
Received: 21 December 2021 Revised: 10 March 2022 Accepted: 24 June 2022

DOI: 10.1002/acm2.13726

MEDICAL IMAGING

Fully automated breast segmentation on spiral breast
computed tomography images

Sojin Shim1 Davide Cester1 Lisa Ruby1 Christian Bluethgen1

Magda Marcon1 Nicole Berger1 Jan Unkelbach2 Andreas Boss1

1Institute of Diagnostic and Interventional
Radiology, University Hospital of Zurich,
Zurich, Switzerland

2Department of Radiation Oncology,
University Hospital of Zurich, Zurich,
Switzerland

Correspondence
Sojin Shim, Institute of Diagnostic and
Interventional Radiology, University Hospital
of Zurich, Rämistrasse 100, CH-8091 Zurich,
Switzerland.
Email: Sojin.Shim@usz.ch

Abstract
Introduction: The quantification of the amount of the glandular tissue and
breast density is important to assess breast cancer risk. Novel photon-counting
breast computed tomography (CT) technology has the potential to quan-
tify them. For accurate analysis, a dedicated method to segment the breast
components—the adipose and glandular tissue, skin, pectoralis muscle, skin-
fold section, rib, and implant—is required. We propose a fully automated breast
segmentation method for breast CT images.
Methods: The framework consists of four parts: (1) investigate, (2) segment the
components excluding adipose and glandular tissue, (3) assess the breast den-
sity, and (4) iteratively segment the glandular tissue according to the estimated
density. For the method, adapted seeded watershed and region growing algo-
rithm were dedicatedly developed for the breast CT images and optimized on
68 breast images. The segmentation performance was qualitatively (five-point
Likert scale) and quantitatively (Dice similarity coefficient [DSC] and difference
coefficient [DC]) demonstrated according to human reading by experienced
radiologists.
Results: The performance evaluation on each component and overall segmen-
tation for 17 breast CT images resulted in DSCs ranging 0.90–0.97 and in DCs
0.01–0.08. The readers rated 4.5–4.8 (5 highest score) with an excellent inter-
reader agreement. The breast density varied by 3.7%–7.1% when including
mis-segmented muscle or skin.
Conclusion: The automatic segmentation results coincided with the human
expert’s reading.The accurate segmentation is important to avoid the significant
bias in breast density analysis. Our method enables accurate quantification of
the breast density and amount of the glandular tissue that is directly related to
breast cancer risk.
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1 INTRODUCTION

Breast cancer constitutes more than a quarter of cancer
occurrences among women and is the second cancer
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most frequently leading to a woman’s death.1 In order
to reduce the mortality rate by early cancer diagnosis
and prevention of late stage breast cancer development,
breast imaging technologies have been developed, and
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studies for assessing the breast cancer risk based on
those images have been conducted.

Previous studies widely observed a strong associa-
tion of breast density with increased breast cancer risk.
Breast density affects the risk of developing breast can-
cer in two different ways. First, the quantitative density
of the breast is directly interrelated to the breast cancer:
According to a recent study, the odds ratio for develop-
ing breast cancer for the most dense compared with the
least dense categories ranged from 1.8 to 6.0.2–4 Sec-
ond, dense breast tissue decreases the sensitivity of
mammograms by masking cancerous tissue.5

Although medical imagings, such as mammography,
ultrasonography (US), or breast magnetic resonance
imaging (MRI), rely on potentially quantifiable measures
of physical properties, such as cumulative attenua-
tion or reflection of the projected beams or polarized
atomic spin’s relaxation time, the images presented to
the reader are usually gray level images representing
the relative contrast of the signal. The contrast may be
nonlinear and may also be further distorted by additional
signal processing. Without additional tools, the breast
imagers can only roughly estimate the breast density.
For mammography and US, the breast density is only
visually assessed following the Breast Imaging Report-
ing and Data System (BI-RADS)’s classification by the
American College of Radiology.4 On breast MR images,
Yaffe,6 Wu,7 Gubern-Merida,8 and Dalmış 9 computa-
tionally estimated the breast density by calculating the
ratio of the number of voxels classified as the glan-
dular and adipose tissues after segmenting the breast
image based on the imaging signal intensity. However,
their density estimation solely relays on the segmented
two-class binary map comprising voxels in 0.5–1.6-mm
width assuming the image has only two discrete true
gray levels and ignoring the continuous gray level values
partially due to the partial volume effect in voxels.There-
fore,the estimated breast density by their methods might
substantially vary depending on the segmentation algo-
rithm applied as seen in the variation of the estimated
density of up to 10% in Ref.9

Spiral breast computed tomography (CT) equipped
with a photon-counting detector technology enables the
assessment of the quantitative density of each voxel
of the breast CT data.10 The image of breast CT
presents each voxel as the radiological density of the
tissue located in the corresponding voxel, expressed
in Hounsfield units (HUs). Despite the potential for the
quantitative assessment of breast density by means
of the breast CT, however, radiologists, due to the lack
of a suitable quantitative procedure, have so far only
qualitatively examined the images.

