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ABSTRACT: A substrate-controlled stereoselective semi-reduc- (2)
tion of alkynes with MeOH as the hydrogen source has been Cu(OAc),/L (10 mol %) /=\
developed, and readily available Cu(OAc), (copper acetate) is ) B,pin, (1.0 equiv) R'" R?

[l Metrics & More | @ Supporting Information

utilized as an optimal catalyst. The detailed investigation of the R'—— BUOK (0.3 equiv) o COXR
mechanism revealed distinct catalytic processes for the (Z)- and R1 = Aryl, Alkyl M 6H — e
(E)-alkenes, respectively. As a result, a diversity of alkynes R2 = Arvl. Alkvl. H € =Y (E)
(including terminal, internal alkynes etc.) were compatible under = AL ATYL X=0,NH

& substrate-controlled Z/E-stereoselectivity
« compatible with high functionalization alkynes

the mild reaction conditions. Furthermore, the high proportion of
deuterium in Z-alkenes (up to 96%) was obtained using d,-

methanol as a solvent.

B INTRODUCTION

Alkenes as chemical feedstock have a wide range of
applications in the field of materials science, medicinal
chemistry, and pesticides." Ways to access the double bond
include Wittig olefination, Julia olefination, Peterson olefina-
tion, cross-coupling, and olefin metathesis reaction.” Beyond
this, the semi-reduction of alkynes to alkenes is undoubtedly an
attractive means.’ However, as one of the most primary
procedures to produce alkenes, the semi-reduction of alkynes
remains challenging. First, molecular hydrogen acts as the main
hydrogen source in many transition-metal-based catalytic
systems (such as Pd, Rh, Ir, Ru, Ni, Cu, etc.), but this source
is flammable resulting in inconvenience and is potentially
dangerous in large-scale industrial production. Secondly,
absolute chemo- and stereoselectivity was hard to obtain
under an H, atmosphere for other unsaturated functional
groups (alkene, nitrile, nitro, etc.). Hence, efforts for exploiting
new and more efficient tactics are highly desirable.
Obviously, a catalytic transfer hydrogenation (CTH)
strategy is preferable in the reduction of unsaturated
hydrocarbons.* Among the hydride donors, water and alcohols
were safer and more eco-friendly than NH,BH,,° BpinH,°
HCOOH,” and polymethylhydrosiloxane (PHMS).® For
instance (Scheme 1), in 2018, Prabhu disclosed homogeneous
palladium-catalyzed stereodivergent semi-reduction of alkynes
to alkenes with water by employing ligand PCy; and P(o-
Tol);.” The next year, the Mei group also developed a
palladium-catalyzed stereoselective semi-reduction of alkynes
by regulation of the solvent.'” Yang and co-workers reported
ligand-controlled iridium-catalyzed stereoselective semi-reduc-
tion of alkynes using ethanol as the hydrogen donor."" These
are all distinguished methods for the stereoselective semi-
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« MeOH utilized as hydrogen source
* low-cost Cu(OAc), as catalyst

Scheme 1. Stereodivergent Catalytic Transfer
Hydrogenation (CTH) of Alkynes
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reduction of alkynes. To the best of our knowledge, non-noble
metal-catalyzed methods for stereodivergent semi-reduction of
alkynes using a CTH strategy are still insufficient, although a
few copper-catalyzed semi-reduction of alkynes are known with
equivalent amounts of base and limited substrate scope.'” With
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our interest in the catalytic systems of transition-metal and
diboron compounds,”® we herein developed the Cu(OAc),-
catalyzed semi-reduction of alkynes under the aegis of B,pin,,
and the absolute stereoselectivity of the products depended on
the nature of substrates.

B RESULTS AND DISCUSSION

We initiated the investigation using 1a as a template substrate,
and semi-reduction product (Z)-2a was first detected with 68%
yield in the presence of 10 mol % of Cu(OAc),, 1.0 equiv of
B,pin, and 1.0 equiv of ‘BuOK in MeOH at 60 °C (Table I,

Table 1. Optimization of the Reaction Conditions”

Cu catalyst (10 mol %)

// NHBoc ligand (10 mol %) Iva) NHBoc
B,pin, (1.0 equiv)
T -
1a BuOK (x equiv) 2a

MeOH

entry Cu catalyst ligand 5 yield (%)°
1 Cu(OAc), none 1.0 68
2 Cu(OAc),2H,0 none 1.0 69
3 Cu(OTf), none 1.0 SS
4 CuCl none 1.0 10
S CuTc none 1.0 16
6 Cu powder none 1.0 <$
7 Cu(CH,CN),BF, none 1.0 10
8 Pd(OAc), none 1.0 <S
9 Cu(0Ac),2H,0 2,2"-bpy 1.0 18
10 Cu(OAc),2H,0 1,10-phen 1.0 <S
11 Cu(0Ac),2H,0 tpy 1.0 <S
12 Cu(OAc),2H,0 4,4'-bpy 1.0 92
13 Cu(OAc),2H,0 44" bpy 0.1 45
14 Cu(0OAc),2H,0 44" bpy 03 90
15 Cu(OAc),2H,0 4,4"-bpy 0.3 23
167 Cu(OAc),-2H,0 4,4'-bpy 0.3 0

“Conditions: substrate 1a (0.3 mmol), Cu catalyst (10 mol %), ligand
(10 mol %), B,pin, (1.0 equlv) MeOH (2.0 mL) under a N,
atmosphere at 60 °C for 18 h. “Yields determined by 'H NMR
with CH,Br, as internal standard. “EtOH instead of MeOH. HZO
instead of MeOH.

