without stochastic operon-state switching. (A) Deterministic bifurcation diagram for wild-type cells. There

are two saddle-node bifurcations occurring around Ie = 10μM and 59μM. (B) Deterministic bifurcation diagram containing both the

active transcriptional rate kM and the extracellular inducer concentration Ie. The wild-type cells exhibit deterministic bistability inside

the parameter region between the blue and brown lines and exhibit monostability otherwise. (C) Deterministic bifurcation diagram of

the mutant cells without positive feedback. (D)(E) Deterministic bifurcation diagrams with different association constants for the
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In addition to the extracellular inducer concentration, Ie, other parameters of the system

can also be tuned experimentally. For instance, an increase or decrease in the maximum

transcriptional rate can be achieved by increasing the number of operons in the cell or

changing the concentrations of other transcription factors. We computed the deterministic

bifurcation diagram (bistable or monostable) with both the active transcriptional rate, kM,

and the extracellular inducer concentration, Ie (Fig 2B). The system is bistable inside the

parameter region between the blue and brown lines and is monostable otherwise; it is an ana-

log of a first-order phase transition [36]. We show that the bistable range of extracellular

inducer concentrations becomes increasingly narrow and then disappears when kM either

increases or decreases from the value kM = 8min−1 for wild-type cells, which is known as the

cusp phenomenon [37].

In mutant strains that cannot transport lactose or the inducer into the cell, positive feedback

is disrupted. In this case, there is only one steady state (see Eq 3), which implies that positive

feedback is necessary for deterministic bistability (Fig 2C). Experiments have also indicated

that wild-type cells do not exhibit bistability without forming DNA loops as the repressor

bound to the operon [3]. However, our model demonstrates that bistability still exists without

DNA loops, although the range of bistability becomes much narrower and is therefore harder

to detect (Fig 2D and 2E).

Relatively slow operon state switching broadens the parameter range of bistability in

the presence of positive feedback. Spontaneous transitions between the on-state and the off-

state occur in a single cell. In mathematical models, stochasticity causes spontaneous transi-

tions in a deterministic bistable system and might also cause systems without deterministic

bistability to exhibit bistable phenomena, i.e., a bimodal distribution. To determine the param-

eter range for bistability in a stochastic system, we considered entire populations of cells start-

ing from either the on-state or the off-state at time zero and determined the fraction of cells in

the off state under different extracellular inducer concentrations after a certain amount of time

(Fig 2F, also see Materials and methods). This behavior is referred to as hysteresis and can be

directly measured in single-cell experiments [4]. In wild-type cells, we found that the range of

hysteresis was much wider than in the deterministic bistable system shown in Fig 2A. We then

directly simulated the copy-number distribution of permease, which confirmed the broadened

range of bistability (S2 Fig). The two induction curves presented in Fig 2F would merge and

the same fraction of phenotypic states would be achieved regardless of the different initial

states at which the cells start, only if the extracellular inducer concentration remains constant

for an extremely long period of time. For cellular phenotypes, this “extremely” long period of

time can be on the order of months or years, which completely beyond the relevant time scale

for cell division and typical experiments. This period is the origin of the ambiguity concerning

the threshold in the presence of stochasticity (see below).

Furthermore, a cusp phenomenon similar to that shown in Fig 2B still exists in the presence

of intrinsic stochasticity, when the kM and Ie are considered. Bistability becomes more indis-

tinct when kM becomes either smaller or larger (S4 and S5 Figs). Therefore, the wild-type

value of kM is somewhat optimized. This phenomenon gives cells the opportunity to transition

between a hysteresis response system and an ultrasensitive graded response system. The cusp

phenomenon could be examined by replacing kM with other parameters in the system.

repressor bound to the operon in the absence of a DNA loop: 5 molec.−1 (D), 8 molec.−1 (E). (F) Stochastic hysteresis response of the

probability of induction for wild-type cells. Initial conditions: uninduced (blue line) or fully induced (red line) cells with a period of

T = 2000 min. The extracellular inducer concentration must exceed over 350μM to completely activate initially uninduced cells, whereas

it must decrease below 10μM to completely deactivate the initially induced cells. See S1 Text for parameter values.

