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Using metagenomic ‘parts lists’ to infer global patterns on microbial ecology remains a significant
challenge. To deduce important ecological indicators such as environmental adaptation, molecular
trait dispersal, diversity variation and primary production from the gene pool of an ecosystem, we
integrated 25 ocean metagenomes with geographical, meteorological and geophysicochemical data.
We find that climatic factors (temperature, sunlight) are the major determinants of the biomolecular
repertoire of each sample and the main limiting factor on functional trait dispersal (absence of
biogeographic provincialism). Molecular functional richness and diversity show a distinct
latitudinal gradient peaking at 201N and correlate with primary production. The latter can also be
predicted from the molecular functional composition of an environmental sample. Together, our
results show that the functional community composition derived from metagenomes is an important
quantitative readout for molecular trait-based biogeography and ecology.
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Introduction

Microbial communities have a central role in global environ-
mental processes and the Earth’s biogeochemistry by cycling
nutrients and fixing carbon (Falkowski et al, 1998). However,
because of the complexity of these communities and the lack
of culturability of most of its members, the molecular and
ecological details as well as influencing factors of these
processes are still poorly understood. Environmental shotgun
sequencing (metagenomics) has the potential to start unravel-
ing the underlying complex interspecies ecological inter-
actions and metabolic networks, by quantification of the
molecular functions (‘parts lists’) of all microbial communities
on Earth (Tringe and Rubin, 2005a; Raes and Bork, 2008).
However, despite a wide range of published metagenomics
studies (see Liolios et al, 2006; Raes et al, 2007; Wooley et al,
2010, for an overview), our knowledge of the variation,
functioning and ecology of complex microbial ecosystems
remains limited, mostly because the resulting ‘parts lists’
could not be put into sufficiently detailed environmental

context. Although previous studies have shown that the
environment has an influence on the parts list of various
communities, the extent of this effect and the relative
importance of a broad range of different environmental factors
(climate, nutrients, physicochemical parameters and so on) is
unknown (Tringe et al, 2005b; DeLong et al, 2006; Dinsdale
et al, 2008; Kunin et al, 2008; Gianoulis et al, 2009) or was
investigated with a focus on single species (Johnson et al,
2006) or specific gene families (Patel et al, 2010). This said,
recent models predicting nutritional strategy from metage-
nomic data show great promise toward the understanding
of some of these relationships (Lauro et al, 2009). Also, as
microbial biogeography and ecology studies have mostly
focused on phylogenetic patterns, little is known about the role
of molecular traits (i.e., the genes and their products) in these
matters (Martiny et al, 2006; McGill et al, 2006; Green et al,
2008). Likewise, the role of molecular trait variation in
important ecosystemic processes such as global primary
production is far from clear (Falkowski et al, 1998). To start
addressing these issues, we investigated the feasibility of
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molecular trait-based ecology by integrating large-scale
marine metagenomics data with geochemical, meteorological
and ecological measurements and used this information to
investigate (i) the relationship between environment and
functional community composition (the metagenome-derived
gene/pathway repertoire of an ecosystem), (ii) the factors
influencing functional dispersal (defined here as the functional
effects of species dispersal as well as horizontal gene transfer-
and phage-mediated gene flow), i.e., the movement of
functional traits through geographical space, (iii) the interplay
between functional composition and primary production
and (iv) the geographic variation in global functional diversity
and its consequences. The various correlations we found,
despite various imaginable limitations of environmental
sequence data (see further), thereby indicate that molecular
functional composition, as derived from metagenomes, can
serve as a powerful marker and predictor of ecological
processes.