entry 1). Fortunately, the over-reduction product and (E)-2a
were not detected in the mixture. Next, the screening of the
copper catalysts revealed that Cu(II) species gave promising
results while the reaction did not work with Cu powder. When
Pd(OAc), was used as the catalyst, substrate 1a was recovered
in quantitative yield.® Cu(OAc),2H,O was selected as the
candidate for slightly increasing the yield (Table 1, entries 2—
8). We investigated the effect of various nitrogen-containing
ligands on the influence of this transformation. When strong
coordinate ligand 2,2"-bpy, 1,10-phen, and tpy were utilized,
the yield of (Z)-2a decreased significantly and the reaction was
almost inhibited (Table 1, entries 9—11). To our delight, when
4,4'-bpy was used as the partner of the transition-metal
catalyst, the yield of (Z)-2a was up to 92% (Table 1, entry 12).
The weaker coordination ability of 4,4'-bpy played the role of a
monodentate ligand, rather than bidentate ligands for Cu-
(OAc),."* The function of the base is activation of the
diborane compound, we attempted to lower the equivalents of
‘BuOK. A comparison with the above conditions showed that
0.3 equivalent of ‘BuOK exhibited a tiny decrease of (Z)-2a
(Table 1, entries 13—14). Next, we screened ethanol or water
as the solvent, the results of the reactions were not satisfactory

(Table 1, entries 15—16). In summary, the optimized reaction
conditions were identified as 10 mol % Cu(OAc),-2H,0, 10
mol % 4,4'-bpy, 0.3 equiv of ‘BuOK, and 1.0 equiv of B,pin, in
methanol at 60 °C.

With the optimal reaction conditions established above, we
investigated a variety of substituted N-protected arylpropargyl
amine derivatives (Table 2). The substrates with substitutions
in para and meta-positions including electron-donating and
electron-withdrawing groups were well transformed and
afforded the corresponding semi-reduction products in good
to excellent yields (2a—c). It is worth noting that ortho-
substitution of the benzene ring had little impact on the yield
of (Z)-alkene (2d). In addition, the alkynes installed with a

Table 2. Synthesis of (Z)-Alkenes”
Cu(OAc)22H,0 (10 mol %)

4,4"-bpy (10 mol %) @
Rl-— R? ‘BuOK (0.3 equiv) ™\
Bpin, (1.0 equiv) R
1 MeOH, 60 °C 2

Internal alkynes:

F
O\
\ E R 3//\ ~ N"NHB
NHBoG N NHBoc NHBoc 0oC
2a, 90% 2b, 92% 2c, 83% 2d, 68%
~o
Z N S )\
D | %/\
N N\
NHBoc NHBoc N
NPhth  nppy
2e, 84% 2f, 94% 29, 91% 2h, 88%
(Z/E: 5/1)
\
E . } “NPhth 1 “OBn
2i, 92% 2j, 75% 2k, 93%0 21, 77%
ol
2m, 65% 2n, 76% 20,65% N 2p, 76%

Terminal alkynes:

QAQA@Qf

2q, 75% 2r, 71% 2s, 84% 2t, 72%
I GG
*N/\é o/\/\
2u, 7%% 2v, 92% 2w, 82%

“Conditions: substrate 1 (0.3 mmol), Cu(OAc),-2H,0 (10 mol %),
4,4’-bpy (10 mol %), B,pin, (1.0 equiv), MeOH (2.0 mL) under a N,
atmosphere at 60 °C for 18 h; Isolated yields; Unless otherwise noted,
products Z/E > 20:1.
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heteroaromatic ring such as pyridyl and thienyl were also
compatible under the reaction conditions and delivered the
target products (2e, 2f) in good yields. Next, when the Boc
protecting group of the nitrogen atom was replaced with
phthalate or benzoxazolinone, that could convert into the
desired products in satisfactory yields (2g—k). Especially, the
nitrile and benzyl ether (BnO) functional group could be
stable under the reductive conditions (2i, 2I). It was
noteworthy that 2m was obtained with electron deficient 3-
phenylpropiolonitrile as the substrate. Diaryl alkyne and diaryl
diyne were also suitable substrates under the current
conditions (2n, 20). Furthermore, internal alkyl alkyne also
produced (Z)-alkene in moderate yield with excellent stereo-
selectivity (2p). Meanwhile, we examined terminal alkynes,
including phenylacetylene derivatives (2q, 2r), propargyl
amine derivatives (2s—v), and long-chain terminal alkyne
(2w), that could be smoothly converted to the corresponding
terminal alkenes.

On the other hand, internal alkynes with a carboxylate or an
amide group (Table 3), provided the (E)-geometric products
(2x—2z) rather than (Z)-isomers.

Table 3. Synthesis of (E)-Alkenes”
Cu(OAc),2H,0 (10 mol %)

4,4'-bpy (10 mol %) (E) COXR
4 i _
RI-=—COXR BuQK (0.3 equ.N)
Bopin, (1.0 equiv) R!
1 MeCOH, 60 °C
(0] (¢} O
N N N\
Ph/\)J\OEt Ph/\)J\OBn Ph/\)J\NHBn
2x, 90% 2y, 78% 2z, 85%
(Z/E: 1/20)

“Conditions: substrate 1 (0.3 mmol), Cu(OAc),-2H,0 (10 mol %),
4,4'-bpy (10 mol %), B,pin, (1.0 equiv), MeOH (2.0 mL) under a N,
atmosphere at 60 °C for 18 h; Isolated yields. Unless otherwise noted,
products E/Z > 20:1.

