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Abstract

Inspired by the mechanistic correlations between superoxide dismutase 1 (SOD1) and lipid

metabolism, the associations of SOD1 single nucleotide polymorphisms (SNPs) with circu-

lating lipid levels were explored. In 2621 Chinese Han adults, randomly recruited from a

health examination center without organic diseases, cancers, and pregnancy, three tag

SNPs, rs4998557, rs1041740, and rs17880487 selected by Haploview software were geno-

typed with a probe-based real-time quantitative PCR method. In both genders, most param-

eters of the dyslipidemia adults were inferior (P < 0.001) to those of the non-dyslipidemia

adults, and genotype frequencies of rs4998557 and rs17880487 were significantly different

(P < 0.05) between the normal and abnormal subgroups of total cholesterol (TC) or high-

density lipoprotein cholesterol (HDLC). Adjusted for confounding factors, logistic regression

analyses revealed that in males rs4998557A, rs1041740T, and rs17880487T reduced the

risk of high TC and/or LDLC (P < 0.05), and rs4998557A and rs17880487T increased the

risk of low HDLC (P < 0.05); but in females, none of the SNPs had associations with any of

the lipid parameters (P > 0.05). Conclusively, characterized by a sexual dimorphism, the

SOD1 polymorphisms were associated with the lipid disorders in the adult males but not

females of the Chinese Han population.

Introduction

Dyslipidemia is one of the most prevalent health problems in the modern era, and multiple

factors are thought to be the etiology [1, 2]. One of them is the dysfunction of antioxidant sys-

tem, which leads to an increase in the production and a decrease in the inactivation of reactive

oxygen species (ROS) [3]. Oxidative stress is produced once the production of ROS
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overwhelms the antioxidant capacity. Superoxide dismutases (SODs) are a ubiquitous class of

antioxidant metalloproteinases, consisting of a total of three genetically distinct isoforms in

human [4]. Superoxide dismutase 1 (SOD1, EC: 1.15.1.1), a copper-and zinc-containing SOD

located at the cytoplasm, nucleus, mitochondrial intermembrane space as well as serum lipo-

proteins [4–7], accounts for 50% to 90% of the total SOD activity in a eukaryotic cell or mam-

malian tissues [4, 6, 8] and plays a key role in the maintenance of a physiological ROS level by

catalyzing superoxide anion (O2
•-) to hydroperoxide and oxygen [9]. Supraphysiological levels

of ROS are extremely detrimental to DNA, lipids, proteins, and normal cellular metabolism

[10, 11], and have a strong potential to disturb the lipid metabolism [12]. The Sod1 knockout

mice were characterized by lipid accumulation in liver and abnormal circulating lipid profiles

[13, 14], and the inhibition of SOD1 function in nasopharyngeal carcinoma connived the accu-

mulation of lipid droplets [15]. SOD1 also affected cholesterol metabolism in human hepato-

carcinoma cells [16] and its presence in human serum lipoproteins suggested its crucial role in

the lipid transport [7].

The single nucleotide polymorphism (SNP) is the most common type of DNA variations

in> 1% of a population [17], usually expressed as its minor allele frequency (MAF) > 0.01.

The SNPs in a gene may change the gene activities, alter the amino acid residues, moderate

protein functions, and/or exert some other effects on the molecular level to ultimately affect

the phenotypes [18]. Several SNPs of SOD1 have been reported to correlate with metabolic dis-

orders such as obesity [19], diabetes and its complications [20–24], cardiovascular disease [25,

26], etc., but their associations with lipid profiles and dyslipidemia were absent [27]. On the

other hand, accumulating evidences revealed that males and females usually exhibit sex-spe-

cific differences in susceptibility, prevalence, morbidity, symptoms, treatment, or prognosis

for many diseases, and females maybe more resistant to oxidative damage [28]. In terms of oxi-

dative stress regulation pathways, it has been found that the potential sexual dimorphism may

have diverse effects on the cardiovascular diseases in the two genders [29]. As a gene encoding

an important antioxidant enzyme, SOD1 may have its SNPs gender-differentially correlated

with metabolic diseases [30].

Though the previous studies revealed that the knockout/inhibition of SOD1 induced disor-

ders of lipid metabolism [3, 13–16] and the SNPs of SOD1 may correlate with some metabolic

disorders [19–21, 25, 26, 31, 32], no epidemiologic studies were yet conducted to investigate

the association of SOD1 SNPs and dyslipidemia, not to mention the effect of gender differences

on the association. Therefore, the objective of this study was trying to understand the

situation.