Results and discussion

We utilized the Global Ocean Survey (GOS) which is, at the
time of writing, the largest published metagenomic study of a
single environment (excluding host-associated communities;
Qin et al, 2010), gathering ocean surface samples from
a transect around the globe (Rusch et al, 2007). Although it
has some drawbacks (e.g., size fractionation excluding
eukaryotic plankton; only dominant species are sampled), it
still constitutes a unique data set to assess the feasibility of
molecular trait-based ecological studies. We mapped these
data onto orthologous groups (OGs) and biochemical path-
ways (allowing multi-level functional interpretations and to
overcome undersampling issues in gene-based analyses;
Harrington et al, 2007), and linked pathways to species, when
possible, in order to interpret correlations in the context of the
phylogenetic composition of the community (see Materials
and methods). Then, we complemented the metadata gathered
in the GOS project (which we studied in Gianoulis et al (2009))
by projecting a broad range of geophysicochemical (e.g.,
nitrate, phosphate, oxygen measurements, ocean mixing),
geographical (latitude, longitude, depth) and meteorological
data (e.g., temperature, sunlight) as well as ecological
information (primary production) from publically available
resources (see Materials and methods and references therein)
onto 25 published metagenome sampling points (Rusch et al,
2007) using the sampling time and coordinates (see Materials
and methods; Supplementary Table S1 and Supplementary
Figure S1).

Functional community composition is mainly
driven by climatic factors

Previous studies have shown a clear impact of the environ-
mental conditions on the functional composition of
microbial communities (Tringe et al, 2005b; DeLong et al,
2006; Dinsdale et al, 2008; Kunin et al, 2008; Gianoulis et al,
2009). To investigate which environmental conditions are
the main drivers in this process, we applied previously
established techniques (Gianoulis et al, 2009) to the integrated

metagenomic and environmental data. Canonical correlation
analysis (CCA; Hotelling, 1936; Gianoulis et al, 2009) shows
that the overall correlation between environmental factors and
various biochemical pathways is high and that numerous
pathways have strong correlations with environmental factors
(see Figure 1, Supplementary Tables S2-4). Generally, tem-
perature, sunlight, oxygen and CO2 concentration have the
strongest correlations, as they distribute along the dimension
with the highest canonical correlation coefficient (CC¼0.944,
see Figure 1C), while salinity and nutrients contribute more to
the second, less significant, dimension (CC¼0.875; only one
significant module, Supplementary Table S4; see Supplemen-
tary Table S5 for more evaluation metrics). This suggests that,
for the ocean surface communities analyzed here, climatic
factors such as sunlight and temperature (and correlated
dissolved oxygen and CO2 content) are the main determining
factors of the functional community composition, whereas
nutrient concentrations seem to have less influence, despite
their crucial, limiting role in ocean life and productivity
(Arrigo, 2005). As phylogenetic composition was reported to
be mainly determined by salinity in a survey of various
environments (Lozupone and Knight, 2007), we repeated the
CCA analysis on the phylogenetic composition of the GOS
samples used here (data taken from Biers et al, 2009) but
found the phylogenetic results to be in agreement with our
functional trends (Supplementary Figure S2). Given the range
of salinity in our study was much smaller than in the
aforementioned study, it could however be that salinity has a
role in more extreme concentrations and outside ‘normal’
oceanic samples as studied here. We should also note that
these correlations are based on available monthly average
values, so that nutrients could still have a larger role in fast
adaptations at much shorter timescales (Gilbert et al, 2009).
Data sets that cover a larger and physicochemically more
diverse geographic region can be expected in the near future
(e.g., from the Tara Oceans project, http://oceans.taraexpedi-
tions.org) and will provide a higher resolution to refine our
initial observations.

Molecular adaptions to environmental conditions

Several correlations between environmental factors and
abundance of metabolic pathways as revealed by CCA were
further confirmed using pairwise correlation analysis and
linear regression (see Materials and methods). Some of these
confirm common knowledge of ocean microbial processes. For
instance, a strong positive correlation was found for both
temperature and hours of sunlight with the abundance of
genes encoding the photosynthetic machinery (Figure 1A).
Not only the light capturing complexes (PSI, PSII, CytB6) but
also modules involved in oxidative phosphorylation and CO2

