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Abstract

Pro- and ant-inflammatory effects of IFN-γ have been repeatedly found in various immune 

responses, including cancer and autoimmune diseases. In a previous study we showed that the 

timing of treatment determines the effect of adenosine-based immunotherapy. In this study we 

examined the role of IFN-γ in pathogenic Th17 responses in experimental autoimmune uveitis 

(EAU). We observed that IFN-γ has a bidirectional effect on Th17 responses, when tested both in 
vitro and in vivo. Anti-IFN-γ antibody inhibits Th17 responses when applied in the initial phase of 

the immune response; however, it enhances the Th17 response if administered in a later phase of 

EAU. In the current study we showed that IFN-γ is an important immunomodulatory molecule in 

γδ T cell activation, as well as in Th17 responses. These results should advance our understanding 

of the regulation of Th17 responses in autoimmunity.
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INTRODUCTION

IFN-γ production is a hallmark of the T helper (Th)1 response (1, 2). As a key player 

in cellular immunity, IFN-γ is capable of orchestrating numerous immune responses 

in infections and cancers. It immunomodulates antigen processing and presentation (3), 

increases leukocyte trafficking (4), induces anti-viral responses (5), boosts anti-microbial 

functions (6, 7) and affects cellular proliferation and apoptosis (8). Although the major 

source of IFN-γ in adaptive immune responses is T cells (9), various innate cells such as 

NK/NKT cells (2, 10), macrophages (11, 12), dendritic cells (13–15) and γδ T cells (16, 

17) are capable of producing IFN-γ. Indeed, in the initiation stage of autoimmune diseases, 

innate cells such as NK cells are the main source of IFN-γ production (18), albeit transiently 

(2).

IFN-γ has either pro- or anti-inflammatory effects in various immune responses, including 

cancer and autoimmunity (18–22). The earlier finding that IFN-γ inhibits Th17 responses 

(23, 24) suggested that neutralization of IFN-γ would elicit stronger Th17 responses 

(25, 26). Because we previously found that adenosine-based immunotherapies are strictly 

“timing dependent” (27, 28), we wished to investigate whether immunomodulation by 

treatments other than adenosine or adenosine receptors also might depend on the timing of 

treatment. In our previous study, we found that treatment of mice with induced experimental 

autoimmune uveitis (EAU) with adenosine deaminase (ADA), an enzyme that degrades 

adenosine, inhibited Th17 pathogenic T cell responses and suppressed EAU (27). The 

inhibitory effect of ADA was restricted to the active stage of disease; but ADA was 

ineffective if administered during the quiescent disease stage (27). Likewise, treatment of 

EAU-induced mice with an antagonist specific for adenosine receptor A2AR only inhibited 

EAU if given during the active phase of intraocular inflammation (28). We investigated 

the effect of adding anti-IFN-γ antibody to in vitro responding T cells and EAU-induced 

mice at different time points to determine whether IFN-γ has a regulatory effect on Th17 

responses, and whether a similar timing effect might be identified. Our results demonstrated 

that anti-IFN-γ antibody inhibited Th17 responses if provided during the initial phase of T 

cell activation (i.e., the early phase of EAU induction). However, the effect was reversed 

once T cell activation was initiated in vitro or when anti-IFN-γ antibody was administered 

to EAU-induced mice in a later phase of EAU induction.

Our previous studies showed that activation of γδ T cells closely correlated with augmented 

Th17 responses (29–32). Therefore, we also examined the effect of anti-IFN-γ treatment 

on γδ T cell activation. Anti-IFN-γ treatment during the early phase of EAU induction 

inhibited γδ T cell activation, whereas treatment during a later phase of EAU induction 

enhanced γδ T cell activation similar to the Th17 responses. Thus, in the current study we 

showed a “timing effect” for IFN-γ similar to that of adenosine-based immunotherapy in 

EAU (27, 33).
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MATERIALS AND METHODS

Animals and Reagents

Female C57BL/6 (B6), TCR-δ−/−, and IFN-γ−/− mice were purchased from Jackson 

Laboratory (Bar Harbor, ME, USA); 12- to 16-week-old mice were used in all studies. 

