

Postpartum pheochromocytoma crisis associated with cardiogenic shock and Sheehan's syndrome

David Wall , ¹ Kristina Nieding, ¹ Christian Scheuba, ² Alexander Haug, ³ Maria Schmook, ⁴ Florian W Kiefer ⁵

► Additional supplemental material is published online only. To view, please visit the journal online (https://doi.org/10.1136/bcr-2024-261704).

For numbered affiliations see end of article.

Correspondence to

Dr David Wall; david.wall@meduniwien.ac. at and Dr Florian W Kiefer; florian.kiefer@meduniwien.ac.at

DW and KN contributed equally.

Accepted 17 February 2025

SUMMARY

We report a case of a woman in her mid-30s who developed severe cardiac shock hours after giving birth to her second child with the need for extracorporeal haemodynamic support. Initially, postpartum cardiomyopathy was suspected, and high-urgency heart transplantation was considered. However, the endocrine work-up and imaging revealed pheochromocytoma as the cause for acute heart failure that was completely reversible. Notably, the patient also developed Sheehan's syndrome with pituitary necrosis and sustained hypopituitarism, most likely as a consequence of the haemodynamic failure during pheochromocytoma crisis. While pheochromocytoma crisis is already an extremely rare peripartum complication, the current case is—to the best of our knowledge—the first report of pheochromocytoma associated with Sheehan's syndrome. This case also highlights the clinical conundrum that pheochromocytomas can be easily overlooked in pregnancy due to non-specific symptoms and confusion with pregnancy-related hypertension or hypertensionassociated other diseases. Appropriate case detection is important, especially in pregnant women with early onset of hypertension.

BACKGROUND

Peripartum cardiomyopathy is a very rare condition with an incidence of 1 per 3000 to 1 per 15 000 live births and predominantly occurs during the last month of pregnancy or up to 5 months after delivery.^{1 2} Previously identified risk factors are black race, multiparity, maternal age>30 years, twin pregnancies and history of hypertension, preeclampsia and eclampsia. The prognosis depends on the ability of the left ventricular contractility to recover within the first months after the initial onset. The mortality rate is very high, with up to 50% and heart transplantation remains the last therapeutic option.² Postpartum cardiomyopathy is characterised by dilation of the left ventricle with global ventricular dysfunction and severely reduced ejection fraction (EF) resulting in the typical clinical manifestations of acute heart failure. 45 It can be challenging for clinicians to differentiate between peripartum causes (pre-eclampsia, gestational hypertension or peripartum cardiomyopathy) and other causes of cardiac insufficiency or pulmonary oedema (stress-induced or Takotsubo cardiomyopathy, pre-existing cardiac disease including mitral stenosis, pulmonary or amniotic fluid embolism or even pheochromocytomas).46

Phaeochromocytoma in pregnancy is even less frequent than peripartum cardiomyopathy, with an incidence estimated at 1 per 15 000 to 1 per 54 000 pregnancies. However, maternal and fetal complications are high, with mortality rates up to 40–50% for both mother and fetus if undiagnosed or left untreated.

This endocrine tumour is accompanied by a variety of symptoms including hypertension, headache, palpitations, excessive sweating, muscle tremor, vomiting, panic attacks, vasomotor disturbances and blurred vision. Hypertension has been reported as the most common clinical manifestation of pheochromocytoma during pregnancy (88%); however, one-third of the affected women already had antepartum hypertensive crises. 10

Another rare postpartum condition is Sheehan's syndrome, which presents as hypopituitarism due to pituitary necrosis as a consequence of ischaemia or haemorrhage during or after delivery.¹¹

First described in 1937 by Harold L Sheehan, the condition remains often undiagnosed even for years mainly due to non-specific signs and symptoms such as lethargy, amenorrhoea or lactation problems. Every pituitary axis can be affected, but most common are lactotropic and somatotropic insufficiency, the latter presumably due to the peripheral location of somatotropic cells that are most vulnerable to ischaemic necrosis. ¹²

Hypopituitarism is often irreversible, and deterioration of certain pituitary functions can also occur years after pregnancy.¹³

Notably, diabetes insipidus is rarely associated with Sheehan's syndrome. Therapy involves hormone replacement of the affected pituitary axis. ¹¹ ¹²

To the best of our knowledge, the coincidence of both of these rare endocrine conditions, pheochromocytoma and Sheehan's syndrome, has never been reported before.