Additionally, when d,-methanol was used as the solvent in
the transformation (Figure 1), highly deuterated (up to 96%)

NPhth O <)-—_<H/D
50% D
d-2g, 87% d-2k, 90"/ d 2s, 86%
(88% D) (96% D (95% D)

Figure 1. Synthesis of deuterated (Z)-alkenes. Conditions: substrate 1
(0.3 mmol), anhydrous Cu(OAc), (10 mol %), 4,4"-bpy (10 mol %),
B,pin, (1.0 equiv), CD;OD (2.0 mL) under a N, atmosphere at 60
°C for 18 h; Isolated yields. Unless otherwise noted, products Z/E >
20:1. The deuterium content was determined by 'H NMR.

alkenes were obtained (d-2g, d-2k). As we observed by 'H
NMR of d-2s, the cis-terminal hydrogen was deuterated with
50% incorporation. Naturally, we postulated that the hydrogen
atom of the terminal alkynes underwent hydrogen—deuterium
exchange before the semi-reduction reaction, which was
verified by the control experiments (see the Supporting
Information (SI) for details).

To gain a deep understanding of this process, more control
experiments were conducted (Scheme 2). We synthesized the

Scheme 2. Effect of Various Equivalents of B,pin, for the
Transformation of Possible Intermediates

o& Cu(0AC)y2H,0 (10 mol %)

B-O 4,4"-bpy (10 mol %)

- B,pin, (x equiv)

BUOK (0.3 equiv)
3 MeOH, Ny, 60 °C

2n

X 0 02 0.7 1.0 1.2

Yield (%) 43 81 76 <5 0

possible reaction intermediate vinyl boronate 3 that was
employed under the standard conditions with various
equivalents of B,pin,. One surprising result was that if the
amount of B,pin, used is 1 or more equivalents, the yield of 2n
was <5%. However, the use of less than one equivalent gave a
high yield of 2n (Scheme 2). This may be attributed to the
transmetalation process of the vinyl copper intermediate with
B,pin, (see the Supporting Information (SI) for details)."®
Next, in a control experiment (Scheme 3), compound 4

containing both an alkyne bond group and an allyl group could

Scheme 3. Control Experiments
{ ,

TsNo standard conditions, 1SN )
e )

5
\ (72%, 83% brsm)

TsHN
TsN\\\/©/ _standard conditions,

N
,,,,,,,,,,, -’3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,(‘,‘?ﬁ’@f’ﬂf’/f’}’isﬁ?,,,,,,,
o Ph ” /~\
Ph N standard conditions PH oh (3)
(E)-2n (2)-2n

standard conditions  pp___ NHBn
R G

(2)-2y (E)-2y©

be converted into (Z)-5 with retention of the allyl group under
the standard conditions (Scheme 3, 1). However, compound §
would undergo deallylation under the standard conditions,
which suggests the existence of a Cu-hydride species in the
process (Scheme 3, 2).'° Next, to ascertain if A-hydride
elimination of a Cu(1I)-alkyl intermediate may be involved in
the process, isomerization experlments were performed, which
were all negative (Scheme 3, 3— 4).*

Based on the results of control experiments as well as the
literature precedents,'” we speculate the proposed mechanism,
as shown in Scheme 4. Initially, the copper—boryl complex
(Bpin-CuL) was generated from 4,4’-bpy (L), B,pin,, and
Cu(OAc), with the aid of ‘BuOK. Then Bpin-CuL was added
to the carbon—carbon triple bond of 1, which produced the
vinyl copper intermediate (path 1).'* Finally, the protonolysis

https://doi.org/10.1021/acsomega.1c01083
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Scheme 4. Proposed Mechanism

(E)-2x o. .0
B o
\
Ph Et

b

(2)-2 Cu(OMe)L
Bopin, (E) Bpin-2x
MeOH MeOH
LCu H p LCu
>=< —( <fathl _ppincuL tzP «~ 22 Cu(OAc
R R2 R R2 alkyne 1 BuOK
L: 4,4'-bpy
Path 2 Ph OEt
1x
O, _CulL
B h
alkyne 1™ 11 cuL = Me0-Bpin o |
// OEt
Ph

of the vinyl C—Cu bond provided vinyl boronates, which could
be transformed into the target product (Z)-2 under the Cu-
catalyzed protodeboronation and protonation. In path 2, the
intermediate Bpin-CuL might facilitate the hydrogen atom
transfer from MeOH to copper, affording a copper hydride
species. Then, [CuH] was added to the alkyne to deliver the
vinyl copper intermediate, and (Z)-2 was formed from the
protonolysis of the vinyl C—Cu bond.

On the other hand, Bpin-CuL could coordinate with one of
the oxygen atoms of 1x, and then the conjugate addition of
Bpin to the alkynoate would produce the allenolate
intermediate. The Cu—O cleavage associated with enol-
isomerism affords acrylate (E)-Bpin-2x and Cu(OMe)L.
Finally, (E)-2x was formed by C—B bond cleavage of (E)-
Bpin-2x as described in path 1. The Cu(OMe)L returned to
the catalytic cycle and was transformed into the active species
Bpin-CuL."”

Bl CONCLUSIONS

In conclusion, we discussed the interesting substrate-controlled
copper-catalyzed stereoselective semi-reduction reactions of
alkynes. Importantly, the high functionalized alkynes were
compatible and the solvent also played the role of a hydrogen
source in the process with the aid of B,pin,. On the basis of the
comprehensive mechanism investigated, two rational catalytic
cycles were proposed for different kinds of alkyne substrates.
Efforts toward the reduction of other unsaturated bonds with
the CTH strategy are currently underway in our lab.