Materials and methods

Participants and sample collection

The study was approved by the Ethic Committee of Shenzhen Center for Chronic Disease

Control, and registered in January 2018 as NCT03406234 in the ClinicalTrials.gov online sys-

tem as reported in our previous study [33]. Adult volunteers were recruited from a health

examination center in Shenzhen city of Guangdong province, China. They were informed

about the study and their privacy right protection with written consents to be the participant

candidates and accepted a questionnaire survey on their basic health information. The anthro-

pometric measurements for height and body weight were performed on every volunteer. The

inclusion criteria were: 1)� 18 years old Han Chinese; 2) having been living in Shenzhen

for> 2 years; 3) free of any type of cancers and other organic diseases in the past 6 months

according to their questionnaires and medical records; 4) not taking long-term effect medi-

cines to control lipid profiles; and 5) not in pregnancy for women.
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The sample size (N) was estimated with the formula N� deff × Z^2 × p(1-p)/E^2, where

deff was 2.0 for the design effect, Z was 1.96 for the two-sided 95% confidence intervals (CIs),

p was 8.15% for the prevalence of high total cholesterol (TC) in Chinese adult males [34], E

was 20% of the prevalence for the relative precession, and the calculated N was� 2165. Fur-

thermore, the sample size was confirmed by the QUANTO software to be sufficient to detect

the genetic difference. In the independent individuals and gene only model, assuming the min-

imum MAF = 0.01 and odds ratio (OR) = 0.1, 781 was the minimum number of sample size

for each gender. Based on the estimated total sample size and a gender ratio close to 1, at least

1083 (2165/2) for each gender were required.

The people visiting the health examination center were fasted overnight and did not take

medicines to control the previously diagnosed dyslipidemia for more than 12 hours. From

their ulnar veins, blood samples were drawn into a vacuum tube with EDTA anticoagulant

and another vacuum tube without any anticoagulants, respectively. After the immediate assays

for routine blood parameters, the whole blood samples were centrifuge at 3,000 × g, 4˚C for 10

minutes to get supernatant and precipitate (mainly blood cells). The separated sections of each

blood sample were transferred to aliquot tubes for timely analysis or stored at -80˚C for later

experiments. Lipid profiles, fasting plasma glucose (FPG), and some other biomarkers for liver

and renal functions were assayed less than two hours after the blood sample collection. The

body weight and height were measured to calculate the body mass index (BMI) as body weight

(kg)/ height (m)2. Blood pressures were measured with certified mercury blood-pressure

meters. Later, referring to the diagnosis criteria recommended by the Chinese guideline for

dyslipidemia management [35], a subject was grouped into the dyslipidemia group if he/she

had triglyceride (TG)� 2.3 mmol/L, TC� 6.2 mmol/L, low-density lipoprotein cholesterol

(LDLC)� 4.1 mmol/L, high-density lipoprotein cholesterol (HDLC) < 1.0 mmol/L, or was a

previously diagnosed dyslipidemia patient; otherwise, he/she was grouped into the non-dysli-

pidemia group. In the genotype frequency analyses for either subgroup of TG, TC, or LDLC,

in order to avoid the small subject numbers for the genotypes of low MAF, the participants

were grouped as the abnormal subgroup by the available marginally elevated cut-off values for

TG� 1.7 mmol/L, TC� 5.2 mmol/L, or LDLC� 3.4 mmol/L [35], respectively, or otherwise

as the corresponding normal subgroup for each of the lipid parameters. Subgroups of abnor-

mal and normal HDLC were defined by the only available cut-off value of 1.0 mmol/L [35].

DNA preparation

The genomic DNA was extracted from each of the blood cell samples according to the user

manual of the commercial kit (QIAGEN Cat#: 51106). The DNA concentration was assayed

with a spectrometer (NanoVue Plus, GE), and diluted with double-distilled water to the final

concentration of 100 ng/μl for later SNPs analyses.

Selection and genotyping of tag SNPs

The files for SNP data of SOD1 were downloaded from The International Genome Sample

Resource (IGSR) (http://www.internationalgenome.org/). Three SNPs of rs4998557,

rs1041740, and rs17880487 capturing the total alleles at r2� 0.8 were selected as tag SNPs by

the Haploview 4.2 software (S1 Fig).