CASE PRESENTATION

A pregnant woman in her mid-30s at gestational week 41 was admitted to a community hospital in Austria and gave birth to her second child following an uncomplicated full-term pregnancy. Apart from recurring panic attacks and associated palpitations for about 4 years, her previous medical history was normal. Six hours after delivery, the patient suffered from nausea, tachycardia, and shortness of breath with a drop in peripheral oxygen saturation (85%) and the necessity of oxygen inflation. She was then transferred to the local intensive care unit (ICU). CT

© BMJ Publishing Group Limited 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.

To cite: Wall D, Nieding K, Scheuba C, et al. BMJ Case Rep 2025;**18**:e261704. doi:10.1136/bcr-2024-261704

showed no sign of pulmonary embolism but severe pulmonary congestion and a non-specific 9×9.5 cm septated cystic mass in the upper right abdomen, which was interpreted as haemorrhagic kidney cyst. Despite diuretic treatment and non-invasive ventilatory support, the respiratory situation deteriorated in the following hours, and the patient had to be intubated. Shortly after the intubation, she developed cardiogenic shock requiring mechanical cardiopulmonary resuscitation (CPR). Following the return of spontaneous circulation, the bedside echocardiography showed severely reduced left ventricular function with a calculated EF of less than 20%. Based on these results and the clinical presentation, peripartum cardiomyopathy was suspected, and the patient's circulation was supported by venoarterial extracorporeal membrane oxygenation (ECMO: cannulation sites: right femoral vein + right subclavian artery, with ECMO support of 3.5 L/min; 3000 rpm: fractional inspired oxygen: 60%; gas flow: 2 L/min).

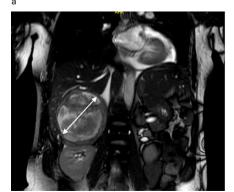
Given that the cardiac function did not improve in the following days, our institution was contacted for high-urgency heart transplantation. To assess the neurological status, the patient was weaned from sedation and mechanical ventilation and showed no signs of neurological deficits after extubation. Hence, she was transferred to our ICU at the Division of Cardiothoracic and Vascular Anesthesia for heart transplantation evaluation. On arrival, the patient was dependent on full ECMO support but was awake and breathing spontaneously. Echocardiography revealed a global hypokinetic to akinetic left ventricle with severely reduced left ventricular function but normal right ventricular function, normal valves and a pericardial effusion of 1 cm. N-Terminal Pro-B-Type Natriuretic Peptide (NT-proBNP) was markedly elevated at 1852.6 pmol/L (0–14.7 pmol/L).

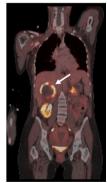
Given the differential diagnosis of Takotsubo cardiomyopathy or any other unknown—potentially reversible—acute cardiomyopathy, the patient was not immediately listed for heart transplantation. Initially, she had recurring haemodynamic fluctuations with hypertensive and severe hypotensive episodes requiring intermittent administration of vasodilators and vasopressors, respectively. However, in the following days after admission to our ICU, echocardiographic exams showed a continuous improvement of the left ventricular function, which allowed a subsequent weaning from the extracorporeal circulatory support. Nonetheless, a CT was performed to exclude an aortic injury given the volatile haemodynamic situation. The CT scan showed no aortic dissection but a large hypodense cystic mass $(9 \times 9.5 \times 10.5 \text{ cm})$ in the area of the right kidney, which had been suspected as a haemorrhagic kidney cyst in the previous external CT scan.

As incidental findings, pulmonary embolism of the right upper pulmonary artery and a large thrombus in both iliac veins were now described, most likely from thrombotic streaks in the ECMO cannulas. The patient had no typical symptoms of pulmonary embolism but was subsequently anticoagulated.