fixation were positively correlated with temperature, confirm-
ing the greater dependence on (photo-) autotrophic processes
in sunny, warm and nutrient-poor tropical areas (mainly
driven by samples from the Gulf of Mexico and, to a lesser
extent, the tropical Pacific). The phylogenetic CCA analysis
confirms this observation, by showing strong association of
photosynthetic groups such as cyanobacteria with tempera-
ture (Supplementary Figure S2).
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Other examples include a wide range of sulfur-related
processes that are negatively correlated to temperature ranging
from enzymes linked to sulfate reduction and/or sulfite
detoxification (adenylyl sulfate reductases; Meyer and Kuever,
2007) to pathways involved in methionine degradation and
breakdown of sulfur-containing glycans. The former seem to
originate mainly from SAR11-like species (where they would
be reverse-acting to prevent sulfite accumulation during
dimethylsulfoniopropionate assimilation (Meyer and Kuever,
2007)), but are also found in various other bacterial groups.
The latter include mainly sulfatases from planktomycetes (see
Supplementary Figure S3 for phylomapping results), which
are suggested to be involved in the initial breakdown
of sulfated heteropolysaccharides in heterotrophic carbon
recycling (Woebken et al, 2007). The observed anticorrelation
of these processes with temperature suggests a more general
dependence on organic sulfur (despite high ambient sulfate
concentrations) in the northern, coastal heterotroph-domi-
nated communities, something which was currently only
observed for specific phylogenetic groups (i.e., SAR11; Tripp
et al, 2008).

Functional biogeography and dispersal are
primarily determined by environmental conditions

Having demonstrated that functional composition can be
clearly linked to external conditions, we used functional traits
derived from metagenomes to study, as a second application,
function dispersal and biogeography in ocean samples. Various
rRNA-based studies over many years remain undecided on the
existence and nature micro-organismal biogeographic patterns
(Finlay, 2002; Martiny et al, 2006; Telford et al, 2006).
As evidence accumulates that the set of functional traits, not
the rRNA genes, are the true ecological determinants of a
microbial species (Gevers et al, 2005; McGill et al, 2006; Green
et al, 2008; Hunt et al, 2008; Fraser et al, 2009), we investigate the
use of molecular functional traits as biogeographic markers.
Given rampant horizontal gene transfer and, e.g., the frequent
observation of bacterial genes in phages, we here use the
term ‘functional biogeography’ to allow for the possibility that
the traits themselves disperse irrespective of their original
hosts, although it deviates from the strict definition where
biogeography is only applicable to the trait-bearing organisms.