B EXPERIMENTAL SECTION

General Methods. 'H and '*C NMR spectra were
recorded on a Bruker DRX-400 spectrometer using CDCly
as the solvent and TMS as an internal standard. The chemical
shifts are referenced to signals at 7.26 and 77.0 ppm,
respectively. The HRMS data were obtained on a high-
resolution mass spectrometer (LCMS-IT-TOF). IR spectra
were obtained either as potassium bromide plates or as liquid
films between two potassium bromide pellets with a Bruker
TENSOR 27 spectrometer. Melting points were determined
with a Biichi Melting Point B-545 instrument. Unless
otherwise stated, all reagents and solvents were purchased

from commercial suppliers and used without further
purification.

Representative Procedure for the Synthesis of Internal
Alkynes 1. In a 25 mL round-bottom flask, aryl iodide (1
mmol), terminal alkyne (1.0S mmol), K,CO; (2.0 mmol),
Pd(PPh;), (0.1 mmol), and dimethylformamide (DMF) (10
mL) were successively added. The mixture was stirred at 60 °C
for 24 h under a N, atmosphere. Then the reaction was diluted
with EtOAc (100 mL) and washed with aqueous NH,CI (2 X
30 mL). The ethyl acetate layer was washed with brine (30
mL) and dried over anhydrous Na,SO,. The solvent was
removed under vacuum. The crude product was purified by
flash column chromatography (eluted with petroleum ether/
ethyl acetate = 5/1—3/1) on silica gel to afford internal alkyne
product 1. The characterlzatlon data of 1a,”° 1b,”" 1d,*° 1¢,*
1h,>* 1i,** and 1I*® were consistent with the reported
literature.

Representative Procedure for Synthesis of Alkenes 2. To a
20 mL sealed tube with a magnetic stirrer bar, Cu(OAc),:
2H,0 (0.03 mmol), 4,4’-bpy (0.03 mmol), B,pin, (0.30
mmol), ‘BuOK (0.09 mmol), alkyne 1 (0.30 mmol), and
MeOH (2 mL) were successively added and vigorously stirred
together at 60 °C under a N, atmosphere. After the reaction
completed, the mixture was cooled to room temperature. The
reaction was quenched with saturated aq NH,CI and extracted
with EtOAc (3 X 15 mL). The combined ethyl acetate layer
was washed with brine (10 mL) and dried over anhydrous
Na,SO,. The solvent was removed under vacuum. The crude
product was purified by flash column chromatography (eluted
with petroleum ether/ethyl acetate) on silica gel to afford
product 2.

Synthesis of (Z)-N-Allyl-4-methyl-N-(3-(p-tolyl)allyl)-
benzenesulfonamide (5). To a 20 mL sealed tube with a
magnetic stirrer bar, Cu(OAc),-2H,0 (0.03 mmol), 4,4’-bpy
(0.03 mmol), B,pin, (0.30 mmol), ‘BuOK (0.09 mmol), 4
(0.30 mmol), and MeOH (2 mL) were successively added and
vigorously stirred together at 60 °C under a N, atmosphere for
18 h. After the reaction completed, the mixture was cooled to
room temperature. The reaction was quenched with saturated
aqg NH,Cl and extracted with EtOAc (3 X 15 mL). The
combined ethyl acetate layer was washed with brine (10 mL)
and dried over anhydrous Na,SO,. The solvent was removed
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under vacuum. The crude product was purified by flash
column chromatography (eluted with petroleum ether/ethyl
acetate (v/v) = S:1) on silica gel to afford product 5 (74 mg,
72%) as a light yellow oil. '"H NMR (400 MHz, chloroform-d)
§7.71 (d, ] = 8.0 Hz, 2H), 7.30 (d, ] = 8.1 Hz, 2H), 7.15 (d,
= 7.9 Hz, 2H), 7.06 (d, ] = 7.7 Hz, 2H), 6.53 (d, ] = 11.7 Hz,
1H), 5.58 (ddt, J = 16.7, 10.0, 6.4 Hz, 1H), 5.47 (dt, ] = 11.2,
6.4 Hz, 1H), 5.04—4.86 (m, 2H), 4.12 (dd, ] = 6.5, 1.8 Hz,
2H), 3.77 (d, J = 6.4 Hz, 2H), 2.45 (s, 3H), 2.36 (s, 3H). '*C
NMR (101 MHz, chloroform-d) § 143.20, 137.34, 137.03,
133.30, 132.46, 132.32, 129.67, 128.95, 128.65, 127.23, 126.40,
118.99, 49.82, 44.65, 21.53, 21.19. High-resolution mass
spectrometry-electrospray ionization (HRMS-ESI) (m/z):
caled for C,H,sNO,SNa, [M + Nal*: 364.1347, found,
364.1354.