https://doi.org/10.1371/journal.pcbi.1006051.g002
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Stochastic bistability in the absence of positive feedback requires extremely slow

operon-state switching. It is known that stochasticity can induce bistability that has no mac-

roscopic counterpart and such a noise-induced bistability, called stochastic bistability, arises

from slow gene-state switching [33, 38–43]. Theoretical chemists refer to this scenario as

“non-adiabatic”, which is analogous to slow-moving nuclei in quantum mechanical atoms,

which is also similar to the quasi-static regime of enzyme kinetics [44]. This phenomenon is

purely stochastic; i.e., there is no determinstic bistability in the mean-field model that describes

in vitro biochemical experiments with large amounts of purified chemicals involving the same

parameters.

However, in the absence of positive feedback, with the same parameters of wild-type cells,

we found that the stationary distribution was broad and did not exhibit distinct bistability (S3

Fig). This result implies that the operon-state switching inside a wild-type cell is not suffi-

ciently slow to exhibit bistability without positive feedback.

We introduce the dimensionless parameter ω (See Material and methods), which character-

izes the rate of switching among multiple gene states. Mathematically, ω can be defined as the

ratio of switching rates among different gene states with respect to the wild-type rates or the

protein decay rate. We choose the former, in which ω = 1 corresponds to the wild-type rates.

Further simulation showed that the switching rates among operon states must be at least 100-

1000 times slower than in the wild-type cells (ω = 0.01 − 0.001) in order to trigger purely sto-

chastic bistability in the absence of positive feedback (Fig 3A–3C), which is rarely possible.

Positive feedback and slow operon-state switching stabilize the induced and uninduced

states respectively. In the presence of positive feedback, it is beneficial to stabilize the

induced state as long as the extracellular inducer concentration is not too low, even when the

switching rates among operon states are within physiological regions (comparing Fig 3A and

3E with Fig 3D and 3F). In the induced state, the repressor is always fully dissociated from the

operon; once the operon is repressed, positive feedback keeps the intracellular inducer concen-

tration at a relatively high level; therefore, the repressor protein is forced to fully dissociate

from the operon rapidly, which stabilizes the induced state.

We calculated the mean transition time between the fully repressed operon state and the

fully dissociated operon state of wild-type cells, under an intracellular inducer concentration

that is very high (induced state) or quite low (uninduced state) (Fig 4). The main pathways

underlying the induced state and the uninduced state are different (Fig 4A and 4B). Under the

uninduced state, the mean transition time (the reciprocal of rate) from the fully repressed

operon state to the fully dissociated operon state is quite long (Fig 4C), which stabilizes the

uninduced state, and the mean transition time backwards is much shorter (Fig 4E). On the

contrary, the mean transition time back and forth between the fully repressed operon state

and fully dissociated state in the induced state is also much shorter, which implies that the sta-

bility of the induced state can not be guaranteed by the stochastic switching between different

operon states.

As the strength of stochasticity decreases, i.e. increasing the rates for stochastic switching

among operon states, the broadened parameter range for bistability in Fig 2F becomes nar-

rower and narrower, approaching the deterministic limit in Fig 2A (See S12 Fig). It is because

the rapid stochastic switching among operon states is not able to stabilize the uninduced state

any more outside the range of deterministic bistability. We also have tuned the strength of pos-

itive feedback, i.e. the parameter K, which is the equilibrium constant of the binding reaction

between the repressor and inducer. As the strength of positive feedback decreases, i.e. increas-

ing the parameter K, the capability of stabilizing the induced state also decreases (See S14 Fig).