Temp

–1.0 –0.5 0.0 0.5 1.0

–1.0

–0.5

0.0

0.5

1.0

Dimension 2

D
im

en
si

on
 1

–1.5 –1.0 –0.5 0.0 0.5 1.0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A

B

C
C

ar
bo

n 
fix

at
io

n 
ge

ne
 a

bu
nd

an
ce

Sunlight, temperature, phosphate model

Phosphate

Oxygen

Nitrate

SilicateSalinity

Sun

Co2

Mld

Depth

Time

Photosynthesis, 
oxidative phosphorylation 
and carbon fixation

Sulfur-related
pathways

15 20 25

0.0000

0.0010

0.0020

0.0030

P
ho

to
sy

st
em

 I 
ge

ne
 a

bu
nd

an
ce

Temperature

Figure 1 Correlations between metabolic pathway abundances and environmental conditions deduced from the ocean samples in this study, at various levels of model
complexity (see Materials and methods): (A) ‘One-to-one’ pairwise correlation (P¼0.001) between the abundance of photosystem I genes with average monthly water
temperature. (B) ‘One-to-many’ linear model of average monthly water temperature, phosphate concentration and hours of sunlight correlating with carbon fixation gene
abundance (R2¼0.70). (C) ‘Many-to-many’ regularized canonical correlation analysis ordination plot showing the correlation between all environmental variables (text
labels; see Materials and methods) and pathway modules (colored dots). The distance between two variables on the plot and their distance from the center point
indicates the strength of their correlation and their contribution to explaining the global correlation (i.e., their structural correlation in each dimension given on the
respective axes: first dimension, vertical, second, horizontal; see Materials and methods). The overall canonical correlation is high (canonical correlation¼0.944 in the
first dimension), and the two first dimensions explain 62 and 22% of the total environmental and metagenomic variation, respectively, emphasizing the strong correlation
between the climatic factors and functional community composition on the first dimension. Module colors indicate their broad functional classes: yellow, amino acid
metabolism; orange, central metabolism; red, energy metabolism, dark green, glycan metabolism; cyan, lipid metabolism; purple, metabolism of other molecules; blue,
nucleotide metabolism; brown, replication and repair; light green, transcription; pink, translation; gray, transport system. Highlighted modules are described in more detail
in the text. mld, mixed layer depth.
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To determine the distribution of function in geographical
space and identify its determining factors, we compared the
difference in functional (metagenomic) composition (i)
between the samples (as measured by the Bray–Curtis distance
metric; see Materials and methods), (ii) to the geographical
distance between them and (iii) to the difference in environ-
mental conditions (Martiny et al, 2006). As climate is the
principle factor influencing the functional composition of the
communities studied here, we demonstrate its effect on
function dispersal. The functional difference between com-
munities increases with difference in climatological conditions
(Figure 2A; Mantel test, Po0.001), and this effect remains
even if the difference in environmental conditions caused by
geographic distance is subtracted (Figure 2B; partial Mantel
test, P¼0.01; see Materials and methods and Supplementary
Table S6 for details on tests performed). On the other hand,
when we tested for biogeographic provincialism (i.e., a
‘distance effect’, implying geographic limitations to function
dispersal), no significant correlation between physical dis-
tance and functional difference could be found when
difference in environmental conditions was taken into account
(Figure 2B; partial Mantel test, P¼0.1). This implies that the
functional traits available to a specific community have no

physical constraints on their dispersal, and their abundances
are mainly determined by local, contemporary environmental
conditions. In other words, a single functional province seems
to exist over hundreds to thousands of kilometers in the
surface ocean of the Atlantic and Pacific. These observations
provide evidence for a functional equivalent of the (organism-
centric) Baas-Becking theory (Baas Becking, 1934), namely
‘all functions are everywhere, but the environment selects’.
One should note that the trend diminishes if not only climatic
but also nutritional variables are included (see Materials and
methods), suggesting that selection of relevant environmental
parameters can lead to the identification of otherwise hidden
biogeographic patterns. On the other hand, the same correla-
tion analysis, when performed on the phylogenetic composi-
tion (source data from Biers et al, 2009), shows a (weak)
distance effect (partial Mantel test, P¼0.03, see Supplementary
Table S6 and Materials and methods for details) compatible
with previous reports of microbial species-level biogeographic
provincialism (Martiny et al, 2006; Telford et al, 2006).
However, the phylogenetic composition seems not to be
selected for by environmental factors (partial Mantel test,
P¼0.25, see Supplementary Table S6), suggesting that phylo-
geny and function are not necessarily coupled. Thus, while
for phylogeny more neutral population effects dominate in
geographical distinct locations, selection for environmental
constraints seems more readily distinguishable in molecular
functions.

Functional community composition can predict
primary production

The case studies above exemplify a wealth of apparent
metabolic adaptations to environmental conditions and prove
the ability to extract those from massive amounts of data. This
prompted us, in a third application, to explore the potential of
functional composition in predicting other global ecological
parameters, such as primary production (the amount of CO2

fixed by photosynthetic micro-organisms that is available for
other trophic levels as organic carbon (Lindeman, 1942).
Primary production is a crucial parameter in global carbon
cycling and climate change and is calculated from, among
others, temperature and sun irradiation measurements (Field
et al, 1998). We retrieved information on the monthly average
primary production for the sampling coordinates (Field et al,
1998) and correlated this information to both the functional
composition of the microbial community sampled and the
environmental conditions of the sampling site. As expected,
primary production was predictable from environmental
conditions (data not shown). However, also the abundance
of several central, core metabolic pathways from the meta-
genome strongly correlates with primary production (see
Supplementary Table S7). Examples include pathway
modules involved in nucleotide (dCTP, UMP) and sugar-
nucleotide (UDP-glucose/UDP-galactose) biosynthesis (Spear-
man’s r¼0.79, �0.69 and �0.69, respectively), photosynthesis
(Photosystem I and II; r¼�0.71 and �0.53, respectively) and
oxidative phosphorylation (complex I; r¼�0.76). The negative
correlation of photosynthesis and linked energy generation
with primary production, at first sight counterintuitive, can be