Segmentation of breast CT images is necessary to
properly assess the quantitative breast density. In addi-
tion, a segmentation procedure can further benefit the
diagnostic process and the quality control in several
ways:

1. It enables the automatic assessment of the individual
breast density.

2. It enables the calculation of the breast organ dose
of individuals and the dose coefficient for general
dose assessment in clinics by applying a Monte Carlo
radiation dose simulator.

3. The precise localization of the pectoral muscle and
skin may allow the automatic analysis of the position
of the breast and automatize quality control in spiral
breast CT examinations.

4. Breast population studies for several breast features
(e.g.,distribution of glandular tissue,amounts of glan-
dular tissue and skin, and presence of pectoralis
muscle and rib) can be automatically conducted.

Breast images can feature substantially varying struc-
tures and shapes as depicted in the coronal CT images
of breasts in Figure 1;some breast components,such as
the rib,pectoralis major muscle,additional skinfolds from
the thoracic or abdominal wall depicted by the breast
CT, and silicone implant, may appear in some images
but not in others. Their spatially varying appearance
caused by both nature and imaging artifacts and the
neighboring distracting structures present a challenge
for the locating and segmenting process. Further diffi-
culties lie in the physical connection of the glandular
tissue to the skin and pectoralis muscle, which makes
the separation of the tissues vague, the overlapping HU
distribution among the soft tissues making investigation
and separation among the nearby soft tissues difficult,
and the resolution degradation inherent in the imaging
system leading to the blurring of the components’ image
boundary.

We implemented a fully automated algorithm to per-
form the image segmentation and analysis on the
individual breast CT images. A pipeline of dedicated
algorithms was implemented to segment all possible
breast components regarding the previously mentioned
obstacles; the complete framework is defined by the
sequence of these algorithms. The method did not
require a time-consuming training on a large number of
manual labels by specialized human readers. The per-
formance of our breast segmentation algorithm on the
spiral breast CT images was evaluated by computing
the spatial overlap evaluation metrics for image seg-
mentation in comparison to manual segmentation by
two radiologists as a reference and by a five-point Likert
scale test conducted by five experienced radiologists.

2 METHODS

2.1 3D breast image by a novel breast
CT with photon-counting detector (PCD)
technology

All images presented in this paper are acquired with
a spiral breast CT system (nu:view, AB-CT—Advanced
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F IGURE 1 Eight exemplary spiral breast computed tomography (CT) images in coronal (top) and transverse or sagittal (bottom) planes

Breast-CT GmbH, Erlangen, Germany) equipped with
a CdTe PCD (Direct Conversion, Danderyd, Sweden)
applying an optimized image acquisition setup.9,10 All
spiral breast CT images used in this study are recon-
structed at 300 μm × 300 μm × 300 μm voxel size by
applying a soft kernel (Shepp–Logan) and a Feldkamp-
type filtered back projection algorithm.11 Each breast CT
image consists of 682 × 682 × (300–900) voxels with
the sagittal axis’ length depending on the length of the
breasts. The HU values were reliable across a variety
of conditions such as breast size or implant presence
except the area where artifacts appear.12–14

2.2 Dataset

The segmentation method was aimed to segment the
following soft tissues (1–5) and strongly absorbing
materials (6 and 7):

1. adipose tissue
2. glandular tissue
3. skin

4. pectoralis major muscle
5. skinfolds from the thoracic or abdominal wall
6. ribs
7. silicone implants

The method was developed on healthy breast CT
images from 68 preselected patients.Not all of these tis-
sues are present in every image. Every image contains
the skin with different thicknesses and the glandular and
adipose tissues in different proportions as an exam-
ple shown in Figure 1a,b. Seventeen of the preselected
datasets partly comprised the pectoralis major mus-
cle, and five among the breast CT scans exhibited rib
structures (e.g., Figure 1d,e). Folded skin sections were
included in the seven CT scans (Figure 1f,g).Ten breasts
had a silicone implant (Figure 1h). Only one breast
per patient was included in the preselection in order
to diversify the samples and avoid redundancy in the
analysis.

For the evaluation of the segmentation algorithm, 25
representative breast CT images were selected among
the ones who were not preselected in the develop-
ment set. Five breast images were chosen to represent
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F IGURE 2 Breast component segmentation by readers (top) and our automatic segmentation algorithm (bottom) for the pectoralis muscle
and skin (a) and (b) and skinfold section (c)

each BI-RADS’s mammographic density class: almost
entirely fatty, scattered fibroglandular density, heteroge-
neously dense, extremely dense. In addition, five breast
CT images of implanted breasts were included in the
test set. For the manual segmentation of each of skin,
pectoralis muscle, skinfold section, and silicone implant,
five breast CTs, including the corresponding objects,
were selected within the evaluation set.

2.3 Preliminary study on the HU values
of the breast components in the spiral
breast CT image

In order to adapt the HU values for the segmentation and
the breast density analysis,we analyzed the HU distribu-
tions of the components on in vivo breast CT images.We
acquired the reference HU values following three steps:
acquisition of the reference segmentation of human
reading for the components except the adipose and
glandular tissues, histogram analysis to separate the
components that were not segmented, and analysis of
the HU values of each component.