Together, positive feedback and stochastic operon-state switching significantly broaden the

parameter range of bistability. When the extracellular inducer concentration is low, positive
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Fig 3. Positive feedback stabilizes the induced state. (A-C) Extremely slow operon-state switching is necessary to induce purely

stochastic bistability without positive feedback. (D-F) In the presence of positive feedback, the induced state is stabilized, and a bimodal

distribution emerges, even when operon-state switching rates are within the physiological region.

https://doi.org/10.1371/journal.pcbi.1006051.g003
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Fig 4. Major transit pathways and transition rates between fully repressed and fully dissociated operon states. (A, B) The major transit pathways

between fully repressed and fully dissociated operon states in the uninduced and induced phenotypic states. (C-F) Transition rates between fully

repressed and fully dissociated operon states in the uninduced and induced phenotypic states with very low and high intracellular inducer

concentrations respectively. The transition rates from the fully repressed operon state to the fully dissociated state in the uninduced phenotypic state

are the lowest, which stabilizes the uninduced state, even outside of the parameter range of deterministic bistability.

https://doi.org/10.1371/journal.pcbi.1006051.g004
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feedback cannot stabilize the induced state, whereas when the extracellular inducer concentra-

tion is high, positive feedback and slow fluctuations of operon states stabilize the induced and

uninduced states, respectively. This result explains why the broadened parameter range of bist-

ability can only be visualized on the right-hand-side of the deterministic bifurcation diagram

in Fig 2A.

Stochastic transition between different phenotypic states

In addition to the mechanism of the emergence of bistability, we also sought to quantitatively

investigate the transition rates between different phenotypic states and the more detailed

molecular mechanisms that trigger them.

How a single-molecule event determines the phenotype of a wild-type cell. There are

two kinds of bursts in the lac operon system: small bursts due to partial dissociation and large

bursts due to complete dissociation of the repressor from the operon. We confirmed previ-

ously reported experimental observations [3] (using the mathematical interpretations in the S1

Text and see S6 Fig): the size and frequency of small bursts are nearly independent of the intra-

cellular inducer concentration; and for large bursts, in the absence of positive feedback, size

always increases with the intracellular inducer concentration, while the frequency is invariant

under a low inducer concentration.

How does a stochastic single-molecule event (i.e., a large burst) trigger phenotype transi-

tion? Time traces of permease showed that the stochastic full dissociation of the repressor

from the DNA could either successfully trigger phenotype transition or return to the unin-

duced state before arriving at the induced state (Fig 5A). The positive feedback mechanism of

the wild-type cell can significantly amlify the large burst, which dramatically increases the

probability of transition from the uninduced to the induced state (Fig 5B and S7 Fig). We cal-

culated the probability of successful induction of single cells initially in the uninduced state

after a single-molecule event(i.e., the repressor completely dissociating from the operon), as a

function of the extracellular inducer concentration (Fig 5C). Once the extracellular inducer

concentration reached 40μM, we found that the probability of induction was nearly 80%.

We were also interested in the transition from the induced to the uninduced state. Once the

cell is induced, the intercellular concentration of the inducer is quite high, and the repressor

would always choose another pathway to dissociate rapidly from the operon (OR! O�R!
O�RIm! O in Fig 1C). These events make the induced state much more stable than the unin-

duced state, and contribute to much smaller fluctuations around the induced state than around

the uninduced state (Fig 4C and 4D). These predictions were also confirmed by our simulation

(S8 Fig).

Stochastic threshold, time scales and quasi steady states. Another important quantity in

a bistable system is the barrier or threshold between the two phenotypic states. The saddle

point of the mean-field model is generally regarded as the “deterministic” threshold, which is

an analog of the transition state in physical chemistry. In the presence of stochasticity, the defi-

nition of the threshold becomes vague.

Choi et al. measured the single-cell time traces of fluorescence, normalized by cell size,

starting from different initial permease numbers, and they plotted the probability of induction

within 3 hours as a function of the initial permease number [3]. Then the threshold is deter-

mined through a Hill-type function fitting.

However, the observed probability of induction in experiments is related to a quasi-steady

state rather than the final steady state, because it depends on the initial permease number

which is not a parameter but a dynamic variable of the system (Fig 2B in [3]). Because the tran-

sition rates between the different phenotypic states are low, the measured distribution is highly
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Fig 5. Probability of induction by a single large burst and quasi-steady state. (A)Two typical single-cell time traces

of permease levels. The first shows induction by a single full dissociation event of the repressor from the operon (left),

while the second shows a failure to induce (right). (B) The large burst size in the presence of positive feedback is

remarkably prolonged compared with the case without positive feedback. (C) Successful probability of induction by a

complete dissociation event as a function of the extracellular inducer concentration. (D-G) Probability of induction
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dependent on the time window of the experiments and the initial state. Using our model simu-

lation, we rebuilt the experimental observations. We plotted the fraction of induced cells with

different time windows starting from uninduced or induced cells (red and blue curves in Fig

5D–5G). The estimated threshold decreases with the extension of the experimental time win-

dow, and is different from the deterministic threshold predicted from the corresponding

deterministic mean-field dynamics. It is clear that these two curves approach the same hori-

zontal line over time, indicating that the final steady-state distribution is independent of both

the time window and the initial state of the cell population.