Functional (metagenomic) distance versus
  environmental distance 

Mantels′ r P -valueTested correlation

0.43

Functional (metagenomic) distance versus 
  geographical distance

Functional (metagenomic) distance versus 
  environmental similarity, given geographical distance

Functional (metagenomic) distance versus 
  geographical distance, given environmental distance

0.38

<0.001

<0.001

0.27 0.01

0.12 0.1

A

B

0<x<1 1<x<2 2<x<3 3<x<4 x>4

0.02

0.04

0.06

0.08

0.10

Environmental distance

M
et

ag
en

om
ic

 d
is

ta
nc

e

n = 50
n = 62

n = 59
n = 95

n = 34

Figure 2 The role of environment in the biogeography of functional traits.
(A) Coupling of metagenomic distance between samples (measured using
KEGG metabolic pathway composition; see Materials and methods) with
difference in climatological conditions, identifying climate as a primary deter-
minant of function dispersion. (B) (Partial) Mantel tests (see Materials and
methods) showing that this increase is not due to indirect effects, such as the
similarity in environmental conditions between geographically close samples.
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explained by the filter sizes used in the metagenome sampling,
which excludes several of the main contributors to primary
production (diatoms, dinoflagellates, green algae). In areas of
low nutrient concentration and low global primary production,
photosynthetic cyanobacteria thrive because of their specific
adaptation to these circumstances (Vaulot et al, 1995). In areas
of high nutrient concentration, where the major eukaryotic
determinants of primary production thrive, they could out-
compete the photosynthetic bacteria, which are the only ones
captured in the GOS data sets, as the cell size fractions of
the samples used here did not target protist species. On the other
hand, the observed strong correlation between many additional
core metabolic pathways of only a particular subfraction of
the ecosystem population (bacteria/archaea) and the total
measured primary production provides evidence for a robust
metabolic coupling between these organisms and the carbon
fixing eukaryotes in the ocean surface. This hypothesis is
reinforced by the fact that linear models consisting of only
abundances of the most correlated metabolic Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) maps (Kanehisa et al,
2008) were almost equally successful at predicting primary
production as the external environmental measures used
(R2

env¼0.91 versus R2
met¼0.87; see Supplementary Figure S4

and table S8). This observation confirms a tight coupling of
functional composition of the sampled bacterial community and
global primary production at that location. Furthermore, this
observation suggests that functional properties, identifiable
through metagenomic studies can be used to predict various
community properties and processes that are hard to measure in
environmental settings.

Functional richness and diversity show a distinct
latitudinal gradient and are linked to primary
production

In addition to the functional and phylogenetic composition of
microbial communities, also global estimators of the richness
(e.g., number of species) and diversity (richness, corrected for
population structure) of an ecosystem are widely used to
investigate and understand ecosystem properties (Colinvaux,
1973). For instance, community productivity has been
repeatedly correlated to species richness. However, depending
on the environmental circumstances, also negative correla-
tions have been observed (Kondoh, 2001; Loreau et al, 2001).
In microbial ocean communities, no correlation was found so
far (Fuhrman et al, 2008). At the macroscopic functional level,
positive correlations between richness in macroscopic traits
(e.g., plant functional groups in a field study) and productivity
have been reported (Tilman et al, 1997; Loreau et al, 2001). We
therefore investigated whether estimators of trait diversity at
the molecular level can provide relevant alternatives to study
microbial communities, as they consider the direct functional
units (genes) that determine the properties inherent to the
ecosystem. One comprehensive measure of molecular func-
tional richness is the extrapolated richness in OGs present in a
metagenomic sampling of a community, which quantifies the
‘breadth’ of the functional potential of the ecosystem at hand
(Raes and Bork, 2008). When also the evenness of the
functional distribution can be taken into account, functional