For each of the SNPs, specific primers and molecular beacon probes were designed with

Primer Premier 5 software, and synthesized by the Invitrogen Ltd. (Shanghai, China). S1 Table

summarized the information of the oligos and the amplicons. The SNPs were analyzed on the

LightCycler 480 II real-time quantitative PCR (qPCR) machine (Roche, Singapore). A hot-

start Taq enzyme kit (Cat#: DR007B, TaKaRa, China) was used to perform the qPCR reaction.
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The asymmetric PCRs were performed to genotype the SNPs. In brief, in each of the 25 μl

well of the 96-well plate, the synthesis of the probe-targeted strand was initiated by the primer

having 10 times of concentration to that of the other primer. The qPCR program was: 1) 94ºC
for 3 min; 2) a touchdown step of 10 cycles of 94ºC for 15 sec, 65ºC (decreasing at 1ºC for each

cycle) for 15 sec, 72ºC for 20 sec; 3) 50 cycles of 94ºC for 15 sec, 55ºC for 15 sec of signal collec-

tion, and 72ºC for 20 sec; 4) a melting curve step of 94ºC for 1 min, 40ºC for 3 min, and a tem-

perature increase from 40ºC to 80ºC with a collection of 5 points of signals per degree. The

genotypic polymorphisms of major homozygote, minor homozygote, and heterozygote judged

by the curve pattern with peak(s) at specific melting temperature(s) were verified with Sanger

sequencing analyses by the Invitrogen Ltd. (Shanghai, China). For each of the three SNPs’

amplicons, the sequencing primer, as indicated in S1 Table, was one of the primers for the

above qPCR amplification. Consequently, all the genotyping work was performed with our

established molecular beacon probe-based qPCR method.

Data analysis

Data of clinic profiles, such as anthropometric indices, fasting glucose and lipid levels, bio-

markers for liver and renal functions, routine blood parameters, etc., of the non-dyslipidemia

and dyslipidemia adults were presented as means ± SD and analyzed with t test between the

two groups in either gender. The genotypes of all the three SNPs were tested with Hardy-

Weinberg equilibrium (HWE) analyses for sampling representation. The lipid parameters

grouped by the three tag SNPs of SOD1 were expressed as medians and their interquartile

ranges, and compared with rank sum test (Wilcoxon rank test and Kruskal-Wallis rank test).

For genotypic comparisons, differences in allele and genotype frequencies were evaluated

using the Chi-square (χ2) test. The additive, dominant, recessive, homozygous, or allelic mod-

els for each of the SNPs entered the logistic regression analyses for ORs and 95% CIs with

adjustment for age, BMI, education (elementary school, junior high school, senior high school,

undergraduate, or postgraduate), FPG, and smoking status (currently daily, currently occa-

sional, former, or never). A multiple comparison test was performed when there was a signifi-

cant difference among at least three groups. The P-value less than 0.05 was considered to be

statistically significant.

Results

There were 1110 adult males and 1511 adult females (2621 in total) included for the study, and

the clinic profiles of the participants were summarized in Table 1. It was indicated that several

metabolic or metabolism-related parameters were statistically different between non-dyslipi-

demia and dyslipidemia adults (P< 0.05), such as age, BMI, systolic blood pressure, diastolic

blood pressure, FPG, serum levels of TG, TC, LDLC and HDLC, alanine aminotransferase,

aspartate aminotransferase, and so forth. The composition of dyslipidemia in male and female

subjects was showed in S2 Table.

Human SOD1 is a gene spanning about 9310 base pairs, and has five SNPs for Chinese

marked by the Haploview software (S1 Fig). Rs4998557 and rs2070424 have a linkage disequi-

librium (LD) degree of 0.97, and rs1041740 and rs4817420 have a LD of 1.00. Whereas

rs17880487 had low LD with any of the other SNPs. Thus, rs4998557, rs1041740, and

rs17880487 were selected as tag SNPs to represent the polymorphisms of SOD1. The melting

curves representing the major homozygotes, minor homozygotes, and heterozygotes of the

three SNPs and the sequencing verification were shown in S2–S4 Figs. None of the frequencies

of major homozygote, heterozygote, minor homozygote, major allele, or minor allele of all the

PLOS ONE Sexual dimorphism of SOD1 polymorphism on lipid profiles

PLOS ONE | https://doi.org/10.1371/journal.pone.0234716 June 19, 2020 4 / 13

https://doi.org/10.1371/journal.pone.0234716


three SNPs was significantly different between the male and female subjects (P> 0.05, S3

Table).