All mice were housed and maintained in the animal facilities of the University of California 

Los Angeles. All protocols in this study were approved by the Committee on the Ethics 

of Animal Experiments of University of California, Los Angeles (IACUC permit number: 

ARC#2014-029-03A), in compliance with the Guide for the Care and Use of Laboratory 

Animals published by the US National Institutes of Health.

Recombinant murine IFN-γ, and IL-23 were purchased from R & D Systems (Minneapolis, 

MN, USA). FITC-, PE-, or allophycocyanin-conjugated Abs against mouse CD3, CD4, 

Foxp3, αβ TCR, or γδ TCR (GL3) and their isotype control Abs were purchased from 

Biolegend (San Diego, CA, USA). PE-conjugated anti-mouse IFN-γ (XMG1.2), IL-17 

(TC11-18H10.1) Abs were purchased from Santa Cruz Biotechnology (Dallas, TX, USA).

EAU Induction and Anti-IFN-γ Treatment

EAU was induced in B6 mice by s.c. injection of 200 μl of emulsion containing 200 μg 

of human interphotoreceptor retinoid-binding protein (IRBP)1–20 (Sigma-Aldrich, St. Louis, 

MO, USA) in CFA (Difco, Detroit, MI, USA) at six spots at the tail base and on the flank, 

and by i.p. injection with 300 ng of pertussis toxin. Mice were then examined three times a 

week until the end of the experiment (d 30 post-immunization).

For in vivo administration of IFN-γ, immunized B6 mice were randomly divided into 

three groups (n=6), one of which received an i.p. injection of anti-IFN-γ (100 μg/mouse) 

at d 0 (day of immunization and the second at d 8 post-immunization. The mice in the 

control group received PBS. At d 13 post-immunization (the time at which the highest T 

cell response is seen), responder T cells were purified from the spleen and draining lymph 

nodes stimulated in vitro with the immunizing peptide and APCs (irradiated spleen cells) 

under culture conditions that favor Th17 or Th1 autoreactive T cell expansion (medium 

containing 10 ng/ml of, respectively, IL-23 or IL-12) (24, 25) A schematic procedure of 

disease induction and examination of mice under investigation is shown in Scheme 1.

Adoptive Transfer Assay Testing Uveitogenic Activity of IRBP-Specific T Cells

IRBP-specific T cells were prepared as we previously described (29). Briefly, CD3+ T cells 

from IRBP1–20/CFA-immunized B6 mice were isolated 13 d postimmunization. Then 1 × 

107 cells in 2 ml of RPMI medium in a 6-well plate (Costar) were stimulated with 20 μg/ml 

of IRBP1–20 in the presence of 1 × 107 irradiated syngeneic spleen cells as APCs. After 

2 d, the activated lymphoblasts were isolated by gradient centrifugation on Lymphoprep 

(Robbins Scientific, Mountain View, CA, USA). The pathogenic activity was determined 

after transfer of the IRBP-specific T cells to the naïve B6 recipient mice via i.p. injection (2 

× 106/mouse).
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EAU Evaluation

The mice were examined three times a week for 30 d post-immunization. The clinical signs 

of EAU were evaluated using fundoscopic examination. Fundoscopic grading of disease was 

performed using the scoring system described previously (34).

At 30 d post-immunization, the mice were euthanized, and the eyes were collected for 

histological examination. For histology, whole eyes were collected at the end of the 

experiment and prepared for histopathological evaluation. The eyes were immersed for 1 

h in 4% phosphate-buffered glutaraldehyde, then transferred to 10% phosphate-buffered 

formaldehyde until they were processed. Fixed and dehydrated tissues were embedded in 

methacrylate, and 5 μM sections were cut through the pupillary-optic nerve plane and 

stained with H&E. The eyes were fixed overnight at 40C in Davison’s solution and then 

processed as paraffin-embedded blocks.