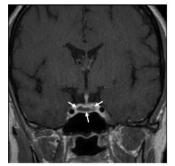
Due to the reported mass in the right upper abdomen, the patient's history of panic attacks as well as palpitations and in light of the recent haemodynamic events, an endocrine work-up was performed and markedly elevated metanephrine (MN) and normetanephrine (NMN) levels were found in plasma highly suspicious of pheochromocytoma (table 1).

To confirm this diagnosis, MRI and an 18-fluorodopa positron emission tomography CT scan (F-DOPA PET/CT) were performed that revealed a 9×9.5×10 cm³ cystic and haemorrhagic lesion in the right adrenal loge with distinct F-DOPA uptake, in accordance with pheochromocytoma of the right adrenal gland (figure 1). The radiographic imaging could be


Table 1 Laboratory findings from the postpartum period and after adrenalectomy


	Postpartum (SI units)	Post surgery (SI units)
ACTH (1.584–13.99 pmol/L)	0.88	2.86
Cortisol (172.14-496.58 nmol/L)	86	69
TSH (0.27-4.2 mIU/L)	0.78	0.54
fT3 (3.30–6.32 pmol/L)	2.93	4.90
fT4 (9.78–21.36 pmol/L)	8.11	17.24
Prolactin (0.20-1.01 nmol/L)	0.56	0.41
GH (0.126–9.88 μg/L)	0.29	0.37
IGF-1 (10.63–36.43 nmol/L)	6.68	10.74
LH (2.4–12.6 IU/L)	<0.3	7.5
FSH (3.5–12.5 IU/L)	<0.3	9.2
Estradiol (98.01-572.67 pmol/L)	103	18
DHEAS (1.65–9.13 μmol/L)	0.16	0.16
Testosterone (0.27–0.166 nmol/L)	<0.1	<0.1
Metanephrine (plasma) (<329.5 pmol/L)	12 294.8	106.5
Normetanephrine (plasma) (<1070.2 pmol/L)	9920.8	305.8
Metanephrine (urine/day) (<1622.4 nmol/day)	87 041.8	136.9
Normetanephrine (urine/day) (<2129.4 nmol/day)	18 891.6	884.5

ACTH, Adrenocorticotropic Hormone; DHEA, Dehydroepiandrosterone; FSH, Folliclestimulating Hormone; fT3, free Triiodothyronine; fT4, free Thyroxine; GH, Growth Hormone; IGF-1, Insulin-like Growth Factor 1; LH, Luteinizing Hormone; TSH, Thyroid-stimulating Hormone.


safely performed because the mother was not breastfeeding. Lactation had been stopped using cabergoline during the first days after delivery given the critical condition of the patient.

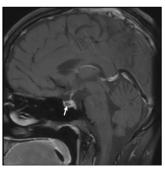

In addition, the patient had developed hyponatraemia (127 mmol/L, ref: 136–145 mmol/L) and low normal serum thyrotropin while both free triiodothyronine (fT3) and free thyroxine (fT4) were reduced suggesting central hypothyroidism and potentially adrenal insufficiency (table 1). Hence, we analysed the pituitary hormones and found a complete loss of anterior pituitary function with thyrotropic, corticotropic, gonadotropic and somatotropic insufficiency but no diabetes insipidus (table 1). Thus, in addition to pheochromocytoma, the patient also presented with postpartum hypopituitarism suggesting Sheehan's syndrome. We therefore performed a pituitary MRI that showed subtotal necrosis of the anterior pituitary gland in

Figure 1 Both MRI (a) and F-DOPA PET/CT (b) reveal a large cystic mass in the upper right abdomen. Positive F-DOPA uptake in the PET scan (b) confirms the suspected diagnosis of haemorrhagic pheochromocytoma. F-DOPA PET/CT: 18-fluorodopa positron emission tomography CT scan.

Figure 2 Pituitary MRI with paracoronal (a) and sagittal (b) T1-weighted images after contrast administration demonstrate a lack of central contrast enhancement (arrows) of the anterior pituitary lobe resulting in rim enhancement, in accordance with pituitary necrosis.

accordance with pituitary infarction and Sheehan's syndrome (figure 2). No signal changes pointing towards haemorrhage within the pituitary were found. After initiation of hydrocortisone (20 mg) and levothyroxine (50 μ g) replacement, serum sodium concentrations as well as fT3 and fT4 levels normalised quickly (table 1).