The genotype frequencies of the three tag SNPs of SOD1 in normal and abnormal lipid sub-

groups of males were summarized in S4 Table. The distribution of the rs4998557 genotype

were different between the low HDLC (< 1 mmol/L) subgroup and its normal control (�1

mmol/L) subgroup (P = 0.03), as well as the rs17880487 genotype between the high TC (� 5.2

mmol/L) subgroup and its normal control (< 5.2 mmol/L) subgroup (P = 0.03). S5 Table

showed the statistical analyses on the genotype frequencies of SOD1 in the normal and abnor-

mal lipid subgroups in females, and the distribution of the rs4998557 genotype in high TC

individuals and the normal ones was statistically significant (P = 0.01). The lipid levels across

the three tag SNPs in adult males was described in S6 Table, and the significant differences

were found in TC and LDLC levels between CT and CC genotypes in additive model and

between CT+TT and CC genotypes in dominant model of rs17880487 (P< 0.05). The LDLC

levels between T and C alleles also presented a significant difference (P = 0.04). As shown in S7

Table, no differences were found for all the lipid parameters in any of the genotype models of

the three tag SNPs in females (P> 0.05).

Further, logistic analyses were performed with adjustment for age, BMI, education, FPG,

and smoking. Table 2 displayed the logistic regression analyses on the relationships between

Table 1. Clinic profiles of the non-dyslipidemia (ND) and dyslipidemia (DL) adults, mean ± SD.

Male, n = 1110 t-value P-value Female, n = 1511 t-value P-value

ND, 66.7% DL, 33.3% ND, 79.9% DL, 20.1%

Age, y 36.0 ± 10.2 40.2 ± 10.0 6.527 < 0.001 37.9 ± 11.2 46.6 ± 13.3 10.539 < 0.001

BMI, kg/m2 23.9 ± 2.8 25.5 ± 2.9 8.707 < 0.001 21.7 ± 2.6 23.0 ± 2.9 7.527 < 0.001

SBP, mmHg 122.6 ± 14.3 126.5 ± 13.5 4.451 < 0.001 113.1 ± 14.6 122.1 ± 18.7 7.852 < 0.001

DBP, mmHg 74.1 ± 10.3 77.7 ± 9.9 5.577 < 0.001 66.8 ± 9.5 71.1 ± 11.4 5.993 < 0.001

FPG, mmol/L 5.4 ± 0.7 5.8 ± 1.4 5.195 < 0.001 5.3 ± 0.6 5.8 ± 1.3 6.755 < 0.001

TG, mmol/L 1.2 ± 0.5 3.3 ± 2.6 15.220 < 0.001 0.9 ± 0.4 2.1 ± 2.0 10.724 < 0.001

TC, mmol/L 4.9 ± 0.7 5.5 ± 1.1 10.238 < 0.001 4.8 ± 0.7 6.0 ± 1.4 14.814 < 0.001

LDLC, mmol/L 2.8 ± 0.4 3.2 ± 0.6 10.564 < 0.001 2.7 ± 0.4 3.5 ± 0.8 15.327 < 0.001

HDLC, mmol/L 1.3 ± 0.2 1.4 ± 0.2 5.803 < 0.001 1.4 ± 0.2 1.5 ± 0.3 6.185 < 0.001

ALT, IU/L 27.2 ± 28.5 33.4 ± 19.2 4.311 < 0.001 18.1 ± 9.7 21.5 ± 11.0 4.995 < 0.001

AST, IU/L 23.6 ± 15.3 25.7 ± 9.4 2.792 < 0.001 19.4 ± 6.1 21.4 ± 6.6 4.743 < 0.001

DB, μmol/L 5.3 ± 1.2 5.2 ± 1.2 -1.457 0.145 4.9 ± 1.2 4.8 ± 1.1 -0.824 0.410

TB, μmol/L 17.9 ± 5.9 17.3 ± 5.8 -1.627 0.104 15.0 ± 5.2 13.9 ± 4.1 -3.895 0.001

Cr, μmol/L 90.4 ± 13.3 91.5 ± 15.5 1.225 0.221 66.0 ± 9.7 67.9 ± 11.6 2.610 0.004