diversity can be determined (Raes and Bork, 2008). Applied to
the data used here, we observe a clear peak in functional
richness at 20 degrees north along the north–south transect of
the GOS expedition (for details see Figure 3A and B).
Functional diversity shows a similar but less pronounced
pattern (see Supplementary Figure S5), and similar results are
obtained for gene family richness (see Supplementary Figure
S6). These results are in line with previous reports of
latitudinal species richness gradients, although in these
studies the gradient has a more noisy distribution (Fuhrman
et al, 2008) or the position of the peak cannot be observed
because of the relatively low number of samples (Pommier
et al, 2007).

We also observe a significant negative correlation between
functional diversity and primary production (see Figure 3C;
also observed for functional richness, data not shown). These
results seem in disagreement with plant macroscopic func-
tional trait richness, which positively correlates with produc-
tivity (Tilman et al, 1997; Loreau et al, 2001). In addition,
published marine bacterial species richness analyses (Fuhr-
man et al, 2008), as well as with our own reanalysis of the
phylogenetic composition of these samples (see Supplemen-
tary Figure S7), show no or at best a very weak (P¼0.28)
correlation with primary production. Our results are in line
with ecological theory though, namely that in areas of high
productivity, a narrow functional niche of organisms (low
functional richness) impacts the community and drives the
majority of productivity. In low-productivity (nutrition poor)
areas, more functional niches are formed because of a higher
level of competition for resources, causing a broader global set
of functionalities (Krebs, 2001). Given the theoretical support
for our results, the weakness of the phylogenetic signal
when derived from PCR bias-free metagenomic sequencing
(von Mering et al, 2007a), and in line with the increasing
realization that the ecological function of a microbial organism
is a true indicator of a species (Gevers et al, 2005; Hunt
et al, 2008; Fraser et al, 2009), we conclude that functional
diversity estimators (such as richness) and composition
might be more relevant and immediate indicators of the link
between diversity and ecosystem processes than species-based
measures.

Metagenome-derived functional composition
is an important tool for molecular ecology and
biogeography research

Taken together, this study extends previous work (Gianoulis
et al, 2009) through a comprehensive integration of metage-
nomic data with a broad range of quantitative environmental
factors extrapolated from a variety of measures independent
from the sampling, allowing the identification of climatic
factors as the drivers behind functional community composi-
tion and functional biogeography. It is further the first attempt
to establish the molecular functional repertoire of a metage-
nomic sample as indicator and predictor of ecological
parameters. The metagenomes used here (Rusch et al, 2007)
are, of course, only snapshots of the functional potential of
the environment and probably still give a biased view on the
total biodiversity (e.g., by the sampling method, sequence
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coverage, filtering and so on). Future dedicated experiments
and time series data will greatly improve causal inferences
beyond the simple logic used here (environment influences
community composition and functioning, which influences
ecosystem processes such as primary production). The
environmental and ecological variables used are mostly
monthly averages of the region, and not exact measurements
at the time of sampling. Furthermore, multiple measures had
to be taken to avoid parameter overfitting and other testing
artifacts (see Materials and methods). However, despite
these drawbacks and complications, we see clear, significant
trends relating the environment and ecological parameters
to metagenomic gene abundances (to the extent of having
predictive power), providing first insights into the coupling
between the functional traits available to the community,
the environmental context and the ecosystem processes
that occur. We see this as proof-of-principle that mole-
cular functional composition can be used in various other
environmental settings such as the human microbiome,
where it could be integrated with clinical data to study the
molecular ecology and temporo-spatial variation of the
‘human’ ecosystem.