The difference between the quasi-steady state and the final steady state reveals why the

induced state dominates the final stationary distribution when the extracellular inducer con-

centration exceeds 40μM, according to estimated transition rates (data not shown), but it is

still possible to observe a distinct bimodal distribution at a reasonable time scale starting from

uninduced states when the extracellular inducer concentration exceeds 40μM (S2 Fig).

The difference between the quasi-steady state and final steady state increases in the region

of deterministic bistability as the rate of gene-state switching increases. For example, when the

gene-state switching rate is 100 times faster, within a certain time scale (time = 2000 min), cells

will not become induced if they start in the uninduced state. However, it does exist on the

other side of the deterministic threshold, whose stability could be clearly demonstrated if the

cells start in the induced state (S9 Fig).

Transition rates between phenotypic states and resonance phenomena. Once the gene-

state switching rates are not only slow compared to typical rates of active transcription and

translation, but also rapid compared with the time scale of cell division, a general rate formula

for phonotype transition in a fluctuating-rate model has been recently proposed [22]. The rate

formula is associated with the phenotypic landscape function, which is an analog of the energy

function at an equilibrium [22, 27, 39, 45–52].

The phenotypic landscape is defined as the negative logarithm of the steady-state probabil-

ity distribution pss(x) at the limit of infinite ω [22, 27, 39, 45, 47–50, 52], i.e.,

�ðxÞ ¼ lim
o!1
�

1

o
log pssðxÞ: ð1Þ

Here, ω serves as a Boltzmann factor [β = (kBT)−1] in thermal physics. However, this determin-

istic landscape ϕ(x) is not given a priori; it is an emergent property of the chemical kinetics of

a single cell. Furthermore, the most important feature of the function ϕ(x) is that the corre-

sponding mean-field deterministic dynamics in the large limit of ω, always decrease along ϕ(x)

(Fig 6A and 6B), which suggests that any local minimum of the function ϕ(x) corresponds to a

stable steady state of the deterministic model [22, 47]. Therefore, the necessary and sufficient

condition for deterministic bistability(i.e., two stable steady states predicted by the mean-field

model) is a double-welled deterministic landscape ϕ(x) (Fig 6A and 6B).

Although the landscape function is not easily obtained, the most important consequence is

the transition rate formula from the i-th phenotype to the j-th one [22], i.e.,

kij ’ k0
ije
� oVij ; ð2Þ

where the positive quantity Vij is referred to as the barrier term from the i-th phenotypic state

within different time windows starting from uninduced cells (blue) or induced cells (red); we determined the

stochastic threshold through mathematical fitting in the form of y ¼ xn
xnþKn for these curves. The deterministic threshold

is approximately 20(molec.), while the stochastic thresholds are larger and decrease when the time window is extended.

The extracellular inducer concentration, Ie, is set to 40μM.

https://doi.org/10.1371/journal.pcbi.1006051.g005
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Fig 6. Transition rates between phenotypic states and the phenomenon of resonance. (A) Phenotypic landscape ϕ(x) in the region of

deterministic bistability. (B) Phenotypic landscape ϕ(x) outside the region of deterministic bistability. (C) The rate formula (2) is valid for the

parameter region of deterministic bistability with the fitted positive barrier V12 = 0.0550. (D) When the switching rates among different gene

states are sufficiently rapid, the phenotype transition from the uninduced state to the induced state must occur through the accumulation of

many complete dissociation events, rather than through a single dissociation event in wild-type cells, within the parameter region of
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to the j-th phenotypic state, and k0
ij is a prefactor with units, all of which are independent of ω.