UA, μmol/L 379.1 ± 72.8 412.1 ± 77.1 6.853 < 0.001 271.0 ± 55.1 306.1 ± 68.2 8.321 < 0.001

UN, mmol/L 4.5 ± 1.2 4.6 ± 1.2 1.335 0.182 4.0 ± 1.1 4.3 ± 1.2 4.309 < 0.001

TP, g/L 70.4 ± 3.8 70.5 ± 3.8 0.230 0.819 69.8 ± 3.8 70.1 ± 3.7 1.184 0.237

ALB, g/L 44.5 ± 2.7 44.1 ± 2.7 -2.256 0.026 42.9 ± 2.7 42.6 ± 2.6 -1.458 0.145

Hb, g/L 147.5 ± 9.8 149.4 ± 10.0 3.042 0.002 126.3 ± 10.3 129.8 ± 9.6 5.490 < 0.001

Platelet, 109/L 215.8 ± 44.1 224.0 ± 43.7 2.946 0.003 239.5 ± 51.8 245.3 ± 53.3 1.737 0.083

RBC, 1012/L 5.1 ± 0.4 5.1 ± 0.4 1.744 0.081 4.4 ± 0.4 4.5 ± 0.4 2.376 0.018

WBC, 109/L 6.8 ± 1.6 7.2 ± 1.5 4.621 < 0.001 6.5 ± 1.6 6.7 ± 1.4 1.430 0.153

Abbreviations: ALB, serum albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; Cr, Creatinine; DB: direct bilirubin; DBP,

diastolic blood pressure; FPG, fasting plasma glucose; Hb, hemoglobin; HDLC, high-density lipoprotein cholesterol; LDLC, low-density lipoprotein cholesterol; RBC,

red blood cells; SBP, systolic blood pressure; TB: total bilirubin; TC, total cholesterol; TG, triglyceride; TP, serum total protein; UA, uric acid; UN, urea nitrogen; WBC,

white blood cells.

https://doi.org/10.1371/journal.pone.0234716.t001
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the lipids and the three tag SNPs of SOD1 in adult males. Between the subgroups of TG

(mmol/L)� 1.7 and< 1.7, no significances (P> 0.05) were found in all models of the three

tag SNPs. Between the subgroups of TC (mmol/L)� 5.2 and< 5.2, the data presented signifi-

cances (P< 0.05) in the homozygous model of rs4998557 (P = 0.03, OR = 0.46, 95% CI: 0.23–

0.94) and the additive (P = 0.047, OR = 0.67, 95% CI: 0.45–0.99) and dominant (P = 0.03,

OR = 0.63, 95% CI: 0.42–0.95) models of rs17880487, while other models of the genotype

showed no significances (P> 0.05). Between the LDLC subgroups (� 4.1 vs.< 4.1 mmol/L),

the additive (P = 0.03, OR = 0.73, 95% CI: 0.54–0.98), recessive (P = 0.02, OR = 0.59, 95% CI:

0.38–0.93), and allelic (P = 0.02, OR = 0.71, 95% CI: 0.52–0.96) models of rs4998557 and the

recessive (P = 0.01, OR = 2.19, 95% CI: 1.25–3.83) and allelic (P = 0.048, OR = 1.37, 95% CI:

1.00–1.89) models of rs1041740 were significantly correlated with the risk of high LDLC. With

regard to the HDLC subgroups (� 1.0 vs. < 1.0 mmol/L), the recessive model of rs4998557

(P = 0.02, OR = 2.78, 95% CI: 1.17–6.57) and the additive model of rs17880487 (P = 0.02,

OR = 3.08, 95% CI: 1.19–7.99) revealed the significant contributions of the two SNPs to low

HDLC. Table 3 displayed logistic regression analyses of lipids with the three tag SNPs of SOD1
in adult females. No statistical differences were observed for any of the genotypic models in

any of the lipid parameters.

Discussion

It is well known that the mutations of some genes encoding proteins in the lipid metabolic pro-

cess are fundamental causes of the rare familial dyslipidemia [2], while multiple genetic

Table 2. Logistic regression analyses of lipids with three tag SNPs of superoxide dismutase 1 gene in adult males with adjustment for age, body mass index, educa-

tion, fasting plasma glucose concentration, and smoking statusa, b.