The haemodynamic condition remained stable with a complete normalisation of the cardiac output, which allowed a transfer of the patient to a regular ward. Due to the recent pulmonary embolism and the necessity for anticoagulation, a surgical removal of the pheochromocytoma had to be delayed. Thus, the patient was started on an alpha-blocker (doxazosin) at the highest dose tolerated that did not cause hypotension and was discharged from the hospital. 3 months later, the pheochromocytoma was removed in toto by open abdominal surgery due to the tumour size and cystic nature (online supplemental figure 1). Histological work-up revealed a centrally necrotic and haemorrhagic pheochromocytoma of the right adrenal gland with low differentiation and high likelihood for metastasis (tumour- nodemetastasis (TNM) classification: pT2, pNX, Residual tumour: R0; Pheochromocytoma of the Adrenal Gland Scaled Score (PASS) 11/20, Grading of Adrenal Pheochromocytoma and Paraganglioma (GAPP) Score 7/10 (histological pattern: large cell nest (1), cellularity: high (2), comedo necrosis: present (2), vascular/capsular invasion: present (1), Ki67 labelling index: up to 2% (1), catecholamine type: epinephrine type (epinephrine (E)+norepineprhine (NE) (0))).

DIFFERENTIAL DIAGNOSIS

The differential diagnosis of pheochromocytoma-induced cardiac failure and other forms of acute heart failure such as peripartum cardiomyopathy can propose a clinical conundrum given that symptoms and echocardiographic features can be very similar. However, a history of repeated hypertensive episodes and arrhythmias, especially before pregnancy, may be suspicious for pheochromocytoma rather than peripartum cardiomyopathy. Another possible distinction may be the initial onset of symptoms. Even though acute pheochromocytoma-associated symptoms are more common during later phases of pregnancy, they can also occur earlier during pregnancy.

In contrast, one of the definitions of peripartum cardiomyopathy is the development of acute heart failure during the last month of pregnancy up to 5 months postpartum.¹⁷

OUTCOME AND FOLLOW-UP

The patient has been followed at the endocrine outpatient clinic for 4 years. She is in good health and working again. Genetic tests for hereditary pheochromocytoma including *SDHB*, *SDHC*, *SDHD* and *RET* as well as whole exome sequencing came back negative. Postoperative MN and NMN concentrations in plasma and urine have remained normal. F-DOPA PET/CT scans have been performed annually (according to the patient's strong wish) and have not detected any residual or recurring pheochromocytoma. Two follow-up pituitary MRIs (the latest 3.5 years after the initial diagnosis) showed an empty sella with a residual pituitary gland barely detectable on the ground and an intact pituitary stalk within the sella turcica.

The patient is still on hydrocortisone, levothyroxine as well as sex hormone replacement therapy due to her hypopituitarism. However, the levothyroxine dose could be reduced to 25 μ g suggesting partial recovery of central hypothyroidism (table 1). Follow-up visits are now performed once a year.

DISCUSSION

Phaeochromocytoma crisis during pregnancy or the peripartum phase is an extremely rare but life-threatening complication, and no clinical guidelines exist to manage such a critical situation. A diagnosis of pheochromocytoma after delivery poses the highest risk for adverse maternal or fetal outcomes. Pregnant women with pheochromocytomas are therefore most vulnerable during delivery given that fetal movements, uterine contractions and labour can cause release of catecholamines with the risk for cardiovascular emergencies. Catecholamine bursts and hypertensive episodes can also disrupt placental circulation, resulting in fetal hypoxia or even miscarriage. However, morbidity and mortality have improved in recent decades due to appropriate case detection and medical management. 9