Materials and methods

GOS data collection and sequence preprocessing

For this study, we filtered the data from the first phase of the
GOS expedition to keep only those sites that used a 0.1–0.8mm
filter size (i.e., majority prokaryote samples). In addition, atypical
samples from mangroves, estuaries, salt lakes, large depth and
so on were not included in the analysis, nor was the sample of Sargasso

Sea station 11, because it is suspected of contamination (Mahenthir-
alingam et al, 2006), and that of Cabo Marshall because of a
considerable number of missing environmental data points (see
below). For the remaining 25 sites (Supplementary Table S1), protein
sequence data were downloaded from CAMERA (Seshadri et al, 2007).
Peptides were mapped to sites based on the read-to-scaffold and ORF-
to-scaffold mappings available at the same database, using previously
established methods (Tringe et al, 2005b; Kunin et al, 2008; Gianoulis
et al, 2009).

Geographical, environmental and ecological
metadata mapping

Sampling longitude, latitude, depth, date and time were extracted
from the CAMERA database (Seshadri et al, 2007). Average monthly
dissolved oxygen, phosphate, nitrate, silicate, temperature and salinity
were extracted from the 1 degree gridded data available at the World
Ocean Atlas (WOA05) resource (Boyer et al, 2006) for the geographi-
cally closest available data points for the selected samples, using the
longitude, latitude, month and year of sampling. Gridded dissolved
carbon dioxide data from the GLODAP resource (Key et al, 2004),
and mixed layer depth data (estimated based upon a 0.5 1C surface
water temperature change (mld_pt); Monterey and Levitus, 1997)
were extracted using the Ocean Data Viewer software (http://odv.
awi.de/en/home/). Average monthly primary production data, as
estimated by the Vertically Generalized Production Model (VGPM)
(Behrenfeld et al, 2006), was downloaded from the ocean productivity
resource (http://www.science.oregonstate.edu/ocean.productivity/
index.php). Monthly average sunshine fraction (the percentage of
time when bright sunshine is recorded during the day) data was
obtained from the local climate estimator (LocClim) resource (Grieser,
2002), based upon default interpolation settings. Environmental
parameters for which both on-site (Rusch et al, 2007) as well as
monthly averages were available (temperature, salinity) were com-
pared and showed strong consistency among samples (Supplementary
Figure S1).
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Functional annotation and pathway assignment

The 111 KEGG maps, 141 modules and 191 operons were assigned as in
Tringe et al, 2005b; Kunin et al, 2008; Gianoulis et al, 2009. Module
definitions were downloaded from KEGG (Kanehisa et al, 2008), and
operons were constructed as in von Mering et al, 2003 and Kunin et al,
2008. For clarity, in the remainder of the text, we use the term pathway
to refer to all of these levels. Pathway abundance and presence was
measured as in Tringe et al, 2005b; Kunin et al, 2008; and Gianoulis
et al, 2009. In brief, predicted protein sequences were searched against
the extended database of proteins assigned to OGs and pathways in
STRING 7.0 (von Mering et al, 2007b), by using BLASTP (Altschul
et al, 1990), and an OG/pathway was called present when a hit
matching 1 of its proteins occurred (with a BLAST score of at least 60
bits; see Supplementary Table S9 for further annotation statistics).
Gene frequencies were determined by counting the number of reads
contributing to that gene, standardizing for sample size. Likewise,
the OG/pathway frequency for each site was assigned by summing
the total number of instances of that OG/pathway (i.e., reads mapping
to a gene assigned to that pathway) for a particular site and
standardizing by total number of assignments for that site to
compensate for sample coverage differences. For all correlation
analyses, pathways for which the summed count over all sites
constituted equal to or less than 0.01% of the total count were
removed to avoid artifacts. Correlation was carried out using the
relative counts of genes involved in specific metabolic pathways
(or modules/OGs). For ease of reading, this is described as a
correlation between an environmental factor and the pathway.
All results described were also manually scrutinized, and for all
case studies, confirmation was sought at multiple levels of resolution
(map-module-operon-OG) to reduce artifacts.