From a dynamic perspective, this formula could also be understood through Kramers’ rate the-

ory, in which ω$ (kBT)−1 is proportional to the reciprocal of the fluctuation amplitude, and a

small T and large ω both represent small fluctuations. Theoretically, in the case of bistability,

the barrier terms V12 and V21 in formula (2) are the minimum of the differences in the local

maximum and minimum values, respectively, of the deterministic landscape ϕ along any tran-

sition path between the two phenotypic states [22].

Formula (2) is valid within the parameter region of deterministic bistability when ω is large.

In this region, both phenotypic states are preserved within the large limit of ω. Additionally,

the forward and backward barriers between the phenotypic states are positive, and the transi-

tion rates therefore decrease exponentially with ω (Fig 6C). The transition rate from the

induced state to the uninduced state (* 10−7 min−1) is much lower than the forward transition

rate (* 10−4 min−1), which is beyond our computational capacity. However, due to established

mathematical theory [22, 53], the rate formula (2) is still valid.

We found that the simulated stochastic transit time from the uninduced state to the

induced state exhibited an exponential distribution (S11 Fig). Additionally, when the gene-

state switching rates were sufficiently rapid, the typical transition pathway from the uninduced

state to the induced one is not the same as that of the wild-type by a single-molecule event, but

due to the accumulation of many times of full dissociation events (Fig 6D).

Alternatively, in the parameter region of stochastic bistability, the two phenotypic states

merge within the large limit of ω, and the bimodal distribution gradually becomes unimodal

(S10 Fig). Thus, the transition between the two phenotypic states becomes relaxing towards

one unique phenotypic state. Accordingly, the transition rate increases with ω and reaches a

saturation value (Fig 6E), which is qualitatively different from the region of deterministic

bistability.

We then numerically calculated the mean transition time dependent on the parameter ω in

the parameter region of deterministic bistability when Ie = 25μM. We showed that the transi-

tion rate from the uninduced state to the induced state reaches a maximum when the gene-

state switching rates are around the wild-type values (Fig 6F), which is referred to as a resonant

phenomenon [27, 42]. This occurs because, according to the rate in formula (2), the transition

rate between phenotypic states decreases exponentially when gene-state switching is rather

rapid. Meanwhile, when gene-state switching is very slow, it becomes the rate-limiting step for

the phenotype transition, which is also extremely low.

Discussion

Only a single copy of a DNA molecule exists inside a typical cell. Hence, the stochastic dynam-

ics of a single cell resulting from the fluctuating kinetics of single DNA molecule are a conse-

quence of fundamental physical and chemical laws. Still, individual cells can control the

stochastic kinetics of DNA molecules over a reasonable time scale and fluctuations due to bio-

chemical reactions can be even advantageous. Recent high-precision measurements performed

in single cells have revealed that stochastic gene-state switching is slow compared to typical

rates of active transcription and translation. The fluctuating-rate model is a good candidate for

the investigation of single-cell dynamics in this region because it only incorporates the gene-

deterministic bistability. (E) The transition rate increases and is finally saturated when the operon-state switching rate increases in the region

of purely stochastic bistability. (F) The mean phenotype transition time varies with the operon-state switching rates at Ie = 25μM.

https://doi.org/10.1371/journal.pcbi.1006051.g006
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state switching mechanism. The present study reveals the power of this type of model, which

will be used to investigate other questions regarding single-cell dynamics.

We investigated the origin of the bimodal distribution of the lac operon in a realistic model

incorporating the recently discovered mechanism of operon-state switching. It has been

shown that either positive feedback or single-molecule fluctuations gives rise to bistability by

its own. However, we show here that the interplay of these two mechanisms makes the bimodal

distribution more realistic and reliable in the presence of environmental perturbations. With-

out positive feedback, the single-molecule kinetics of gene states are not sufficient slow, at least

in E. coli, to induce bistability, and without fluctuations of single DNA molecules, positive

feedback cannot stabilize the uninduced state when the extracellular inducer concentration is

high. The physiological region for the gene-state switching rates is therefore favorable and bal-

ances the two contradictory purposes of controlling stochasticity within a certain magnitude

and triggering phenotype transitions within a reasonable time scale.