Synthesis of (Z)-4-Methyl-N-(3-(p-tolyl)allyl)-
benzenesulfonamide (6).°° To a 20 mL sealed tube with a
magnetic stirrer bar, Cu(OAc),-2H,0 (0.02 mmol), 4,4’-bpy
(0.02 mmol), B,pin, (0.21 mmol), ‘BuOK (0.06 mmol), §
(0.21 mmol), and MeOH (1.5 mL) were successively added
and vigorously stirred together at 60 °C under a N,
atmosphere for 18 h. After the reaction completed, the mixture
was cooled to room temperature. The reaction was quenched
with saturated aq NH,Cl and extracted with EtOAc (3 X 15
mL). The combined ethyl acetate layer was washed with brine
(10 mL) and dried over anhydrous Na,SO,. The solvent was
removed under vacuum. The crude product was purified by
flash column chromatography (eluted with petroleum ether/
ethyl acetate (v/v) = 3:1) on silica gel to afford product 6 (29
mg, 45%) as a light yellow oil. 'H NMR (400 MHz,
chloroform-d) & 7.78=7.73 (m, 2H), 7.36—7.26 (m, 3H),
7.11 (d, J = 7.7 Hz, 2H), 7.01 (d, ] = 7.7 Hz, 2H), 6.50 (d, ] =
11.5 Hz, 1H), 5.52 (dt, J = 10.9, 6.7 Hz, 1H), 4.73—4.53 (m,
1H), 3.87 (t, ] = 6.4 Hz, 2H), 2.45 (s, 3H), 2.35 (s, 3H). 1°C
NMR (101 MHz, chloroform-d) & 143.48, 137.32, 136.87,
132.94, 132.59, 129.73, 129.05, 128.53, 127.20, 125.67, 41.39,
21.5§, 21.20.

Analytical Characterization Data of Substrates and
Products. tert-Butyl (3-(3-Methoxyphenyl)prop-2-yn-1-yl)-
carbamate (1c). Purified by flash column chromatography
(eluted with petroleum ether/ethyl acetate (v/v) = 2:1) as a
brown oil (196 mg, 74%). '"H NMR (400 MHz, chloroform-d)
5721 (t,]=8.0Hz 1H),7.02 (d, ] = 7.6 Hz, 1H), 6.96 (t, ] =
1.9 Hz, 1H), 6.88 (dd, J = 8.4, 2.6 Hz, 1H), 4.87 (s, 1H), 4.16
(d, J = 5.3 Hz, 2H), 3.80 (s, 3H), 1.48 (s, 10H). *C NMR
(101 MHz, chloroform-d) § 159.25, 155.32, 129.34, 124.20,
123.69, 116.54, 114.93, 85.23, 83.00, 80.00, 55.24, 31.20,
28.37. HRMS-ESI (m/z): calcd for C;sH;)NO;Na, [M + Na]*:
284.1263, found, 284.1260.

tert-Butyl (3-(Thiophen-3-yl)prop-2-yn-1-yl)carbamate
(1f). Purified by flash column chromatography (eluted with
petroleum ether/ethyl acetate (v/v) = 4:1) as a brown solid
(193 mg, 80%), mp = 94—96 °C. 'H NMR (400 MHz,
chloroform-d) 6 7.43 (d, ] = 3.1 Hz, 1H), 7.32—7.22 (m, 1H),
7.09 (d, J = 4.8 Hz, 1H), 4.85 (s, 1H), 426—4.01 (m, 2H),
1.47 (d, J = 2.8 Hz, 9H). 3*C NMR (101 MHz, chloroform-d)
6 155.31, 129.85, 128.89, 125.28, 121.72, 85.03, 79.98, 78.26,
77.26, 31.19, 28.38. HRMS-ESI (m/z): calcd for
C,,H,;NO,SNa, [M + Na]*: 260.0721, found, 260.0722.

2-(3-(p-Tolyl)prop-2-yn-1-yl)isoindoline-1,3-dione (1g).
Purified by flash column chromatography (eluted with
petroleum ether/ethyl acetate (v/v) = 3:1) as a yellow solid
(262 mg, 94%), mp = 165—167 °C. '"H NMR (400 MHz,

chloroform-d) § 7.91 (dq, J = 5.5, 2.8 Hz, 2H), 7.77 (dt, ] =
6.1,3.1 Hz, 2H), 7.32 (dd, ] = 8.1, 2.0 Hz, 2H), 7.09 (d, ] = 7.7
Hz, 2H), 4.69 (d, ] = 2.1 Hz, 2H), 2.33 (s, 3H). *C NMR
(101 MHz, chloroform-d) § 167.19, 138.63, 134.14, 132.12,
131.82, 12895, 123.54, 119.22, 83.10, 81.90, 27.93, 21.47.
HRMS-ESI (m/z): calcd for C;sH,,NO,, [M + H]*: 276.1025,
found, 276.1031.

2-(3-(1,3-Dioxoisoindolin-2-yl)prop-1-yn-1-yl)phenyl Ace-
tate (1j). Purified by flash column chromatography (eluted
with petroleum ether/ethyl acetate (v/v) = 3:1) as a light
brown solid (180 mg, 56%), mp = 136—138 °C. 'H NMR
(400 MHz, chloroform-d) & 7.91 (dd, J = 5.5, 3.1 Hz, 2H),
7.76 (dd, J = 5.5, 3.0 Hz, 2H), 7.49 (dd, ] = 7.7, 1.7 Hz, 1H),
7.35 (td, J = 7.8, 1.7 Hz, 1H), 7.19 (td, ] = 7.7, 1.2 Hz, 1H),
7.07 (dd, ] = 8.2, 1.1 Hz, 1H), 4.70 (s, 2H), 2.37 (s, 3H). '*C
NMR (101 MHz, chloroform-d) & 169.09, 167.02, 152.03,
134.23, 133.39, 132.06, 129.85, 125.81, 123.55, 122.26, 116.43,
87.50, 77.95, 27.83, 20.77. HRMS-ESI (m/z): caled for
C,oH,,NO,, [M + H]*: 320.0923, found, 320.0925.