Genotype TG, mmol/L TC, mmol/L LDLC, mmol/L HDLC, mmol/L

� 1.7 vs < 1.7 � 5.2 vs < 5.2 � 3.4 vs < 3.4 < 1.0 vs� 1.0

Comparison P OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI)

rs4998557

Add.: GG vs AG vs AA 0.55 0.93 (0.73–1.18) 0.17 0.85 (0.68–1.07) 0.03 0.73 (0.54–0.98) 0.08 1.91 (0.92–3.96)

Dom.: AA + AG vs GG 0.64 0.91 (0.62–1.34) 0.53 0.89 (0.63–1.27) 0.30 0.79 (0.51–1.24) 0.80 0.85 (0.25–2.87)

Rec.: AA vs AG + GG 0.60 0.91 (0.64–1.29) 0.15 0.79 (0.57–1.09) 0.02 0.59 (0.38–0.93) 0.02 2.78 (1.17–6.57)

Hom.: AA vs GG 0.38 0.72 (0.35–1.50) 0.03 0.46 (0.23–0.94) 0.09 0.43 (0.16–1.13) 0.76 0.59 (0.02–18.1)

Alle.: A vs G 0.57 0.93 (0.73–1.19) 0.27 0.88 (0.70–1.11) 0.02 0.71 (0.52–0.96) 0.18 1.62 (0.80–3.29)

rs1041740

Add.: CC vs CT vs TT 0.79 1.04 (0.80–1.34) 0.79 1.03 (0.82–1.31) 0.06 1.34 (0.99–1.82) 0.98 1.01 (0.50–2.02)

Dom.: CT + TT vs CC 0.87 0.97 (0.69–1.36) 0.41 0.88 (0.64–1.20) 0.68 1.09 (0.73–1.62) 0.35 1.67 (0.57–4.91)

Rec.: TT vs CT + CC 0.43 1.21 (0.75–1.95) 0.14 1.40 (0.90–2.18) 0.01 2.19 (1.25–3.83) 0.78 0.85 (0.28–2.63)

Hom.: TT vs CC 0.43 1.37 (0.63–2.99) 0.10 1.87 (0.88–3.97) 0.073 2.52 (0.92–6.92) 0.18 10.4 (0.33–324)

Alle.: T vs C 0.76 1.04 (0.80–1.35) 0.73 1.04 (0.82–1.33) 0.048 1.37 (1.00–1.89) 0.93 0.97 (0.48–1.96)

rs17880487

Add.: CC vs CT vs TT 0.72 0.93 (0.61–1.41) 0.047 0.67 (0.45–0.99) 0.99 1.00 (0.62–1.63) 0.02 3.08 (1.19–7.99)

Dom.: CT + TT vs CC 0.80 0.94 (0.61–1.46) 0.03 0.63 (0.42–0.95) 0.88 0.96 (0.58–1.60) 0.06 2.52 (0.97–6.56)

Rec: TT vs CT + CC 0.61 0.53 (0.05–5.96) 0.25 3.84 (0.39–38.1) 0.14 4.66 (0.62–35.0) 1.0 0.00 (0.00-NA)

Hom.: TT vs CC 0.55 0.47 (0.04–5.48) 0.31 3.33 (0.33–33.4) 0.16 4.47 (0.57–35.3) 1.0 0.00 (0.00-NA)

Alle.: T vs C 0.81 0.95 (0.63–1.44) 0.09 0.72 (0.49–1.06) 0.78 1.07 (0.67–1.72) 0.09 2.13 (0.89–5.10)

a Abbreviations: Add., additive model; Alle., allelic model; Dom., dominant model; HDLC, high-density lipoprotein cholesterol; Hom., homozygous model; LDLC, low-

density lipoprotein cholesterol; Rec., recessive model; SNPs, single nucleotide polymorphisms; TC, total cholesterol; TG, triglyceride.
b NA: not available due to 0 was found at least in one of the genotypes in either of the groups.

https://doi.org/10.1371/journal.pone.0234716.t002
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polymorphisms have contributions to the most nonfamilial dyslipidemia with complex molec-

ular mechanisms. The previous animal studies demonstrated the antioxidant role of SOD1 to

modulate the redox homeostasis in lipid metabolism [13–15], and cholesterol metabolism was

affected by SOD1 even independent of its antioxidant activity via inhibiting the activity of