The stochastic model can quantify the relative stability (fractions in a population) of coex-

isting phenotypes, which cannot be achieved using a deterministic approach. However, the

time scale of the stochastically triggered spontaneous phenotype transition is quite long, which

prevents direct laboratory measurement of the relative stability (given the time window of a

typical experiment), due to inconsistencies between a quasi-steady state and the final steady

state. Such inconsistencies also mean that the concept of the threshold is not well-defined in a

stochastic scenario, which is considerably different from the deterministic threshold predicted

from the deterministic mean-field model.

Recently, Razooky, et al. also investigated the interplay between positive feedback and rela-

tively slow gene-state switching kinetics in the transcriptional program controlling HIV’s fate

decision between active replication and viral latency, and found out that the positive feedback

shifts and expands the region of LTR bimodality [54]. However, the positive feedback in LTR

dynamics lacks cooperativity and cannot produce deterministic bistability by itself, which is

essentially different from the lac operon dynamics we studied here. Also the perspective we

used to explain the broadened bistability is different from [54]: their explanation more focused

on the mean-noise relation while ours more focus on the stability of each phenotypic states.

In many experiments, people used minimal media for cells at 37˚C, making the E. coli cells

grow slowly (doubling time is about one hour). In there experiments, a single copy or at most

two copies are reasonable. However, in a more natural environment, E. coli grows at most

commonly 20 − 30 minutes doubling time, which implies more copies of operons. Hence we

also simulate the case with more than one copy of operons (see Materials and methods), and

find out that the qualitative results are exactly the same as the case with only a single copy of

operon (S13 Fig).

On the other hand, in the main text, we model the lac operon under unnatural conditions,

i.e. using the unnatural lactose-analogue TMG, which is used in most of the experiments. We

also simulate the extended version of the model with lactose replacing TMG, in which an addi-

tional term representing the hydrolysis of allolactose is added (see Materials and methods).

Under steady-state condition of extracellular lactose, the results are quite the same as those

from the main model in which we use TMG (S15 Fig).

Finally, the notion of cell diversification of genetically identical phenotypes in biological

entities, due to stochastic gene expression, requires a mechanism for the inheritance of an

“intercellular biochemical” state through cell division. This issue has been discussed previ-

ously [55, 56]. Briefly, if the volume of a biochemical system doubles while maintaining

the same internal concentrations, the phenotypic state of the cell is maintained. Therefore,

the phenotype of a single cell can be preserved via growth and division into two daughter

cells. This epigenetic inheritance mechanism is based on dynamic biochemical self-
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organization, which is fundamentally different from the Watson-Crick genetic template-

copying mechanism.

Materials and methods

Model development

Mean-field deterministic model. The model consists of several differential equations that

account for the temporal evolution of mRNA (M), the LacY polypeptide (Y), and the intracel-

lular inducer concentration.

Here we take R to denote the concentration of the active (free) repressor while RT denotes

the total concentration of the repressor. Additionally Ie denotes the extracellular concentration

of thiomethyl β-D-galactoside (TMG), and I denotes the intracellular TMG concentration.

The kinetic equations for the lac operon are

R
RT

¼
K

K þ In
;

dM
dt

¼ kMpO � gMM;

dY
dt

¼ kYM � gYY;

dI
dt
¼ aklYbðIeÞ � gII þ cðIe � IÞ:

ð3Þ

where pO is the probability that the operon is free. Traditionally, pO is expressed as
a

1þ R
R0

¼ a KþIn

KþInþRTR0
K
, where a is the highest probability that can be archived when R = 0, and R0 is

the half saturation concentration of the repressor bound to TMG; however, after taking the

partial dissociation state into account in the present study, we believe that it should be modi-

fied (See Eq (6) and S1 Text). The Hill coefficient n is approximately 2 according to experi-

mental measurements [4]. Although there are 4 subunits in the repressor protein, K is the

equilibrium constant of the binding reaction between the repressor and inducer when not

bound to the operon. kM is the maximum transcription rate and γM represents the degradation

plus dilution rate. kY is the initial rate of translation for LacY transcripts. γY is the dilution and

degradation rate of LacY polypeptides.