2.3.1 Reference manual segmentation by
radiologists

Third- and fourth-year radiology residents, referred to
as the readers A and B in the results, manually seg-
mented all the five tissues listed in Section 2.2 except
the glandular and adipose tissues—the skin, pectoralis
muscle, skinfold section, ribs, and silicone implants (see
Figure 2). Due to the complex structure of the glandu-
lar and adipose tissues and the mixed HU values of the
two tissues caused by the partial volume effect in a large

number of voxels, which may lead to a significant inher-
ent uncertainty in the manual segmentation, no manual
segmentation of these breast soft tissue components
could be conducted. In the manual segmentation pro-
cess, the radiologists used one medical image analysis
software, MIM Maestro (MIM Software Inc., Belgium).
The radiologists individually painted each component
slice by slice using a 2D brush with the aid of a thresh-
olding mask. The masking threshold was selected by
comparing the masked edge to the object’s visual edge
on the image by each radiologist. The reproducibility
of the manual segmentation was assessed by volume
overlap analysis between the two manually segmented
image matrices by the two radiology residents.

2.3.2 Histogram processing on HU values
of the adipose and glandular tissues

The breast tissue image data separated from the man-
ually segmented components in Section 2.3.1 exhibits
mixed HU values of glandular and adipose tissues
mainly due to partial volume effects. The mixed signals
shape the histogram as shown in Figure 3a (blue his-
togram), as an example. In order to analyze the pure
glandular and adipose tissue’s HU values, we applied
a volumetric median filter with a kernel in the size of
3 × 3 × 3 voxels that suppresses the mixed HU sig-
nals as seen in the green histogram. A threshold (black)
was applied in order to exclude the volume effects from
the HU analysis of the pure adipose and glandular tis-
sue. For the voxel value range below the threshold,
these voxels were not considered in the HU analy-
sis. Consequently, the two tissue histograms (red) were
acquired.
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F IGURE 3 Schematic Hounsfield unit (HU) distribution of the adipose and glandular tissue in a real breast computed tomography (CT)
image (a) and box-and-whisker diagram for the HU distribution of the breast components (b). In (b), the boxes represent the IQR, the red lines
the median, and the blue error bar 95% HU range.

TABLE 1 Breast components’ Hounsfield unit (HU) calibration

Component Counts Mean SD CV

Silicone 7.0E7 HUSi 𝜎Si 0.05

Rib 5.7E4 HURib 𝜎Rib 0.05

Pectoralis muscle 5.6E6 HUP.M. 𝜎P.M. 0.06

Skin 7.3E6 HUSkin 𝜎Skin 0.07

Glandular tissue 1.2E8 HUGland 𝜎Gland 0.02

Adipose tissue 4.7E8 HUFat 𝜎Fat 0.01

Abbreviations: CV, coefficient of variation; SD, standard deviation.

2.3.3 Standard HU measurement for each
component

The mean HU value of each component was computed
by the statistical analysis of the HU values from the
manually segmented components in Section 2.3.1 and
the HUs of the adipose and glandular tissue acquired
in Section 2.3.2. The number of voxels in the statistics,
parameterized mean (μ) and standard deviation (SD,
σ) of the distribution, and coefficient of variation (CV,
cv = 𝜎∕(𝜇 − Offset)) values are presented in Table 1.
Due to a confidentiality reason, the mean HU values
are parameterized. A schematic HU distribution of each
component is demonstrated in Figure 3b.The boxes rep-
resent the IQR, and the red lines do the median in the
box and whisker plots. The blue error bar represents the
95% HU range of the glandular tissue. The CV < 0.1
describes the precision of our HU measurements.

2.4 Fully automatic volumetric
segmentation and breast analysis method

The computational breast segmentation method for the
spiral breast CT images was developed and applied
on a computer having a central processing unit (Xeon
Processor E5-2620, Intel) and two graphics processing

units (Quadro 5000,NVIDIA).The segmentation method
was developed in Python programming language.

The sequence of our method to segment the spiral
breast CT images and to estimate the breast density
is shown in Figure 4. The framework is composed of
four main stages as follows. In each subsequent step,
the identified regions are removed from analysis except
the skinfold section. The skinfold section is excluded
from the glandularity analysis and segmentation of the
glandular tissue, but it was included in the rest of the
segmentation process.From the silicone implant to glan-
dular tissue, the order of the subsequence follows the
components’ HU values.

1. Applied to investigate the presence of the pectorals
muscle, skinfold section, rib, and silicone implant and
localize the seed region of each component.

2. Skin, pectoralis muscles and skinfold section, and
hard components are individually segmented and
separated by the breast soft tissue by applying
connected component analysis (CCA),15 adaptive
seeded watershed,16 and adaptive seeded region
growing17 algorithms. These algorithms are pre-
ceded by a thresholding step with thresholds
acquired from the preprocessing.

3. A preliminary estimation of the breast density is
estimated.

4. The breast soft tissue that has been separated from
the other components is further divided into glandular
and adipose tissues.