T Cell Preparation

Responder CD3+ T cells were purified from B6 mice immunized with the human IRBP1–20 

peptide (29, 31, 35). Nylon wool-enriched splenic T cells from naive or immunized mice 

were incubated sequentially for 10 min at 4°C with FITC-conjugated anti-mouse γδ TCR 

or αβ TCR Abs and for 15 min at 4°C with anti-FITC Microbeads (Miltenyi Biotec GmbH, 

Bergisch Gladbach, Germany). The cells were then separated into bound and non-bound 

fractions on an autoMACS™ separator column (Miltenyi Biotec GmbH). To obtain a 

sufficient number of cells, we routinely pool the cells obtained from all six mice in the 

same group, before the T cells are further enriched using MACS column. The purity of the 

isolated cells, as determined by flow cytometric analysis using PE-conjugated Abs against 

αβ or γδ T cells, was >95%.

Assessment of Th1 and Th17 Polarized Responses

Responder CD3+ T cells (3 × 106) were co-cultured for 48 h with IRBP1–20 (10 μg/ml) 

and with irradiated spleen cells (2 × 106/well) as APCs in a 12-well plate under either 

Th17 polarized conditions (culture medium supplemented with 10 ng/ml of IL-23) or Th1 

polarized conditions (culture medium supplemented with 10 ng/ml of IL-12). The responder 

αβ T cells were collected from IRBP1–20-immunized B6 mice, on d 13 post-immunization. 

Forty-eight hours after stimulation, IL-17 and IFN-γ levels in the culture medium were 

measured using ELISA kits (R & D Systems) and the percentage of IFN-γ+ and IL-17+ 

T cells among the responder T cells was determined by intracellular staining after 5 d of 

culture, followed by FACS analysis, as described below (31, 36).

Immunofluorescence Flow Cytometry for Surface and Cytoplasmic Antigens

In vivo primed T cells were stimulated with the immunizing antigen and APCs for 5 d. 

The T cells were then separated using Ficoll gradient centrifugation and stimulated in vitro 
for 4 h with 50 ng/ml of PMA, 1 μg/ml of ionomycin, and 1 μg/ml of brefeldin A (all 

from Sigma). Aliquots of cells (2 × 105 cells) were incubated for 30 min at 4°C with 

anti-αβ or -γδ TCR antibodies, then fixed, permeabilized overnight with Cytofix/Cytoperm 

buffer (eBioscience, San Diego, CA, USA), and intracellularly stained with PE-conjugated 
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anti-mouse IFN-γ antibodies or FITC-labeled anti-mouse IL-17 antibodies. Data collection 

and analysis were performed on a FACScalibur flow cytometer using CellQuest software.

Cytokine Assays by ELISA

Cytokine (IL-17 and IFN-γ) levels in the culture medium were measured using ELISA kits 

(R & D) following manufacturer’s instructions.

Statistical Analysis

The results in the figures are representative of one experiment, which was repeated 3–5 

times. The statistical significance of differences between groups in a single experiment was 

initially analyzed by 2-way Student’s t-tests, and if statistical significance was detected, the 

Student–Newman–Keuls post-hoc test was subsequently used. A P value of less than 0.05 

was considered a statistically significant difference and marked with one *; when P<0.01, 

two ** were used.

RESULTS

Anti-IFN-γ Affects Th1 and Th17 Responses Differently In Vitro

To determine the effect of IFN-γ on autoreactive antigen specificT cell responses in vitro, 

CD3+ T cells from the spleen and draining lymph nodes of B6 mice were isolated at the 

height of induced responses, 13 d after immunization with IRBP1–20. They were stimulated 

with the immunizing antigen and irradiated splenic APCs under Th1- or Th17- polarized 

conditions, with/without anti-IFN-γ (d 0). As demonstrated in Figures 1A, B, anti-IFN-γ 
treated on day 0 (day of immunization) inhibited the response of Th17 cells to a much 

greater extent than it inhibited the response of Th1 cells; similarly, IL-17 production was 

decreased much more than production of IFN-γ (Figure 1E). The effect of anti-IFN-γ was 

reversed when the antibody was added 8 d post-stimulation (Figure 1C): with the Th17 cell 

and IL-17 responses enhanced. The effect on Th1 cells or IFN-γ production was minimal.