3-hydroxy-3-methylglutaryl CoA reductase and promoting the low-density lipoprotein recep-

tor pathway in hepatocarcinoma cells [16]. SOD1 was also bound to almost all classes of circu-

lating lipoproteins with relative high activity in low and high density lipoproteins [7], which

partly underlay its potential in lipid metabolism. Having a possibility to affect the antioxidant

or protein-interaction activities, the SNPs of SOD1 may have associations with the lipid con-

centrations in circulation. Though there were reports on the associations of SOD1 SNPs with

obesity (rs2070424G [-251A/G]) [19], type 1 diabetes (rs2234694A [+35 A/C]) [20], type 2 dia-

betes (rs2234694C) [21], diabetic nephropathy (rs2234694C and rs1041740T) [22, 23], micro-

albuminuria (rs1041740T) [24], macroangiopathy (rs2234694C) [20], cardiovascular disease

(rs36232792 [50-bp Ins/Del], rs1041740T, and rs17880487T) [25, 26], death from cardiovascu-

lar disease in patients with type 2 diabetes (rs9974610A, rs10432782G, and rs1041740T) [24],

gastric cancer (rs4998557A) [36], Alzheimer’s disease (rs2070424A) [32], hearing loss

(rs4998557A) [37], cataract (rs2070424G) [38], peritonitis (rs1041740T) [39], and erysipelas

(rs4998557G) [40], no human studies examined the relationship between the SOD1 SNPs and

the lipid profiles before our present study as far as we knew.

In our study, a significant difference in serum lipid profiles was observed between males

and females. The males had a higher prevalence of dyslipidemia than the females, which was

Table 3. Logistic regression analyses of lipids with three tag SNPs of superoxide dismutase 1 gene in adult females with adjustment for age, body mass index, educa-

tion, fasting plasma glucose concentration, and smoking statusa, b.

Genotype TG, mmol/L TC, mmol/L LDLC, mmol/L HDLC, mmol/L

� 1.7 vs < 1.7 � 5.2 vs < 5.2 � 3.4 vs < 3.4 < 1.0 vs� 1.0

Comparison P OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI)

rs4998557

Add.: GG vs AG vs AA 0.98 1.00 (0.74–1.35) 0.52 0.93 (0.76–1.15) 0.33 0.88 (0.67–1.14) 0.15 0.60 (0.30–1.21)

Dom.: AA + AG vs GG 0.95 1.02 (0.64–1.63) 0.44 1.14 (0.82–1.58) 0.36 0.83 (0.55–1.24) 0.08 0.34 (0.10–1.12)

Rec.: AA vs AG + GG 0.86 1.04 (0.67–1.63) 0.10 0.77 (0.56–1.05) 0.46 0.86 (0.58–1.28) 0.56 0.74 (0.28–2.01)

Hom.: AA vs GG 0.55 1.33 (0.52–3.39) 0.40 0.75 (0.38–1.47) 0.15 0.47 (0.16–1.32) 0.26 0.12 (0.00–4.83)

Alle.: A vs G 0.96 1.01 (0.74–1.38) 0.53 0.93 (0.75–1.16) 0.24 0.85 (0.65–1.12) 0.09 0.51 (0.24–1.10)

rs1041740

Add.: CC vs CT vs TT 0.50 1.12 (0.81–1.53) 0.85 0.98 (0.79–1.22) 0.43 1.12 (0.85–1.48) 0.20 1.58 (0.78–3.21)

Dom.: CT + TT vs CC 0.43 1.18 (0.78–1.80) 0.46 0.90 (0.67–1.20) 0.64 1.09 (0.76–1.58) 0.054 3.18 (0.98–10.27)

Rec.: TT vs CT + CC 0.88 1.04 (0.59–1.86) 0.96 0.99 (0.66–1.49) 0.43 1.23 (0.74–2.03) 0.65 0.72 (0.17–2.97)

Hom.: TT vs CC 0.82 0.90 (0.34–2.36) 0.85 1.07 (0.52–2.18) 0.21 1.98 (0.68–5.78) 0.36 5.79 (0.14–239.42)

Alle.: T vs C 0.49 1.12 (0.81–1.55) 0.87 0.98 (0.78–1.23) 0.41 1.13 (0.85–1.51) 0.17 1.74 (0.79–3.83)

rs17880487

Add.: CC vs CT vs TT 0.63 0.89 (0.55–1.43) 0.78 0.95 (0.68–1.34) 0.32 1.22 (0.83–1.80) 0.32 1.58 (0.64–3.89)

Dom.: CT + TT vs CC 0.71 0.91 (0.54–1.51) 0.78 0.95 (0.66–1.36) 0.54 1.14 (0.75–1.75) 0.20 1.84 (0.72–4.71)