2.4.1 Investigation of presence and seed
region of components

Only a part of breast CT images depicts the pectoralis
muscle and non-breast fatty fold in the images, and
the shape and location vary by images. Additionally,
hard materials such as the ribs and silicone implants
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F IGURE 4 Framework of the proposed segmentation method

appear in a small number of breast CT images. Our
segmentation method investigated the presence of such
components and localized the seed as a first step before
applying the segmentation algorithms. The investigation
process depends on CCA in a binary image composed
of the respective component and other possible erro-
neous regions, which was generated by thresholding.
The threshold applied to acquire the respective binary
image is the mean of the reference HU of the target
and surrounding components calculated in Section 2.3.
The specific process for each component is described
as follows:

1. Skinfold sections: The method investigates the pres-
ence of skinfolds by scanning each slice of the binary

image from posterior to anterior direction applying
a 2D CCA. If more than one object is detected, it
labels the largest object as the seed of the breast.
An exemplary breast CT image with a detected seed
region of the skinfold section (red contour in the first
row) is presented in Figure 5a. The seed region is
expended to the volumetric region by duplicating the
two 2D matrices of the skinfold seed (red) and breast
(blue) toward posterior direction (the second row of
Figure 5a).

2. Rib and implants:As a preprocessing,an erosion filter
with a 5 × 5 × 5 kernel is applied on the respec-
tive binary image of ribs and implant. An exemplary
binary image of ribs before applying the filter is
marked as the green contour on top of the original
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F IGURE 5 Demonstration of segmentation algorithm’s process to investigate the seed region and segment the component accordingly
(from top to bottom) for the skinfold section (a), silicone and rib (b), pectoralis muscle (c), skin (d), and glandular tissue (e). First row: (a), (c), and
(d)—red contour represents the seed region; (b)—green contour the region to investigate the seed; (e)—green contour the confined region to
segment the glandular tissue. Second row: (a), (c), and (d)—red and blue contours represent the markers to apply the adaptive watershed
algorithm; (b)—red and blue contour the seeds of the respective objects; (e)—red paint the seed region. Third row: (a), (c), and (d)—red contour
represents the final segmentation of the object; (b)—red and blue contours the final segmentation of the respective objects; (e)—red and blue
paint together the final segmentation.

breast CT image in the first row of Figure 5b. A 3D
CCA is applied on the filtered binary image to mark
the respective seed regions of the implant (red con-
tour in the second row of Figure 5b) and ribs (blue
contours).

3. Pectoralis muscle: In order to distinguish the muscle
from the glandular tissue, a Gaussian denoise filter
with a 5 × 5 × 5 kernel was applied on a breast CT
image prior to the thresholding as seen in the first row
of Figure 5c as an example.The largest region of the
thresholded based on CCA is labeled as the seed of
the muscle (red contour).

2.4.2 Segmentation of components
except the adipose and glandular tissues

For the strongly absorbing materials, the final contours
were acquired by recovering the shape and volumes of
the seed by applying morphological filters (third row of
Figure 5b).

Every component of soft tissue apart from the adi-
pose and glandular tissues is successively segmented

by adaptive seeded watershed algorithms applying
specifically developed markers considering the geome-
try and morphology of the corresponding component. A
binary image applying the same threshold as (1) was
generated to calculate the distance matrix for water-
shed algorithm. The adaptive threshold is adapted to
preserve the resolution of the original image and the vol-
ume of the component. Each step of the segmentation
algorithm is described as follows:

1. Skinfold sections: The two seeds of the skinfold
and whole breast were adapted as the markers. By
applying the adaptive seeded watershed algorithm
on the distance matrix using the assigned seed and
markers, the method separates the skinfold from the
breast as seen in the third row of Figure 5a.

2. Pectoralis muscle: The marker was assigned as the
voxels having the distance ≥upper 40% (second row
of Figure 5c). The segmented muscle is presented in
the third row of Figure 5c by applying the watershed
algorithm with the given parameters.

3. Skin: The seed of the skin is labeled as the con-
tour of the binary image (first row of Figure 5d). In
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order to distinguish the skin from the glandular tissue
closely located or connected to the skin, our method
adapts the binary image data in two steps: It artifi-
cially increases the distance in the skin image voxels
by adding the background air voxels in the binary
image; and it cuts the milk ducts that are close to
the nipple and the areola area from the binary image,
by applying a not operator with a sphere centered
at the nipple tip with a diameter of 1.8 cm. On the
adapted binary image data, the method labels the
markers as the voxels having a distance larger than
the median distance of all voxels (see the second row
of Figure 5d).Finally,our method applies a watershed
algorithm and classifies the skin after substituting the
background air from and adding the cut milk ducts in
the segmented object (third row of Figure 5d).

4. Adipose and glandular tissue segmentation: Adipose
and glandular tissues are subsequently classified
after excluding the rest of the components (first row
of Figure 5e).

Optimization
We iteratively optimized and fine-tuned the parameters
of the algorithms and structural elements of the convo-
lutional filters on the 68 preselected breast images for
the implementation of the algorithm.

2.4.3 Quantitatively estimated individual
breast density

We quantitatively estimated individual’s breast den-
sity based on the mean HU value of the segmented
adipose and glandular tissues and the preliminarily con-
ducted HU measurement in Section 2.3. We linearly
interpolated the breast composition for the acquired
mean HU of the segmented tissues with the standard
HU values of the pure adipose and glandular tissues
acquired in Section 2.3.2. The HU-derived density was
applied as the reference density for the glandular tissue
segmentation algorithm.