Anti-IFN-γ Affects Th1 and Th17 Responses Differently In Vivo

To determine whether anti-IFN-γ antibody would have a similar effect in vivo, two groups 

of B6 mice (n=6) were immunized with IRBP1–20 with or without an i.p. injection of anti-

IFN-γ (100μg/mouse) on the day of immunization (d 0). Thirteen days post-immunization 

the mice were sacrificed and Th1 and Th17 responses were assessed. Figure 2 shows that 

anti-IFN-γ antibody again significantly inhibited the Th17 response while inhibiting the Th1 

response only slightly, similar to its effects seen in vitro.

The Effect of Anti-IFN-γ on EAU Development and the Th17 Response Depends on Timing

To determine whether the timing effect observed in vitro also applied in vivo, groups of 

B6 mice (n=6) were immunized with IRBP1–20/CFA. Because preliminary testing revealed 

that results differed when anti-IFN-γ was injected between d 0 to 3 vs d 6 to 8 post 

immunization, two time points were selected for subsequent studies. Those mice injected 

on the day of immunization (d0) were designated as “early-treated”, and those injected 

on day 8 after immunization were designated as “late-treated”. As shown in Figures 3A, 
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B, the number of IL-17+ cells among the responder T cells in early-treated mice was 

significantly decreased (from 9.5% in the control group to 3.3% in the treated group), 

whereas this number was significantly increased in late-treated mice (from 9.5% in the 

control group to 11.6% in the treated group) (Figure 3A, upper panels). In contrast, numbers 

of IFN-γ+ T cells changed little between early- and late-treated mice (Figure 3A, lower 

panels). Cytokine production (Figure 3C) confirmed intracellular staining in that mice in the 

late group produced more IL-17, whereas those in the early group produced less IL-17. In 
vivo administration of anti-IFN-γ had a stronger inhibitory effect on IFN-γ production of 

responder T cells, when compared with in vitro tests (Figure 1), regardless of whether the 

antibody was injected early or late. The difference between these results and the intracellular 

staining suggests that Th1 responses are modestly inhibited in treated mice.

IL-17+ T Cells Isolated From Late IFN-γ Treated Recipients Are More Pathogenic

To determine whether pathogenic IRBP-specific IL-17+ T cell responses were enhanced 

in mice that received late treatment with anti-IFN-γ we performed adoptive transfer tests. 

IL-17+ T cells from IRBP-immunized mice administered anti-IFN-γ on d 8 were compared 

to PBS injected mice (i.e. the control) on d8. 2 × 106 IRBP-specific IL-17+ cells were 

adoptively transferred to naive B6 mice by i.p. injection after 2 d of in vitro stimulation with 

the immunizing antigen and splenic APCs, under Th17-polarizing conditions. Adoptively 

transferred Th17 cells from late anti-IFN-γ treated mice induced significantly more severe 

EAU in recipient mice when compared to controls (Figure 3D). The total number of IL-17+ 

T cells was also significantly greater in anti-IFN-γ treated mice (data not shown).

Similar Timing Effect Exists in γδ T Cell Responses in Anti-IFN-γ Treated Mice

We have previously shown that γδ T cells regulate Th17 responses (29, 31), whereby 

activation of γδ T cells augmented Th17 reactivity (30–32). Therefore, we thought it 

important to examine the state of γδ activation after anti-IFN-γ treatment. In early 

anti-IFN-γ treated mice, the frequency of γδ T cells among total CD3+ T cells was 

significantly reduced (Figures 4A, B), suggesting that IFN-γ is required for early-stage 

γδ cell proliferation. Perhaps more importantly, the ratio between CD44+ and CD44− γδ 
T cells was greatly decreased (Figures 4C, D), indicating that neutralizing IFN-γ at early 

stages disease had an inhibitory effect on γδ activation in vivo. By contrast, the number 

of γδ T cells were significantly increased among total CD3+ T cells in mice that received 

late anti-IFN-γ treatment (Figure 5A) compared to early anti-IFN-γ treated or untreated B6 

mice. Moreover, the number of IL-17+ among total γδ T cells was significantly higher in 

mice that received late anti-IFN-γ treatment (Figure 5B).