In general, the diagnosis of pheochromocytomas is often delayed due to the rarity of this condition and the sometimes non-specific clinical presentation. Particularly during pregnancy, high blood pressure, one of the leading symptoms of pheochromocytoma, could be misinterpreted as gestational hypertension. However, pheochromocytoma should be considered in women with hypertensive crisis or newly diagnosed hypertension, especially in the first trimester of pregnancy. 19 20 In our patient, hypertensive episodes before and during pregnancy had been attributed to panic attacks, which can also be a symptom of pheochromocytoma. Even if a full diagnostic work-up of various secondary forms of hypertension may not be possible during pregnancy, given that imaging techniques with radiation exposure cannot be used, the analysis of plasma fractioned (nor)metanephrines and/or 24-hour urinary fractionated (nor) metanephrines and catecholamines is feasible and should be performed if pheochromocytoma is suspected.^{21 22}

In addition, case detection is recommended before pregnancy in women with a genetic predisposition for or a family history of pheochromocytoma or paraganglioma. If pheochromocytoma is diagnosed during pregnancy, medical therapy is recommended to avoid hypertensive crisis. Alpha-adrenergic blockers are the treatment of choice. Antepartum surgery can be considered in the second trimester. However, a recent retrospective study showed no improved maternal or fetal outcomes, although these findings need to be interpreted with caution given the retrospective nature of the study with reported missing data, potential selection and information bias, as well as non-systematic enrolment at some centres. The period of enrolment for this study spans several decades during which significant advances both in obstetric care

Case report

and understanding of pheochromocytoma occurred. In general, the study reported markedly lower adverse maternal and fetal outcomes compared with previous reports, ²³ ²⁴ which further limits any conclusions about the potential risks of antepartum surgical vs non-surgical treatment.

One of the most dangerous complications of pheochromocytoma crisis is acute cardiac failure, as occurred in the case presented here. Even though the exact mechanisms are not completely understood, it has been hypothesised that elevated catecholamine levels and/or their oxidation products lead to increased permeability of the sarcolemmal membrane resulting in enhanced intracellular calcium influx and consequently myocardial cell necrosis.²⁵

Another postulated mechanism implies that excess adrenergic stimulation causes vasoconstriction and decreased coronary perfusion resulting in 'ischaemic myocarditis'. ²⁵ ²⁶

ECMO is an effective salvage therapy for acute haemodynamic failure but is associated with high risk of bleeding, thromboembolism and neurological injury.²⁷ ²⁸ In this case, ECMO support was critical for the favourable outcome of the patient because unnecessary high-urgency heart transplantation could be avoided, and it allowed a thorough endocrine and imaging work-up.

During that work-up, in addition to pheochromocytoma, Sheehan's syndrome with complete anterior pituitary deficiency was discovered in our patient. The pituitary insufficiency in Sheehan's syndrome develops as a consequence of pituitary necrosis, which occurs most commonly due to haemorrhagic shock during labour, for example, after massive uterine bleeding.²⁹ The patient we described here had a vaginal delivery without any complications and no severe blood loss, so it is very unlikely that uterine haemorrhage was the cause of Sheehan's syndrome. However, she developed cardiogenic shock that required CPR most likely as a result of a peripartum pheochromocytoma crisis which may have led to a malperfusion of the pituitary. In addition, our patient developed several episodes of hypertension and hypotension during the first days after delivery while at the ICU and required intermittent administration of vasodilators and vasopressors. That could have further compromised the vulnerable pituitary perfusion during the postpartum phase. The increase in pituitary volume during pregnancy and the changes in the intrasellar pressure render the tissue particularly susceptible to ischaemia. Hence, all facts point towards the haemodynamic consequences of pheochromocytoma crisis as the critical event for the development of Sheehan's syndrome in our patient during the most vulnerable phase after delivery. This is an unprecedented sequence of rare endocrine complications that has almost cost this young woman and her unborn child their lives. The complexity and severity of this case also highlight the importance for the management of such cases by an interdisciplinary team at a specialised centre with the appropriate experience in critical care medicine, diagnosis of rare endocrine conditions and surgical treatment of such rare tumours. For instance, the signs of Sheehan's syndrome could have been easily overlooked in this patient given that hyponatraemia and abnormalities of thyroid hormone levels are frequent in ICU patients. A surgical intervention to remove the pheochromocytoma or, let alone, high-urgency heart transplantation without appropriate perioperative hydrocortisone replacement in a patient with secondary adrenal insufficiency could have had a fatal outcome.