The variable α, which has two values, 0 or 1, denotes whether LacY is replaced by Tsr and

positive feedback is absent. The inducer could diffuse into the cell quickly, even in the absence

of permease; therefore, we denote c as the diffusion constant due to the difference in the

inducer concentrations across the cell membrane. The inducer (TMG) could be also trans-

ported into the bacterium via a catalytic process in which permease plays a central role. Thus,

the inducer influx rate is assumed to be kIβ(Ie)Y. γI is the dilution and degradation rate of the

inducer. Here the form of β(Ie) is taken from [4],

bðIeÞ ¼ I0:6
e : ð4Þ

The first equation in Eq 3 indicates that the kinetics of the repressor binding to TMG are

rapid; thus its kinetics yield an instantaneous fraction of the free repressor to total repressor

(rapid-equilibrium assumption) [4, 30].

As the concentration of TMG varies, the system generates either one or two stable steady

states, with a saddle-node bifurcation that separates the two phases. The existence of two stable

steady states is in accord with the all-or-none phenomenon observed in both population and

single-cell experiments [3, 57], by which we mean that a cell can exist in only one of the two
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phenotypic states. The population behavior varies due to changes in the relative portion of the

two states, but no cell can exist in an intermediate state.

Single-molecule fluctuating-rate model. The mean-field approach neither explains the

most recent experimental observations nor is consistent with the proposed stochastic mecha-

nism [3]. Therefore we developed a stochastic model that incorporates the stochastic single-

molecule operon-state switching.

Most cells possess only one or two copies of any given gene. Hence, we separated the time

scales for operon-state switching and other evolutionary processes in the system, to introduce

a stochastic variable, η, which accounts for the regulation of transcriptional initiation by active

repressors. Single-molecule events(i.e., whether the operon is bound or unbound to a repres-

sor(s)) can be modeled by a simple Markovian jumping process (i.e., rate equations; see Fig 1B

and 1C).

The switching rates between different operon states in wild-type cells are estimated and

provided in the S1 Text. We multiply each gene-state switching rate in Fig 1B and 1C by a

non-dimensionalized number, ω, which describes how rapid the switching rates are compared

with the wild-type. The parameter ω plays a central role in the investigation of phenotype-tran-

sition in the main text.

In Fig 1B and 1C, O�R and O�RIm denote the partial dissociation state of DNA. Hence the

variable η is a stochastic trajectory that has only three values, 0, f and 1, which denote the tran-

scriptional levels when fully repressed (OR), partially dissociated (O�R and O�RIm) and

completely dissociated O, respectively.

Finally, we obtain a three-dimensional differential equation that contains the variable η
mentioned above.

dM
dt

¼ kMZ � gMM;

dY
dt

¼ kYM � gYY;

dI
dt
¼ aklYbðIeÞ � gII þ cðIe � IÞ:

ð5Þ

In addition, the term pO in the deterministic model (3) is the mean of η:

pO ¼ hZi ¼
1þ f ðK1½R� þ K1K3½R�InÞ

1þ K1½R� þ K1K3½R�In þ K1K2½R�
¼

K þ In þ f KK1RT þ
RT
K4
In

� �

K þ In þ KðK1 þ K1K2ÞRT þ
RT
K4
In
; ð6Þ

where Ki = ri/r−i. Each repressor head is a dimer and can bind 0, 1, or 2 inducer molecules, and

we set n’ 2 due to cooperativity [4].

Extended versions of the model

Several extended versions of the fluctuating-rate model have also been investigated: (1)

Without feedback: set α to be zero; (2) Without DNA loop: there is only two operon states

O and OR; (3) In the case of multiple operons: independent n operons coupled only through

the intracellular M, Y, I, and the corresponding cell division time is set to be 50/n minutes,

which makes the parameters rI = 0.012nmin−1 and rY is equal to 0.1 + rI; (4) Lactose replac-

ing TMG: a term � hyd � I
IþKI
� Y representing the hydrolysis of allolactose is added to the

right-hand-side of dI
dt. Simulated results from these extended versions are in the Supporting

Information.
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Quantifying bistability in the presence of stochasticity

We define the bimodal steady-state distribution as bistability in the presence of stochasticity.