γδ T Cells Separated From Late Anti-IFN-γ Treated Mice Enhance Th17 Activity In Vitro

To further investigate if the enhanced γδ activation in mice with late anti-IFN-γ treatment 

contributed to augmented Th17 responses, we compared the in vitro Th17 response of 

TCR-δ−/− responder T cells with or without the addition of γδ T cells from early or late 

treated anti-IFN-γ mice (30–32). Figure 5C shows that the Th17 response of the TCR-δ−/− 

responder T cells were significantly higher after adding γδ T cells (5% of total CD3+ cells) 

isolated from late anti-IFN-γ treated mice (right panel) compared to those without added 
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γδ T cells (left panel) or with added γδ T cells isolated from early anti-IFN-γ treated mice 

(middle panel).

Augmented Th17 Responses in IFN-γ−/− Mice Are Contributed by Multiple Aberrant 
Immune Responses

Finally, we compared the immune response between IFN-γ-deficient and wt-B6 mice, as a 

further means to better understand the role of IFN-γ in pathogenic Th17 responses. Figure 

6A shows that a greater number of responder T cells expressed IL-17 in IFN-γ−/− mice 

compared to B6 mice (Figure 6A) when CD3+ T cells were stimulated with the immunizing 

antigen and APCs for 5 d; additionally, IFN-γ−/− T cells produced significantly higher 

amounts of IL-17 (Figure 6B). The number of γδ T cells among the CD3+ splenic cells 

did not differ significantly between unimmunized IFN-γ−/− and B6 mice; however, the total 

number of γδ T cells, as well as numbers of activated γδ T cells (IL-17+), increased greatly 

among the IFN-γ−/− mice after immunization (Figures 6C, D).

We also compared antigen-specific T cell responses between CD3+ T cells isolated from 

IFN-γ−/− and wt-B6 mice, respectively. The results of crisscross tests, in which the T cells 

derived from immunized IFN-γ−/− or B6 mice were stimulated either by splenic APCs of 

irradiated B6 mice or IFN-γ −/− mice (Figure 6E) revealed that IFN-γ−/− T cells produced 

significantly greater amounts of IL-17 when compared to B6 T cells. In addition, IFN-γ−/− 

splenic APCs had stronger stimulating activity compared to B6 splenic APCs, suggesting 

that APC function is also augmented in IFN-γ−/− mice.

When Foxp3+ T cell responses of wt-B6 and IFN-γ−/− mice were compared, we found that 

the number of Foxp3+ T cells was significantly higher among CD3+ T cells in IFN-γ−/− 

mice (Figure 7A). However, the EAU-inducing activity of IRBP-specific T cells isolated 

from IFN-γ−/− mice and from B6 mice was compared after a 2-d in vitro stimulation 

with the immunizing antigen and splenic APCs by adoptive transfer to naïve B6 mice. 

IRBP-specific T cells isolated from immunized IFN-γ−/− mice had significantly stronger 

EAU-inducing activity compared to those from immunized B6 mice (Figures 7B, C). These 

results suggest that augmented Th17 responses in IFN-γ-deficient mice are associated with 

multiple aberrant immune cell functions or that the increased number of Th17 cells in 

IFN-γ−/− exceeded the regulatory capacity of Tregs.

DISCUSSION

IFN-γ production is a hallmark of T helper (Th)1 responses (1, 2) and exerts diverse 

effects on immune responsiveness. It strengthens innate immunity via induction of 

antimicrobial factors and degradative pathways in other immune cells, such as macrophages; 

it also augments the antigen-processing and antigen-presenting ability of APCs, stimulates 

antibody production by B cells, induces the expression of cytokines and chemokines 

required for the recruitment of myeloid cells to the site of inflammation, and increases 

the expression of TLRs, NOS, and phagocyte oxidase by macrophages (38). Previous studies 

demonstrated that the effect of IFN-γ on immune responses could be either pro- (19, 

39–42) or anti-inflammatory (23, 24, 43, 44). Elucidation of the bidirectional functions of 
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IFN-γ should increase our understanding of the regulated Th17 responses and their IFN-γ 
mediated immunomodulation.