Rec: TT vs CT + CC 0.60 0.54 (0.05–5.39) 0.32 2.38 (0.43–13.12) 0.07 4.38 (0.91–20.99) 1.00 0.00 (0.00-NA)

Hom.: TT vs CC 0.77 0.70 (0.07–7.39) 0.37 2.24 (0.38–13.21) 0.20 3.04 (0.55–16.79) 1.00 0.00 (0.00-NA)

Alle.: T vs C 0.51 0.85 (0.53–1.37) 0.95 0.99 (0.71–1.38) 0.24 1.26 (0.86–1.85) 0.22 1.72 (0.72–4.09)

a Abbreviations: Add., additive model; Alle., allelic model; Dom., dominant model; HDLC, high-density lipoprotein cholesterol; Hom., homozygous model; LDLC, low-

density lipoprotein cholesterol; Rec., recessive model; SNPs, single nucleotide polymorphisms; TC, total cholesterol; TG, triglyceride.
b NA: not available due to 0 was found at least in one of the genotypes in either of the groups.

https://doi.org/10.1371/journal.pone.0234716.t003
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consistent with the findings from the whole country [41, 42]. To explore the association of the

SOD1 SNPs with the lipid levels in males and females, each of the three tag SNPs (rs4998557,

rs1041740, and rs17880487) were analyzed in additive, dominant, recessive, homozygous, and

allelic models. In males, the homozygous model suggested rs4998557A to be a protective factor

for high TC, and the additive, recessive, and allelic models suggested it to be a protective factor

for high LDLC; but revealed by the recessive model, rs4998557A was a risk factor for low

HDLC. For rs1041740, both the recessive and allelic models suggested that rs1041740T was a

risk factor for high LDLC, while for rs17880487, the additive and dominant models demon-

strated rs17880487T to be a protective factor for high TC. This implied some kind of consis-

tency with the previous findings that rs1041740T was a risk factor [24, 26] and rs17880487T

was a protective factor for cardiovascular diseases [26]. No association of the three tag SNPs of

SOD1 with TG was observed. Contrarily, in females, all the three tag SNPs showed no associa-

tion with any of the lipid measures. Therefore, the association between the SOD1 SNPs and the

lipids had a phenomenon of sexual dimorphism. Interestingly, the correlation between SNPs

and the sexual dimorphism of many diseases have been observed, and the gender differences

in specific SNP-phenotype associations were extensively assessed [30].

The similar sexually dimorphic associations between the serum lipid levels with the SNPs of

ABCA1 rs2230808 [43], ZNF259 rs2075290 [44], SPTY2D1 rs7934205 [45], and BCL7B
rs2237278 [46] were also reported previously. The mechanisms for the gender differences were

much complex, including gene expressions and posttranslational effects in sexually dimorphic

manners, sexual hormones determining phenotypic variations, and differentiation of external

environment [47–49]. Due to factors such as physiological development and sex hormones,

sex differences had impact on cardiometabolic diseases across life span [50]. Maybe some

other parameters, significantly different between dyslipidemia and non-dyslipidemia in males

but not in females (or vice versa), also contributed to the sexually dimorphic associations. For

example, the platelet count was higher in the dyslipidemic males than in the non-dyslipidemic

males, but no such phenomenon was observed in the two groups of females. The association of

higher platelet count and risk of metabolic disorders was addressed in some studies [51–53],

and it was supposed to be involved in the present sexual dimorphism in lipid metabolism to

some extent.

The present study was conducted in the Chinese Han adults, so the genotypic findings may

be different from those in the other ethnic groups. Though HWE test supported the represen-

tativeness of the sampled population from a health examination center for the three tag SNPs,

participants were not selected by a strictly randomized sampling method, and the sample size

was not very large, especially for the examination on the SNPs of low MAF. Finally, though

age, BMI, etc. were used to adjust the logistic regression analysis, dietary intakes and physical

activities are expected in the future work to adjust for more extensive factors potentially affect-

ing the lipid metabolism.

Conclusions

The gene polymorphisms of SOD1 may affect the lipid (especially cholesterol) profiles of the

adult Han Chinese males, but have no correlation with any of the lipid profiles in the females.

This sexual dimorphism suggested a sex-specific consideration from the genetic aspect in the

risk assessment of dyslipidemia.
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