2.4.4 Adipose and glandular tissues’
segmentation and volumetric breast density
estimation

Our adaptive region growing method is described as fol-
lows: (1) The seed of the glandular tissue was labeled
by thresholding with the HU value equivalent to the pure
glandular tissue (red in the second row of Figure 5e).
(2) By decreasing the threshold in a step size of 2.5%
of the glandular tissues’ HU value, the connected vox-
els in the threshold range are segmented. (3) The
percentage breast density based on the two-class seg-
mentation matrix is estimated. (4) The error rate of the
estimated volumetric segmentation-based breast den-
sity compared to the reference is computed. (5) The

algorithm iterates (2) and (3) until the absolute error
rate becomes the minimum. During the iterations, the
glands’ region grows to the surroundings (blue in the
third row of Figure 5e) from the seed (red). Each voxel
was probabilistically classified as glandular tissue with
regard to the average proportion of the glandular tissue
in the breast tissue volume and the relative distance to
the pure glandular tissue voxel.

2.5 Segmentation evaluation

2.5.1 Objective evaluations of automatic
segmentation quality and manual
segmentation reproducibility

The automatic segmentation algorithm’s performance
and the reproducibility in the manual segmentation
were evaluated by volume overlap evaluation metrics as
extensively used in the literatures18,19: Dice’s similarity
coefficient (DSC)20 and the difference coefficient (DC)
are defined as follows:

DC = |DA ∩ DB| ∕ (|DA |+|DB|) ∕2 (1)

DC = |DA ⊕ DB| ∕ (|DA |+|DB|) ∕2 (2)

where, in Equations (1) and (2), DA and DB denote
the two differently generated segmentation matrices,
|X| denotes the cardinality of the set X, ∩ is the
intersection of the two regions, and ⊕ is the area
subtracting the intersection from the union. For our
segmentation algorithm evaluation, DA and DB corre-
spond to the automatically and manually segmented
matrices of the object. For reproducibility assessment
of the manual segmentations, DA and DB denote the
two respective manually segmented matrices. An excel-
lent agreement occurs when DSC > 0.75 according to
previous morphological and statistical analyses.21,22

Because DSC has a restricted range of 0,1 and
is often evaluated to be close to 1 when a volume
with large voxels is computed, a logit transformed DSC
(LDSC) for the purpose of statistical inferences was
evaluated instead:

logit (DSC)= ln(DSC∕(1 − DSC)) (3)

In the monotone transformation, the domain of DSC,
0,1, is mapped to the unbound range (−∞,∞). The dis-
tribution of the logit transformed proportions for a large
dataset like our segmentation components (the skin,
pectoralis muscle, and the skinfold), which exhibit more
than 1.0E6 voxels per volume, the distributions of the
resulting LDSCs follow normal distributions.23 Statistical
tests to assess the significance in difference for normal
distributed data such as Student’s t-test can be applied
for LDSC.
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Each segmentation contour by the readers A and B
and our automatic method is denoted as A, B, and C,
respectively. To assess the reproducibility of the manual
segmentation, the DSC and DC between the A and B
were computed. The comparison is denoted as AB. An
example segmentation comparison is presented in the
first row in Figure 2.The automatic segmentation’s qual-
ity was assessed by evaluating the metrics of C (second
row in Figure 2,as an example) to A and B.The compar-
isons are denoted as CA and CB. The DSC and DC of
AB, CA, and CB were computed for the five images per
each of the skin, pectoralis muscle, and skinfold. The
compatibility between the reproducibility (AB) and the
difference between our automatic and manual segmen-
tations (CA and CB) were evaluated by pair-wise t-tests
on the LDSC values.

2.5.2 Subjective segmentation quality
evaluation: Likert scale

As a commonly used metric for image quality
assessment,24 we assessed the segmentation per-
formance for the 25 breast CT images by a five-point
Likert scale (1 = poor, 2 = fair, 3 = moderate, 4 = good,
and 5 = excellent). Five experienced radiologists having
15, 8, 8, 4, and 3 years of experience in breast imaging
individually read the segmented breast CT images and
categorized the segmentation quality of each following
object and the overall image in comparison to the cor-
responding breast CT images: the fibroglandular tissue,
skin, pectoralis muscle, rib, skinfold section, and silicone
implant.

The interobserver agreement was assessed by com-
puting Cronbach’s alpha (𝜌T ) test25,26 for the evaluation
score of each object and overall segmentation quality.
Cronbach’s alpha was calculated following the formula
when Xi denotes the observed score of the item i,k total
item, and X the sum of all items in the test. 𝜎2

i is the
variance of Xi , and 𝜎2

X consists of time variances and
inter-time covariance:

𝜌T =
k

k − 1

⎛
⎜⎜⎝
1 −

∑k
i = 1 𝜎

2
i

𝜎2
X

⎞
⎟⎟⎠

(4)

2.6 Breast density estimation error
assessment

The possible quantitative bias in the breast density esti-
mation induced by the inappropriately segmented skin,
pectorals muscle, and skinfold section in comparison to
the true glandularity,excluding the other soft tissues,was
simulated. The error rate of the breast density estima-
tion due to the mis-segmentation of the component was
compared to the error between the estimated breast

densities based on the HU value and the segmentation
using our algorithm.