Early studies of IFN-γ revealed it to be a key pathogenic molecule in human multiple 

sclerosis (MS) and in animal models, i.e., experimental autoimmune encephalitis (EAE) (39, 

40). Clinical studies showed that MS patients treated with IFN-γ exhibited exacerbated 

symptoms (42), whereas MS patients treated with antibodies against IFN-γ exhibited 

reduced clinical symptoms (19). However, a protective effect of IFN-γ has also been 

demonstrated. Mice deficient in the IFN-γ gene showed an increased incidence of EAE, 

with earlier disease onset and more severe symptoms (45, 46). Injection of neutralizing 

antibodies to IFN-γ exacerbated both actively and passively induced EAE (43, 44). Injection 

of IFN-γ to EAE-prone mice reduced the severity of disease symptoms and mortality (43, 

47). A similar protective effect of IFN-γ was also found in other autoimmune diseases, 

including collagen-induced arthritis, EAU, autoimmune nephritis, and myocarditis (43, 45, 

48–52), underscoring the complex role of IFN-γ in disease pathogenesis. Disease stage-

specific effects of IFN-γ were also observed. For example, administration of IFN-γ to 

EAE mice during the inductive period led to disease exacerbation, while a similar treatment 

during the effector phase was protective (18–22, 53).

Although it has been well established that both Th1 and Th17 autoreactive T cells are 

pathogenic in various autoimmune diseases (24, 36, 54, 55), including autoimmune uveitis 

(56), it remained largely undetermined whether therapeutic treatments directed at Th1 

responses would also be effective in treating Th17 mediated disease. Our current results 

demonstrated that IFN-γ is also an effective molecule modulating Th17 responses, although 

its effect is bidirectional.

The aims of our study were to determine the regulatory mechanisms of Th17 responses in 

autoimmune diseases. Based on our previous report that the protective effect of adenosine-

based treatments is dependent on “timing” — ADA was protective when administered 

during the active phase of EAU but ineffective if administered prior to intraocular 

inflammation (27). Subsequently, we found that A2AR antagonist SCH58261 (SCH) 

effectively modulates aberrant Th17 responses in induced EAU. Likewise, timing of the 

treatment is important (28). We therefore questioned whether such a timing effect applied 

to other immunoregulatory events. Our results showed that the therapeutic effects differed 

greatly for Th1 and Th17 responses. Anti-IFN-γ treatment can effectively modulate Th17 

responses, albeit in a biphasic fashion. In early phases of EAU, the disease is inhibited 

by neutralizing IFN-γ activity, whereas during active and ongoing phases of EAU, IFN-γ 
inhibited disease development by inhibiting Th17 effector T cell responses. Our studies 

raised an important issue is treating pathogenic T cell responses, particularly the Th17 

responses, by showing that an immunological manipulation will be more effective if a 

“timing” factor has been taken into consideration.

Comparing various immune responses of IFN-γ−/− and B6 mice showed that γδ T cells 

are overly active in IFN-γ−/− mice, and that IRBP-specific T cells isolated from immunized 

IFN-γ−/− mice have stronger EAU-inducing activity. Moreover, splenic APCs separated 

from IFN-γ−/− mice have stronger T cell stimulating activity, indicating that augmented 
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Th17 responses seen in IFN-γ−/− mice are the result of altered immune modulators, leading 

to delayed onset of disease with later exacerbation. The enhancement or inhibition of EAU 

correlates with γδ T cell activation. In previous studies we showed that a “timing effect” 

is a hallmark of adenosine-based immunotherapy. In the current study we showed that 

the immunomodulatory effect of IFN-γ also involves both enhancement and inhibition of 

the Th17 response in a “timing effect”. Continued efforts to elucidate the mechanisms 

underlying the influence of IFN-γ on immune responsiveness eventually should enable us 

to achieve desired effects, and thus bring us closer to the therapeutic goal of IFN-γ-based 

treatment of diseases.
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HIGHLIGHTS

• IFN-γ has a bidirectional effect on Th17 responses

• Anti-IFN-γ antibody inhibits early inflammatory responses but enhances later 

responses

• Effect of IFN-γ on γδ T cells is closely associated with an altered Th17 

response
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SCHEME 1 |. 
Schematic experimental procedure.
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FIGURE 1 |. 
Effect of anti-IFN-γ on in vitro Th1 and Th17 responses. Purified CD3+ T cells were 

stimulated with the immunizing antigen and irradiated splenic APCs, under Th1- (culture 

medium containing IL-12) or Th17 (culture medium containing IL-23) polarized condition 

and in the absence or presence of anti-IFN-γ antibody (5 μg/ml). The abundance of IFN-γ+ 

and IL-17+ T cells among the responder T cells was estimated after intracellular staining 

with fluorescence labeled anti-IFN-γ or anti–IL-17 antibodies, 5 d after in vitro stimulation. 