Author affiliations

¹Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Clinical Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria

²Division of Visceral Surgery, Austria European Neuroendocrine Tumor Society (ENETS) Center of Excellence, Medical University of Vienna Department of General Surgery, Vienna, Austria

³Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Wien, Austria

⁴Department of Biomedical Imaging and Image-Guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Vienna, Austria

⁵Clinical Division of Endocrinology and Metabolism, Medical University of Vienna Department of Medicine III, Wien, Austria

Contributors The following authors were responsible for drafting and reviewing of the text, sourcing and editing of clinical images, investigation results, drawing original diagrams and algorithms, and critical revision for important intellectual content: DW and FK. The following author acts as the guarantor: DW. The following author acts as senior author: FK. The following authors gave final approval of the manuscript: DW, FK, KN, CS, AH and MS.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Consent obtained directly from patient(s).

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Case reports provide a valuable learning resource for the scientific community and can indicate areas of interest for future research. They should not be used in isolation to guide treatment choices or public health policy.

ORCID iDs

David Wall http://orcid.org/0009-0005-0191-9750 Florian W Kiefer http://orcid.org/0000-0003-2191-025X

REFERENCES

- 1 Bhattacharyya A, Basra SS, Sen P, et al. Peripartum cardiomyopathy: a review. Tex Heart 1 J 2012:39:8–16.
- 2 Martin J, Apin M, Bienengräber H, et al. Peripartale Kardiomyopathie. Anaesthesist 2003;52:137–41.

Learning points

- ► Phaeochromocytoma crisis is a rare but life-threatening complication during pregnancy.
- Pregnant women with hypertensive crisis or newly diagnosed hypertension, especially in the first trimester of pregnancy, should be considered for screening of pheochromocytoma.
- ► Patients with pheochromocytoma should be managed in an experienced centre involving a multidisciplinary team.
- The signs of Sheehan's syndrome can be easily overlooked, especially when only partial pituitary insufficiency is present.

- 3 Bahloul M, Ben Ahmed MN, Laaroussi L, et al. Myocardiopathie du péripartum : incidence, physiopathologie, manifestations cliniques, prise en charge thérapeutique et pronostic. Annales Françaises d'Anesthésie et de Réanimation 2009;28:44–60.
- 4 Haddad S, Al-Raiy B, Madkhali A, et al. Cardiorespiratory crisis at the end of pregnancy: a case of pheochromocytoma. Middle East J Anaesthesiol 2013;22:195–202.
- 5 Sigauke FR, Ntsinjana H, Tsabedze N. Peripartum cardiomyopathy: a comprehensive and contemporary review. Heart Fail Rev 2024;29:1261–78.
- 6 Mujkanovic J, Qayyum AA. Review of Randomized Controlled Trials in Patients with Peripartum Cardiomyopathy. Curr Cardiol Rev 2023;19:E230822207933.
- 7 Pacak K, Taieb D. Phaeochromocytoma and pregnancy: looking towards better outcomes, less fear, and valuable recommendations. *Lancet Diabetes Endocrinol* 2021;9:2–3.
- 8 Marušić R, Olujić M, Bačun T. Pheochromocytoma in pregnancy a rare but dangerous diagnosis. In: Medicinski Glasnik Official Publ Medical Assoc Zenica-Doboj Canton Bosnia Herzegovina, Vol 19. 2022.
- 9 Gruber LM, Young WF, Bancos I. Pheochromocytoma and Paraganglioma in Pregnancy: a New Era. Curr Cardiol Rep 2021;23:60.
- 10 Sarathi V, Lila AR, Bandgar TR, et al. Pheochromocytoma and pregnancy: a rare but dangerous combination. Endocr Pract 2010;16:300–9.
- 11 Islam A, Hasnat MA, Doza F, et al. Sheehan's syndrome with reversible dilated cardiomyopathy: A case report and brief overview. J Saudi Heart Assoc 2014;26:117–20.
- 12 Diri H, Karaca Z, Tanriverdi F, et al. Sheehan's syndrome: new insights into an old disease. Endocrine 2016;51:22–31.
- 13 Ramiandrasoa C, Castinetti F, Raingeard I, et al. Delayed diagnosis of Sheehan's syndrome in a developed country: a retrospective cohort study. Eur J Endocrinol 2013;169:431–8.
- 14 Lenders JWM, Langton K, Langenhuijsen JF, et al. Pheochromocytoma and Pregnancy. Endocrinol Metab Clin North Am 2019;48:605–17.
- 15 Heyman TD, Jayaram A, Eisenberg Y, et al. Pheochromocytoma: Secondary Hypertension in Pregnancy. *JACC Case Rep* 2024;29:102217.
- 16 Ahlawat SK, Jain S, Kumari S, et al. Pheochromocytoma associated with pregnancy: case report and review of the literature. Obstet Gynecol Surv 1999;54:728–37.