3 RESULTS

3.1 Evaluation of reproducibility for
manual segmentations in breast CT
images

The volume overlap metric analyses of the segmenta-
tions by the two readers, readers A and B, for the skin,
pectoralis muscle, and skinfold were collected as seen
as values of AB in Tables 2–4. The overall DSC and DC
were 0.95 ± 0.02 and 0.04 ± 0.03, respectively, which
represents an excellent overlap.21,22

3.2 Evaluation of breast component’s
presence investigation

Among the images in the evaluation set successfully
segmented by our method, the segmentation result of
the eight representative patient cases in Figure 1 is pre-
sented in Figure 6. Our segmentation method depicted
every component that additionally appears in the breast
CT images besides the glandular and adipose tissues
and skin: the pectoralis muscle, rib, skinfold, and silicone
implant. Our CCA was able to investigate ambiguous
cases: non-breast skinfolds attached to the breast (e.g.,
Figures 2c and 6f); multiple ribs besides the silicone
implant (Figure 6h); and pectoralis muscle that appears
with a compact gland mass (Figures 2a,b and 6c).
The denoise preprocessing step allowed the CCA to
distinguish the compact glandular tissues from the
pectoralis muscle.

3.3 Evaluation of strongly absorbing
component segmentation

The radiologists evaluated the segmentation of the ribs
and silicone implants as 4.8 ± 0.4 and 4.9 ± 0.4, respec-
tively, in a five-point Likert scale. The assessment result
in five-point Likert scale for each component’s seg-
mentation is presented in Figure 7. Cronbach’s alpha
coefficients among the evaluations by the five raters for
550 objects were 0.83, which infers that the inter-reader
reliability in the evaluation was excellent (𝜌T > 0.8).

3.4 Evaluation of soft tissue
component segmentation by adaptive
seeded watershed algorithm

The histogram-based markers allowed accurate seg-
mentation of the skin and pectoralis muscle in close
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TABLE 2 Dice similarity coefficient (DSC) computation results

AB C(AB)
Result IQR Result IQR

Overall 0.95 [0.91–0.98] 0.04 0.94 [0.86–1.00] 0.10

Skin 0.94 [0.91–0.97] 0.04 0.89 [0.86–0.91] 0.00

Pectoralis muscle 0.94 [0.91–0.96] 0.05 0.94 [0.88–0.99] 0.04

Skinfold section 0.96 [0.94–0.98] 0.03 0.99 [0.97–1.00] 0.00

TABLE 3 Difference coefficient (DC) computation results

AB C(AB)
Result IQR Result IQR

Overall 0.04 [0.00–0.14] 0.06 0.06 [0.00–0.13] 0.09

Skin 0.05 [0.04–0.07] 0.03 0.09 [0.06–0.12] 0.05

Pectoralis muscle 0.08 [0.01–0.14] 0.10 0.07 [0.00–0.02] 0.08

Skinfold section 0.00 [0.00–0.01] 0.00 0.01 [0.00–0.02] 0.01

TABLE 4 Logit transformed Dice similarity coefficient (LDSC) computation results

AB C(AB)
Result IQR Result IQR

Overall 2.99 [2.25–4.13] 0.74 3.25 [1.84–5.32] 2.37

Skin 2.85 [2.25–3.37] 0.72 2.09 [1.84–2.36] 0.04

Pectoralis muscle 2.78 [2.33–3.28] 0.85 2.88 [2.02–3.58] 0.75

Skinfold section 3.34 [2.79–4.13] 0.75 4.79 [4.39–5.32] 0.56

F IGURE 6 Segmented breast computed tomography (CT) images corresponding to the respective examplary images [a-h] in Figure 1
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F IGURE 7 Subjective evaluation result in five-point Likert scale

contact to the fibroglandular tissue. The skin was seg-
mented with the original thickness, which differs in
each breast and even substantially varies within the
same breast. The pectoralis muscles having various
structures from a typical round shape with clear bor-
der (Figure 6e,f ) to a scattered shape with irregular
border (Figure 6d) or a structure connected to the
glandular tissue (Figures 2a,b and 6c,g) were pre-
cisely segmented. The method generated an agreeable
separation of the skinfold from the breast when they
are attached (Figures 2c and 6f). In images having a
minor deformation such as a partial moving artifact,
our segmentation method performed without a major
malfunction in the segmentation process or inadequate
segmentation.

Our computational segmentation method showed
an excellent overlap with the reference segmenta-
tion by the human readers.21,22 The DSC and DC
analysis on the skin, pectoralis muscle, and skin-
fold segmentation (CA and CB combined) resulted in
0.94 ± 0.02 and 0.05 ± 0.05, respectively (C(AB) in
Tables 2–4). The volumetric overlaps between the auto-
matic and the manual segmentations (CA and CB)
and between the manual segmentations (AB) were not
significantly different. The paired t-tests on the LDSC
values resulted in 0.452 and 0.926 for the compari-
son between CA and AB and between CB and AB,
respectively. The null hypothesis that the LDSC of
the paired sets come from normal distributions with
equal mean was not rejected. The subjective evaluation
by the human raters also resulted as good to excel-
lent for the three soft tissue components. The score
in the five-point Likert scale was 4.6 ± 0.5 for skin,
4.7 ± 0.6 for pectoralis muscle,and 4.8 ± 0.4 for skinfold
section.