Compare to untreated (A), anti-IFN-γ inhibits T cell activation when added on d 0 (B) but 

enhances T cell activation if added on d 8 (C). The results in (A–C) are from a single 

experiment and pooled results of three separate studies are shown in (D). **p < 0.01. The 

IL-17 and IFN-γ levels in the culture medium were measured by ELISA after anti-IFN-γ 
Ab added on d0 (E). The data are pooled from three independent experiments. **p < 0.01.
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FIGURE 2 |. 
Anti-IFN-γ inhibited Th17 responses in vivo. Anti-IFN-γ on d0 (the day of immunization) 

preferentially inhibited Th17 cells. Two groups of B6 mice (n = 6) were immunized with 

IRBP1–20/CFA; one was injected with anti-IFN-γ (100cμg/mouse) via i.p. and the group 

received PBS. Thirteen days post-immunization, mice were sacrificed and the number of 

Th1 and Th17 cells among responder T cells were assessed 5 d after in vitro stimulation 

after intracellular staining with anti-IL-17 and anti-IFN-γ antibody. The results in (A) 
are from a single experiment and pooled results of three separate studies are shown in 

(B). Responder T cells of B6 mice administered with anti-IFN-γ produced significantly 

decreased levels of IL-17. The IL-17 and IFN-γ levels in the culture supernatants were 

measured by ELISA after stimulation of responder T cells with the immunizing antigen and 

splenic APCs for 2 (d) The data are pooled from three independent experiments. *P < 0.05 

and **P < 0.01.
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FIGURE 3 |. 
Effect of anti-IFN-γ administration is “timing dependent”. Th17 responses were 

significantly decreased in mice early treated with anti-IFN-γ but were enhanced in mice 

late treated with anti-IFN-γ. Groups of B6 mice (n=6) immunized with IRBP1–20/CFA 

received anti-IFN-γ on d0 or d8. Thirteen days post immunization CD3+ responder T 

cells were stimulated in vitro with the immunizing peptide and APCs, under Th1- or 

Th17-polarized conditions. 5 d after in vitro stimulation the number of IFN-γ+ and IL-17+ 

T cells was estimated after intracellular staining. The results from (A) are from a single 

experiment and pooled results of three separate studies are shown in (B). **P < 0.01. 

B) Cytokine production by Th17 cells was enhanced by late anti-IFN-γ treatment. The 

IL-17 and IFN-γ levels in the culture medium were measured by ELISA after stimulation 

of responder T cells with the immunizing antigen and splenic APCs for 2 d (C). **P < 

0.01. IRBP-specific T cells were separated from IRBP-immunized mice with or without an 
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anti-IFN-γ administration on day 13 of immunization. After 2 d in vitro stimulation with 

the immunizing antigen and splenic APCs, under Th17-polarizing conditions, the activated 

T cells were adoptively transferred to naive B6 mice (2 × 106/mouse) via i.p. injection and 

clinical expression of EAU was scored (D).
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FIGURE 4 |. 
Altered γδ T cell responses in anti-IFN-γ treated mice. γδ T cell activation and expansion 

was inhibited in early anti-IFN-γ treated mice. Freshly isolated CD3+ cells from naïve 

and immunized B6 mice, with or without anti-IFN-γ administration (day 0), were stained 

with PE-anti-αβTCR and FITC-anti-γδTCR antibodies before they were subjected to 

FACS analysis (A). They were also dually stained with PE-anti-mouse CD44 and FITC-anti-

γδTCR antibodies (C). A summary of multiple assays is shown in (B, D). *P < 0.05, **P < 