3-(3-(p-Tolyl)prop-2-yn-1-yl)benzo[d]oxazol-2(3H)-one
(1k). Purified by flash column chromatography (eluted with
petroleum ether/ethyl acetate (v/v) = 2:1) as a light brown
solid (243 mg, 91%), mp = 77—79 °C. 'H NMR (400 MHz,
chloroform-d) 6 7.32 (d, ] = 7.8 Hz, 2H), 7.30—7.27 (m, 1H),
7.27-721 (m, 2H), 7.21-7.15 (m, 1H), 7.13 (d, J = 7.8 Hz,
2H), 4.87 (s, 2H), 2.36 (s, 3H). “C NMR (101 MHz,
chloroform-d) & 153.81, 142.67, 139.14, 131.72, 130.30,
129.12, 123.99, 122.80, 118.71, 110.09, 109.32, 85.66, 80.07,
32.79, 21.51. HRMS-ESI (m/z): calced for C,,H,,NO,, [M +
H]*: 264.1025, found, 264.1028.

tert-Butyl (Z)-(3-(p-Tolyl)allyl)carbamate (2a). Purified by
flash column chromatography (eluted with petroleum ether/
ethyl acetate (v/v) = 4:1) as a white solid (66 mg, 90%), mp =
65—66 °C. '"H NMR (400 MHz, chloroform-d) & 7.22—7.07
(m, 4H), 6.52 (dt, = 11.5, 1.9 Hz, 1H), 5.64 (dt, ] = 11.6, 6.6
Hz, 1H), 4.70 (s, 1H), 4.05 (d, J = 6.6 Hz, 2H), 2.37 (s, 3H),
1.47 (s, 9H). 3C NMR (101 MHz, chloroform-d) & 155.84,
136.97, 133.56, 130.98, 129.00, 128.71, 128.15, 79.41, 39.06,
28.42, 21.19. HRMS-ESI (m/z): caled for CiH, NO,, [M +
Nal*: 270.1470, found, 270.1475.

tert-Butyl (Z)-(3-(4-Fluorophenyl)allyl)carbamate (2b).
Purified by flash column chromatography (eluted with
petroleum ether/ethyl acetate (v/v) = 4:1) as a white solid
(70 mg, 92%), mp = 82—84 °C. 'H NMR (400 MHz,
chloroform-d) 6 7.20 (dd, J = 8.3, 5.4 Hz, 2H), 7.04 (t, ] = 8.7
Hz, 2H), 6.51 (d, J = 11.6 Hz, 1H), 5.67 (dt, ] = 12.4, 6.5 Hz,
1H), 4.66 (s, 1H), 4.02 (s, 2H), 1.46 (d, J = 1.2 Hz, 9H). '*C
NMR (101 MHz, chloroform-d) & 161.86 (d, ] = 246.9 Hz),
155.77, 13245 (d, ] = 3.3 Hz), 130.37 (d, J = 8.0 Hz), 129.96,
128.82, 115.23 (d, J = 21.4 Hz), 79.55, 38.91, 28.39. HRMS-
ESI (m/z): caled for C,H;,NO,F, [M + HJ]*: 252.1400,
found, 252.1399.

tert-Butyl (Z)-(3-(3-Methoxyphenyl)allyl)carbamate (2c).
Purified by flash column chromatography (eluted with
petroleum ether/ethyl acetate (v/v) = 2:1) as a light yellow
oil (65 mg, 83%). 'H NMR (400 MHz, chloroform-d) & 7.34—
7.26 (m, 1H), 6.87—6.71 (m, 3H), 6.53 (d, J = 11.6 Hz, 1H),
5.69 (dt, J = 11.1, 6.6 Hz, 1H), 4.68 (s, 1H), 4.05 (d, ] = 6.6
Hz, 2H), 3.82 (s, 3H), 1.47 (s, 9H). 3*C NMR (101 MHz,
chloroform-d) & 159.48, 155.79, 137.78, 131.00, 129.28,
129.20, 121.25, 114.28, 112.79, 77.25, 5§5.21, 39.02, 28.40.
HRMS-ESI (m/z): caled for C,sH,;NO3;Na, [M + Na]*:
286.1419, found, 286.1428.
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tert-Butyl (Z)-(3-(o-Tolyl)allyl)carbamate (2d). Purified by
flash column chromatography (eluted with petroleum ether/
ethyl acetate (v/v) = 5:1) as a light yellow oil (50 mg, 68%).
'"H NMR (400 MHz, chloroform-d) 6 7.30—7.15 (m, 4H),
7.11 (d, ] = 6.3 Hz, 1H), 6.61 (d, J = 11.4 Hz, 1H), 5.76 (dt, |
= 11.2, 6.7 Hz, 1H), 4.56 (s, 1H), 3.88 (d, ] = 6.7 Hz, 2H),
2.28 (s, 3H), 1.46 (s, 9H). '*C NMR (101 MHz, chloroform-
d) 6 155.77, 13622, 135.46, 130.44, 129.92, 128.94, 128.64,
127.45, 125.52, 38.77, 28.41, 19.86. HRMS-ESI (m/z): calcd
for C,sH,;NO,Na, [M + Na]*: 270.1470, found, 270.1478.