3.5 Evaluation of the glandular tissue
segmentation: adaptive region growing
algorithm

Our adaptive region growing algorithm successfully seg-
mented the glandular tissue while conserving the quan-
titative volumetric segmentation-based density close
to the density of the reference evaluation. In the
histogram-based probabilistic segmentation adapting
the information of the fibroglandular structure,the partial
volume effect and system blurring was well addressed,
and the ring and radial line artifacts were excluded. The
segmentation quality on the glandular tissue was rated
as 4.5 ± 0.7 in five-point Likert scale by the five experts
(Figure 7).

3.6 Quantitative breast density
estimation

Four variables of the breast density estimated by the
segmentation method are plotted in Figure 8a as a
function of the HU-derived breast density acquired in
Section 2.4.3: (1) without any mis-segmentation, includ-
ing (2) the skin, (3) pectoralis muscle, or (4) skinfold
section as the glandular tissue. The results of the sta-
tistical analysis on corresponding estimation differences
to the HU-derived values are presented in Table 5 and
a box-and-whisker diagram, as shown in Figure 8b.
The error rates between the volumetric segmentation-
based and HU-derived breast density estimations were
1.2% ± 1.6% in average. The skin and pectoralis mus-
cle inclusion in the breast density estimation induced
7.1% ± 3.7% and 3.7% ± 4.7% of significant bias,
respectively (p < 0.05), whereas the skinfold inclusion
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F IGURE 8 Glandularity plot (a) and box-and-whisker diagram (b) of the estimated glandularity differences compared to the correct
Hounsfield unit (HU)-derived estimation and the volumetric segmentation-based estimation or the erroneous HU-derived estimation with the
mis-segmented skin, pectoralis muscle, or skinfold section.

TABLE 5 Estimated glandularity differences between the correct
Hounsfield unit (HU)-derived estimation and the volumetric
segmentation-based estimation or the erroneous HU-derived
estimation with the mis-segmented skin, pectoralis muscle, or
skinfold section (%)

Mean [Min–Max] IQR

Volumetric −1.2 [−5.2−0.0] 2.03

Skin incl. 7.1 [2.3–19.1] 4.38

Muscle incl. 3.7 [0.0–18.1] 5.41

Fold incl. 0.4 [0.1–0.5] 0.26

did 0.4% ± 0.2% in the segmentation-based breast
density.

3.7 Processing time of the
computational and manual segmentations
for breast CT images

The segmentation method took in average 12.8 ±

10.1 min of computational time per a spiral breast
CT image when no silicone implant is present and
20.9 ± 5.5 min when an implant is included in the
dataset. The radiologists took about 250 min per breast.
The operation time in each component’s segmentation
by the automatic and manual segmentation is presented
in Table 6.

4 DISCUSSION

We propose here for the first time a fully automated
segmentation method that can be applied to individ-

ual spiral breast CT datasets. The presented method
is a combination of deterministic and probabilistic
model image processing and analysis techniques. The
method consists of four main steps: investigation of
the breast components and localization of the seeds;
segmentation of the breast component apart from the
adipose and glandular tissues; quantitative breast den-
sity estimation; and glandular tissue segmentation. The
qualities of automatic segmentations of breast compo-
nents were evaluated by five experienced radiologists
in a five-point Likert scale with inter-reader reliability
test based on Cronbach’s alpha test. The segmentation
of the skin, pectoralis muscle, and skinfolds were com-
pared to manual segmentations by two radiologists by
computing DSC and DC. Overall, qualitative and quan-
titative results show that the obtained segmentations
were equivalent to the reference standard of human
reading: 4.7 ± 0.5 (good–excellent) in a five-point
Likert scale with an excellent inter-reader agree-
ment (𝜌T > 0.8) and 0.94 ± 0.04 in DSC evaluation.
The DSCs of the skin, pectoralis muscle, and non-
breast fatty folds were 0.89 ± 0.08, 0.94 ± 0.04, and
0.99 ± 0.01, respectively. In the skin, pectoralis muscle,
and skinfold segmentation, the automatic and manual
segmentations were not significantly different from the
reproducibility between two manual segmentations as
seen in the t-test results on LDSC values.

The method automatically localized the seed of the
skin and each additional component by applying the
preprocessing, CCA, despite the image noise and over-
lapping HU distributions between the soft tissues.During
the preprocessing, our method did not require parabolic
correction or image normalization that involves addi-
tional uncertainties in the gray level in the segmentation
thanks to the reliable HU values, unlike the method
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TABLE 6 Computation time

Total Gland Skin Muscle Rib Skinfold Silicone

Without silicone Mean 12.8 3.0 8.3 2.1 0.2 0.3 –

SD 10.1 6.9 3.9 0.8 0.1 0.2 –

With silicone Mean 20.9 1.3 7.8 10.7 0.3 – 1.1

SD 5.5 0.7 1.7 5.0 – – 0.2

Abbreviation: SD, standard deviation.

requiring such preprocessing steps for cone-beam
breast CT (CBCT)27 and MR7–9,18,28 images. Thanks
to the robustness of the adaptive seeded watershed
algorithms, our method segmented the skin and pec-
toralis muscle adapting inter- and intra-patient variability
in shape for individual patient despite the surrounding
or physically connected glandular tissue. A new adap-
tive region growing algorithm classified the glandular
tissue by applying the average breast density for the
voxel-wise probability. In the glandular tissue segmenta-
tion,purely histogram-based probabilistic methods,such
as the expectation maximization (EM) algorithm, were
excluded in our segmentation method in order to take
the relative location to the seed gland voxel and the
macroscopic glandularity into consideration.