- 17 Davis MB, Arany Z, McNamara DM, et al. Peripartum Cardiomyopathy: JACC State-of-the-Art Review. J Am Coll Cardiol 2020;75:207–21.
- 18 Bancos I, Atkinson E, Eng C, et al. Maternal and fetal outcomes in phaeochromocytoma and pregnancy: a multicentre retrospective cohort study and systematic review of literature. Lancet Diabetes Endocrinol 2021;9:13–21.
- 19 Wyskida M, Wyskida K, Maruniak-Chudek I, et al. Pheochromocytoma in pregnancy. Postepy Hig Med Dosw 2014;68:749–53.
- 20 Oliva R, Angelos P, Kaplan E, et al. Pheochromocytoma in Pregnancy. Hypertension 2010;55:600–6.
- 21 Natrajan PG, McGARRTGLE HHG, Lawrence DM, et al. Plasma noradrenaline and adrenaline levels in normal pregnancy and in pregnancy-induced hypertension. BJOG 1982;89:1041–5.
- 22 Zuspan FP. Urinary Excretion of Epinephrine and Norepinephrine During Pregnancy. J Clin Endocrinol Metab 1970;30:357–60.
- 23 Mannelli M, Bemporad D. Diagnosis and management of pheochromocytoma during pregnancy. J Endocrinol Invest 2002;25:567–71.
- 24 Biggar MA, Lennard TWJ. Systematic review of phaeochromocytoma in pregnancy. Br J Surg 2013;100:182–90.
- 25 Ramos MJG, Valverde FMG, Alvarez MCS. Sipple's syndrome presenting acutely as severe heart failure. Eur J Emerg Med 2002;9:171–4.
- 26 Kim J, Reutrakul S, Davis DB, et al. Multiple endocrine neoplasia 2A syndrome presenting as peripartum cardiomyopathy due to catecholamine excess. Eur J Endocrinol 2004;151:771–7.
- 27 Zhang JJY, Ong JA-H, Syn NL, et al. Extracorporeal Membrane Oxygenation in Pregnant and Postpartum Women: A Systematic Review and Meta-Regression Analysis. J Intensive Care Med 2021;36:220–8.
- 28 Zhou X, Liu D, Su L, et al. Pheochromocytoma crisis with severe cyclic blood pressure fluctuations in a cardiac pheochromocytoma patient successfully resuscitated by extracorporeal membrane oxygenation: a case report. Medicine (Baltimore) 2015:94:e790.
- 29 Valassi E. Patología hipofisaria y gestación. Endocrinología, Diabetes y Nutrición 2021;68:184–95.
- 30 Tessnow AH, Wilson JD. The Changing Face of Sheehan's Syndrome. *Am J Med Sci* 2010:340:402–6.

Copyright 2025 BMJ Publishing Group. All rights reserved. For permission to reuse any of this content visit https://www.bmj.com/company/products-services/rights-and-licensing/permissions/
BMJ Case Report Fellows may re-use this article for personal use and teaching without any further permission.

Become a Fellow of BMJ Case Reports today and you can:

- ► Submit as many cases as you like
- ▶ Enjoy fast sympathetic peer review and rapid publication of accepted articles
- ► Access all the published articles
- ▶ Re-use any of the published material for personal use and teaching without further permission

Customer Service

If you have any further queries about your subscription, please contact our customer services team on +44 (0) 207111 1105 or via email at support@bmj.com.

Visit casereports.bmj.com for more articles like this and to become a Fellow