However, it is quite time-consuming to obtain the exact steady-state distribution in simula-

tion, if it is bimodal. Luckily, if we only want to determine whether the steady-state distribu-

tion is bimodal or not, it is much easier. There is a fact that if the steady-state distribution is

unimodal, the simulated distribution will rapidly converge to the steady-state distribution,

while if the steady-state distribution is bimodal, the converging time is extremely long. Hence,

we can use the quasi-steady-state distribution and hysteresis response curves to determine

whether the system is bistable or not. We only need to simulate the system for a reasonably

long time, which is enough for making the system converge into the unimodal steady-state dis-

tribution if it is not bistable, or into the bimodal quasi-steady-state distribution if it is bistable.

Hysteresis response curve follows the same idea. After a reasonably long time, if the simulated

distributions starting from induced state or uninduced state can not merge together, then it

implies bistability.

Stochastic simulation method

We used the standard exact method to simulate the dynamics of the operon developed by

Doob, Bortz et al., and Gillespie [58–61]. See the Supplementary Material in [22] for details.

Supporting information

S1 Text. Mathematical derivations and calculations of parameters.

(PDF)

S1 Fig. A two-state model of the central dogma without feedback.

(TIF)

S2 Fig. Copy-number distributions for the permease protein in wild-type cells. We com-

pare the copy-number distribution of permease with different extracellular concentration of

inducers Ie and show that the Ie range of the bimodal distribution is much more broader than

that predicted in the deterministic bifurcation diagram(Fig 2A in the main text).

(TIF)

S3 Fig. Broad copy-number distributions for permease protein without positive feedback.

(TIF)

S4 Fig. Copy-number distributions for permease protein under different values of Ie when

kM is small.

(TIF)

S5 Fig. Copy-number distributions for permease protein under different values of Ie when

kM is large.

(TIF)

S6 Fig. Size and frequency of small and large bursts without positive feedback, dependent

on the extracellular inducer concentration.

(TIF)

S7 Fig. Copy-number distribution for the newly synthesized permease protein during a

single large burst with positive feedback, which is quite similar to exponential distribution.

(TIF)
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S8 Fig. Will a single repressor rebinding event trigger the phenotype transition from the

induced state to the uninduced state? The uninduction probability nearly vanishes when the

extracellular inducer concentration is only slightly larger than about 40μM.

(TIF)

S9 Fig. Copy-number distributions for the permease protein observed in the region of

deterministic bistability, varying with ω.

(TIF)

S10 Fig. Copy-number distributions for the permease protein observed in the region of

purely stochastic bistability, varying with ω.

(TIF)

S11 Fig. Nearly exponentially distributed transition time from the uninduced state to the

induced state in wild-type cells.

(TIF)

S12 Fig. Stochastic hysteresis response of the probability of induction when tuning the

strengths of stochasticity. Initial conditions: uninduced (blue line) or fully induced (red line)

cells with a period of T = 2000 min.

(TIF)

S13 Fig. Bistability with and without stochastic operon-state switching when the number

of operons are more than one. (A)(B) Deterministic bifurcation diagram for wild-type cells in

which the number of operons is 2 or 6. (C)(D) Deterministic bifurcation diagrams for the

repressor bound to the operon in the absence of a DNA loop with association constant that

equals 5 molec.−1. (E) (F) Stochastic hysteresis response of the probability of induction.

(TIF)

S14 Fig. Bistability with and without stochastic operon-state switching tuning the strength

of positive feedback. (A)(B) Deterministic bifurcation diagram tuning the strength of positive

feedback. (C-F) Stationary distributions when tuning the strength of positive feedback.

(TIF)

S15 Fig. Bistability with and without stochastic operon-state switching when the dynamics

of inducer is replaced by that of lactose. (A-D) Deterministic bifurcation diagram in which

the dynamics of inducer is replaced by that of lactose. (E) (F) Stochastic hysteresis response of

the probability of induction.

(TIF)

S1 Table. Values of kinetic parameters in the fluctuating-rate model.

(PDF)
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