One of the main contributions of this paper is to
compute the quantitative and reader-independent den-
sity for the first time from the HU values of the breast
image excluding the skin,pectoralis,and non-breast fatty
fold. We demonstrated the erroneously segmented skin
or pectoralis muscle could cause a significant bias in
the breast density estimation by artificially increasing
the density. Mis-segmentation of the skin and pectoralis
muscle induced 7.1% ± 3.7% and 3.7% ± 4.7% bias
in average and 19.1% and 18.1% in maximum, respec-
tively, in the quantitative breast glandularity estimation.
For a further breast density estimation study on a large
patient cohort, appropriate segmentation of the pec-
toralis muscle that appears in 57% of breast CT scans29

is necessary to avoid 3.7% ± 4.7% uncertainty.
Various breast segmentation methods have been

implemented for MRIs and CBCT. The whole breast
volume segmentation on MRIs resulted in the DSC in
the range of 0.93–0.96 by applying an edge extrac-
tion filter combined with the candidate evaluation,18

probabilistic atlas method,8 depth field modeling with
self -adaptation features,28 or CNN model, U-net.9 The
DSC in comparison with an expert-outlined refer-
ence for the CWL (pectoralis muscle for spiral breast
CT) by Gubern-Merida’s method using an atlas-based
approach resulted in 0.75 ± 0.09.8,30 Caballo,31 Yang,32

and Packard27 introduced a glandular tissue segmen-
tation method on CBCT image using an unsupervised
algorithm, modified fuzzy C-mean classification, and
two mean clustering. Caballo’s method resulted in DSC
of 0.90–0.95. For breast MRI, Wu,7 Gubern-Merida,8

and Dalmış9 proposed the glandular tissue segmenta-
tion method by applying the atlas-aided fuzzy C-mean
method, the EM, and U-net, respectively. The DSC of
the fibrogland segmentation resulted for Wu’s method
in the range of 0.61–0.69,21,22 and for Gubern-Merida
and Dalmış’s in the range of 0.80–0.85, respectively.

As Refs.9,31 proposed to apply a CNN method for the
whole breast segmentation in MR image, the use of a
CNN is a recent trend that has shown success in image
analysis. The time required to manually generate the
segmented datasets for the complex fibroglands in the
high-resolution datasets of 684× 684× (600–1000) vox-
els, however, is still a limiting factor of this technique.
Our adaptive region growing algorithm’s computation
time was 3.0 ± 6.9 min per breast, which is substantially
faster than other methods that take similar time for MRI
images of a relatively smaller data size.7–9

Our study has several limitations. First, the number
of test image datasets evaluated was limited. In order
to cope with the limitation and reduce the potential
bias, the selection of test dataset included a variety of
breast structure, and an equal number of imager sets
were selected from each of the four BI-RADS density
classifications. Second, due to the design of the seg-
mentation workflow, the deterministic method can be
sensitive to major breast deformations and cannot dis-
tinguish pathological lesions in the breast during the
segmentation. In the case of a partly resected breast, for
example, erroneous glandular tissue segmentation may
occur when the scar from surgery extends deeply into
the breast. A pathological mass or microcalcifications
presented in the image may be classified as glandu-
lar tissue or skin. The limiting factors of our method
could overcome with integration with a CNN.Third, there
is an uncertainty in the HU analysis for the adipose
and glandular tissue, because a median filter tends to
bias histograms toward the middle. The bias due to the
application of a median filter might need to be further
investigated.

The proposed segmentation method can in principle
be applied as a standalone tool, for example, to provide
the description of individual breast tissue structures and
complement existing software in the clinical workflow.
The current processing time for a complete breast seg-
mentation ranges between 10 and 15 min and, therefore,
is compatible with the typical duration of an examination.



14 of 15 SHIM ET AL.

Using the relevant components’ localization and size
assessment, the CT image acquisition quality and the
quantitative breast density can be assessed on site.
Another potential application of our automatized breast
segmentation lies in further studies, such as the epi-
demiological assessment of breast densities and the
analysis of the effective dose based on the segmented
breast images for a large cohort. Our method provides
the geometrical distribution of glandular tissue and skin
that substantially affects the effective organ dose due
to the concave radiation distribution14,33 and enables a
reliable effective dose analysis.

We proposed a fully automated segmentation method
for spiral breast CT. The method segmented adipose
and glandular tissue, skin, pectoralis muscle, ribs, skin-
fold section depicted from abdominal or thoracic wall,
and silicone implant and estimate the quantitative breast
density. The automatic segmentation results coincided
well with the human expert’s reading. The result of
the segmentation and breast density estimation demon-
strated that an accurate segmentation is important to
avoid a significant bias in breast density analysis. Our
method enabled accurate quantification of the breast
density and amount of the glandular tissue that is
directly related to breast cancer risk.
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