tert-Butyl (Z)-(3-(Pyridin-3-yl)allyl)carbamate (2e). Puri-
fied by flash column chromatography (eluted with petroleum
ether/ethyl acetate (v/v) = 2:1) as a light yellow oil (66 mg,
84%). "H NMR (400 MHz, chloroform-d) & 8.50 (d, J = 2.5
Hz, 2H), 7.57 (d, ] = 7.9 Hz, 1H), 7.32—7.28 (m, 1H), 6.51
(d, J = 11.8 Hz, 1H), 5.83 (dt, ] = 11.2, 6.6 Hz, 1H), 4.73 (s,
1H), 4.01 (d, J = 6.6 Hz, 2H), 1.46 (d, ] = 1.1 Hz, 9H). 3C
NMR (101 MHz, chloroform-d) § 155.73, 149.78, 148.19,
135.73, 132.11, 131.55, 127.36, 123.18, 79.67, 38.93, 28.38.
HRMS-ESI (m/z): caled for C;;H;N,O,Na, [M + Na]*:
257.1266, found, 257.1267.

tert-Butyl (Z)-(3-(Thiophen-3-yl)allyl)carbamate (2f). Pu-
rified by flash column chromatography (eluted with petroleum
ether/ethyl acetate (v/v) = 4:1) as a brown oil (67 mg, 94%).
'"H NMR (400 MHz, chloroform-d) 6 7.34—7.28 (m, 1H),
7.22—7.11 (m, 1H), 7.07 (d, J = 5.0 Hz, 1H), 6.48 (d, ] = 11.4
Hz, 1H), 5.62 (dt, ] = 11.2, 6.5 Hz, 1H), 4.70 (s, 1H), 4.07 (d,
J = 6.5 Hz, 2H), 147 (s, 9H). *C NMR (101 MHz,
chloroform-d) & 155.84, 137.59, 128.39, 127.95, 125.46,
125.00, 123.71, 79.50, 77.25, 28.42. HRMS-ESI (m/z): caled
for C;,H,;,NO,NaS, [M + Na]*: 262.0878, found, 262.0883.

(2)-2-(3-(p-Tolyl)allyl)isoindoline-1,3-dione (2g). Purified
by flash column chromatography (eluted with petroleum
ether/ethyl acetate (v/v) = 3:1) as a white solid (75 mg, 91%),
mp = 86—88 °C. '"H NMR (400 MHz, chloroform-d) 6 7.91—
7.81 (m, 2H), 7.73 (dd, ] = 5.6, 3.0 Hz, 2H), 7.30 (d, ] = 7.9
Hz, 2H), 7.21 (d, ] = 7.8 Hz, 2H), 6.60 (d, ] = 11.6 Hz, 1H),
5.63 (dt, J = 12.1, 6.4 Hz, 1H), 4.62 (dd, ] = 6.5, 1.9 Hz, 2H),
2.38 (s, 3H). *C NMR (101 MHz, chloroform-d) & 168.01,
137.09, 133.94, 132.17, 131.88, 129.10, 128.74, 126.44, 125.17,
123.26, 36.59, 21.24. HRMS-ESI (m/z): calcd for C;gH;(NO,,
[M + H]*: 278.1181; found, 278.1181.

(Z)-2-(3-(4-Methoxyphenyl)allyl)isoindoline-1,3-dione
(2h). Purified by flash column chromatography (eluted with
petroleum ether/ethyl acetate (v/v) = 2:1) as a white solid (77
mg, 88%), mp = 109—111 °C. 'H NMR (400 MHz,
chloroform-d) & 7.87 (dd, J = 5.5, 3.1 Hz, 2H), 7.73 (dd, J
= S.5, 3.1 Hz, 2H), 7.35 (d, ] = 8.6 Hz, 2H), 7.00—6.86 (m,
2H), 6.64—6.50 (m, 1H), 5.59 (dt, J = 11.3, 6.4 Hz, 1H), 4.61
(dd, J = 6.4, 1.9 Hz, 2H), 3.85 (s, 3H). '*C NMR (101 MHz,
chloroform-d) & 168.05, 158.81, 133.95, 132.17, 131.46,
130.12, 128.86, 124.32, 123.26, 113.84, 55.28, 36.60. HRMS-
ESI (m/z): caled for C;gH;(NO;, [M + H]*: 294.1130, found,
294.1139.

(Z)-4-(3-(1,3-Dioxoisoindolin-2-yl)prop-1-en-1-yl)-
benzonitrile (2i). Purified by flash column chromatography
(eluted with petroleum ether/ethyl acetate (v/v) = 2:1) as a
white solid (79 mg, 92%), mp = 145—147 °C. 'H NMR (400
MHyz, chloroform-d) § 7.82 (dq, ] = 6.7, 4.1, 3.3 Hz, 2H), 7.72
(dt, J = 5.2, 2.2 Hz, 2H), 7.65 (dd, ] = 8.3, 1.9 Hz, 2H), 7.50
(d,]=7.9 Hz, 2H), 6.61 (dd, J = 11.8, 2.0 Hz, 1H), 5.80 (dt, ]
=11.3, 6.6 Hz, 1H), 4.51 (dd, ] = 6.7, 2.0 Hz, 2H). *C NMR
(101 MHz, chloroform-d) & 167.86, 140.83, 134.17, 132.23,

131.98, 130.47, 129.42, 128.58, 123.36, 118.79, 110.94, 36.19.
HRMS-ESI (m/z): caled for C;gH3N,0,, [M + H]":
289.0977, found, 289.0984.