0.01.
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FIGURE 5 |. 
γδ T cells isolated from late anti-IFN-γ treated mice have enhanced pro-Th17 activity.CD3+ 

responder T cells (1 5 × 106/well) isolated from immunized TCR-δ−/− mice, with or 

without a prior anti-IFN-γ administration were stimulated with the immunizing antigen 

and irradiated splenic APCs, under Th17 polarized condition. Total γδ T cell numbers (A), 
as well as proportional number of IL-17+ versus total γδ T cells (B) were compared. **P < 

0.01. In vitro Th17 response of TCR-δ−/− responder T cells were assessed with or without an 

addition of γδ T cells isolated from early or late treated anti-IFN-γ mice (C). The number 

of IL-17+ T cells among the gated CD4+ responder T cells was estimated after intracellular 

staining with anti–IL-17 antibody, 5 d after in vitro stimulation.
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FIGURE 6 |. 
Augmented Th17 responses in IRBP1–20/CFA-immunized IFN-γ−/− mice. CD3+ responder 

T cells were purified from IRBP1–20/CFA-immunized B6 and IFN-γ−/− mice. They were 

stimulated in vitro with the immunizing peptide and APCs, under Th17 or Th1 polarized 

conditions as indicated. After 5 d of in vitro stimulation, Th1 and Th17 responses specific 

for the immunizing antigen were estimated by assessing IFN-γ+ and IL-17+ T cells 

intracellularly stained with fluorescence -labeled anti-IFN-γ or anti–IL-17 antibodies (A). 
Immunized IFN-γ−/− mice also produced increased IL-17 compared to B6 mice. Production 

of IFN-γ and IL-17 by the B6 or IFN-γ−/− responder T cells after 48 h antigen stimulation 

in vitro was assessed by ELISA. Data are pooled from three independent experiments 

are shown (B). **P < 0.01. Number of γδ T cells and IL-17 secretion from immunized 

IFN-γ−/− mice exceeded that of immunized wt B6 mice. CD3+ T cells isolated from 

naïve, immunized B6 and immunized IFN-γ−/− mice were stained with anti-IL-17 and 
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anti-γδTCR, before FACS analysis (C). The data from three independent experiments is 

shown in (D). **P < 0.01. NS, not significant. Contribution of antigen-specific T cells and 

the effect of splenic APCs in augmented Th17 responses were examined. IFN-γ−/− and B6 

mice responder T cells (1.5 × 106/well) from IFN-γ−/− or B6 mice were stimulated by B6 

splenic APCs (E, left panels) or IFN-γ−/− splenic APCs (E, right panels). IL-17 in culture 

supernatants were assessed by ELISA harvested 48 h after in vitro stimulation. The data are 

pooled from three independent experiments. **P < 0.01.
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FIGURE 7 |. 
Multiple aberrant immune responses in IFN-γ−/− mice. Foxp3+ T cell expansion is increased 

in IFN-γ−/− mice. In a 24-well plate, the CD3+ responder T cells (1.5 × 106/well) derived 

from B6 mice or IFN-γ−/− mice were cultured in medium containing a very low dose 

of IL-2 (1ng/ml) for 5 d, which preferentially favors Foxp3+ T cell expansion (37). The 

percentage of Foxp3+ T cells among αβTCR+ cells was determined by FACS analysis 

(A). Data are from one single experiment, which is representative of three independent 

experiments. IRBP-specific T cells isolated from immunized IFN-γ−/− mice have stronger 

pathogenic activity after adoptive transfer to naïve B6 recipients. IRBP-specific T cells were 

prepared from the responder T cells of IFN-γ−/− mice and B6 mice. After a 2-d in vitro 
stimulation with the immunizing antigen and splenic APCs. 2 × 106 cells were adoptively 

transferred to naïve B6 recipient mice via i.p. injection (B). Pathologic examination. H&E 

histologic sections from an eye in each group were obtained on day 30 post-immunization. 
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Severe vitritis and chorioretinal folds occur in IFN-γ−/− mice compared to minimal vitreous 

inflammation and a normal retina in wt-B6 mice (C).
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