Pairwise correlations, linear regression and
canonical correlation analysis

Correlation analysis on the extended set of environmental parameters
and ecological variables was performed using the same methodology
as used in Gianoulis et al (2009). In brief, we computed pairwise
Spearman correlations between pathway frequencies and environ-
mental variables over all samples (controlling the false discovery rate
by Benjamini and Hochberg (1995) correction for multiple testing.
Linear models were constructed in two directions: (i) in the case of the
prediction of primary production the pathway frequencies acted as
dependent variables and environmental conditions the response
variables, whereas in (ii) the investigation of the effect of environment
on community composition, pathway frequency was treated as the
response variable and predicted from environmental factors. For both
models, we used stepwise regression analysis (SRA; implementation in
the R-stats package) to reduce the number of response variables in the
model. To avoid overfitting in (i), we used only the top 15 pathways
that showed the highest pairwise correlation (as measured by
uncorrected P-value) with the environmental feature modeled. Linear
models were considered significant at Po0.05 for both the total model
and the estimate of the variable coefficients. For regressions in both
directions, the pathway frequencies were standardized to a mean of 0
and a s.d. of 1. For (i), we used the centered, quantile-normalized
primary production data transformed into percentiles to ensure a truly
normal distribution and, thus, accurate P-values. As the linear model
construction procedure did not allow any missing values, we removed
all samples with missing environmental data values (21 samples
remaining). In (i), a leave-one-out cross-validation procedure was
used to assess the behavior of the derived model on samples not used
for training. This procedure was used both at the feature selection step
as well as the prediction step. First, the set of dependent variables with
significant weights in the model were determined for all (n�1) sample
combinations using the SRA feature selection approach, and the
most frequent set of features was chosen as the final model (see
Supplementary Table S8 for results). Next, using these features,
parameter estimation was performed on each combination of (n�1)
samples and the predicted primary production was compared with the
observed value (see Supplementary Figure S4 for results). Regularized
CCAwas used to identify the set of projections that maximally correlate

pathways and environmental variables (Gianoulis et al, 2009).
Structural CCs (the correlation between the original variable and
the canonical variate) were used to estimate the importance of one
variable relative to all of the other in the maximization of the
correlation between pathways and factors. To test the statistical
significance of structural correlations, 1000 randomized data sets
(sample labels permuted) were analyzed in the same way as the
original data set. The statistical significance was calculated by
comparing the observed structural correlations to the distributions
obtained from randomization, and a significance threshold of Po0.05
after Benjamini and Hochberg (1995) correction for multiple testing
was applied.

Functional diversity estimates and biogeography

Functional richness and diversity (Raes and Bork, 2008) were
estimated from the OG abundance counts (OG richness) using
EstimateS (http://viceroy.eeb.uconn.edu/estimates). Richness was
calculated using the Chao1 estimator (Chao, 1984) and for functional
diversity, Simpson’s diversity index was used (Magurran, 1988). We
also investigated the use of other indices (e.g., ACE, Michaelis
Menten), but this did not affect results very much (data not shown).
In addition, gene family richness was determined from gene family
mappings of each sample (data from Yooseph et al, 2007).

To investigate the relative importance of environment (climate)
and geographic separation, Mantel and partial Mantel tests (based on
Pearson’s correlations, 10 000 permutations) were performed on
environmental similarity, metagenomic similarity and geographic
distance matrices, which were calculated using Euclidian distances
between the scaled environmental variables, Bray–Curtis distances
between pathway frequency matrices and raw haversine distances
(in km) between samples, respectively. Calculations were done
using the functions in the ‘stats’, ‘ecodist’ and ‘vegan’ libraries in the
R-package (www.r-project.org; Goslee and Urban, 2007; Oksanen
et al, 2008).

Visualization

Visualization of phylogenetic data was performed using iTol (Letunic
and Bork, 2007). Primary production and functional richness data were
mapped on the globe using google earth (http://earth.google.com).

Species mapping

Proteins from selected pathways were mapped to nodes of the tree of
life (Ciccarelli et al, 2006) using an in-house perl script, based upon the
lowest common ancestor approach (Huson et al, 2007). Input data
were BLASTp results of the proteins against the STRING 7 database
(von Mering et al, 2007b). Only hits above 60 bits and whose scores
lied within 10% of the best score were considered.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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