(Z)-2-(3-(1,3-Dioxoisoindolin-2-yl)prop-1-en-1-yl)pheny!
Acetate (2j). Purified by flash column chromatography (eluted
with petroleum ether/ethyl acetate (v/v) = 3:1) as a white
solid (72 mg, 75%), mp = 98—100 °C. 'H NMR (400 MHz,
chloroform-d) § 7.90—7.82 (m, 2H), 7.73 (qt, ] = 4.8, 2.4 Hz,
2H), 7.57 (dd, ] = 7.2, 2.0 Hz, 1H), 7.39-7.29 (m, 2H), 7.11
(dt, ] =7.7,1.1 Hz, 1H), 6.51 (d, ] = 11.3 Hz, 1H), 5.78 (dt, J
=112, 6.5 Hz, 1H), 4.44 (dt, ] = 6.6, 1.3 Hz, 2H), 2.32 (d, ] =
0.9 Hz, 3H). *C NMR (101 MHz, chloroform-d) § 169.10,
167.93, 148.46, 133.97, 132.14, 130.26, 129.15, 128.81, 127.77,
126.96, 126.08, 123.26, 122.32, 36.39, 20.93. HRMS-ESI (m/
z): caled for C;gH;(NO,, [M + HJ]": 322.1079, found,
322.1089.

(2)-3-(3-(p-Tolyl)allyl)benzo[d]oxazol-2(3H)-one (2k). Pu-
rified by flash column chromatography (eluted with petroleum
ether/ethyl acetate (v/v) = 3:1) as a white solid (74 mg, 93%),
mp = 91-93 °C. 'H NMR (400 MHz, chloroform-d) & 7.32—
7.16 (m, SH), 7.10 (dq, J = 5.8, 3.4 Hz, 2H), 6.84—6.67 (m,
2H), 5.68 (dt, J = 12.1, 6.4 Hz, 1H), 477 (dd, ] = 6.4, 1.8 Hz,
2H), 2.42 (s, 3H). *C NMR (101 MHz, chloroform-d) &
154.32, 142.66, 137.71, 133.48, 132.90, 130.77, 129.31, 128.76,
124.17, 123.75, 122.45, 109.93, 108.87, 40.49, 21.27. HRMS-
ESI (m/z): calcd for C,H (NO,, [M + H]*: 266.1181, found,
266.1189.

(Z)-(3-(Benzyloxy)prop-1-en-1-yl)benzene (21).?” Purified
by flash column chromatography (eluted with petroleum
ether/ethyl acetate (v/v) = 6:1) as a light yellow oil (52 mg,
77%). '"H NMR (400 MHz, chloroform-d) & 7.46—7.26 (m,
10H), 6.68 (d, ] = 11.9 Hz, 1H), 5.97 (dt, J = 12.2, 6.4 Hz,
1H), 4.58 (d, ] = 3.2 Hz, 2H), 4.36 (dd, ] = 6.3, 1.8 Hz, 2H).
13C NMR (101 MHz, chloroform-d) & 138.19, 136.67, 131.82,
128.97, 128.81, 128.42, 12825, 127.91, 127.82, 127.20, 72.52,
66.97.

(2)-3-Phenylacrylonitrile (2m)."° Purified by flash column
chromatography (eluted with petroleum ether/ethyl acetate
(v/v) = 8:1) as a light yellow oil (25 mg, 65%). '"H NMR (400
MHz, chloroform-d) & 7.88—7.74 (m, 2H), 7.45 (p, ] = 4.0, 3.4
Hz, 3H), 7.13 (d, ] = 12.1 Hz, 1H), 5.45 (d, ] = 12.1 Hz, 1H).
13C NMR (101 MHz, chloroform-d) § 148.73, 133.58, 130.99,
129.02, 128.94, 117.36, 95.08.

(2)-1,2-Diphenylethene (2n)."° Purified by flash column
chromatography (eluted with petroleum ether/ethyl acetate
(v/v) = 20:1) as a light yellow oil (41 mg, 76%). '"H NMR
(400 MHz, chloroform-d) & 7.30 (dtt, ] = 16.4, 6.7, 2.9 Hz,
10H), 6.75—6.64 (m, 2H). '*C NMR (101 MHz, chloroform-
d) 6 137.30, 130.32, 128.94, 128.28, 127.16.

1,4-Di((Z)-styryl)benzene (20).%8 Purified by flash column
chromatography (eluted with petroleum ether/ethyl acetate
(v/v) = 20:1) as a white solid (55 mg, 65%), mp = 85—87°C.
'"H NMR (400 MHz, chloroform-d) § 7.27 (dtd, J = 18.2, 8.0,
3.8 Hz, 10H), 7.15 (t, ] = 1.7 Hz, 4H), 6.66—6.52 (m, 4H).
13C NMR (101 MHz, chloroform-d) § 137.32, 136.05, 130.30,
129.96, 128.86, 128.76, 128.21, 127.14.

(2)-1,4-Bis(benzyloxy)but-2-ene (2p).”’ Purified by flash
column chromatography (eluted with petroleum ether/ethyl
acetate (v/v) = 8:1) as a light yellow oil (61 mg, 76%). 'H
NMR (400 MHz, chloroform-d) § 7.35—7.26 (m, 10H), 5.83—
571 (m, 2H), 4.50—4.43 (m, 4H), 4.05 (t, J = 3.5 Hz, 4H).
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13C NMR (101 MHz, chloroform-d) & 138.19, 129.59, 128.49,
127.87, 127.76, 72.31, 65.82.

1-Methoxy-4-vinylbenzene (2q).”° Purified by flash column
chromatography (eluted with petroleum ether/ethyl acetate
(v/v) = 20:1) as a light yellow oil (30 mg, 75%). 'H NMR
(400 MHz, chloroform-d) & 7.48—7.35 (m, 2H), 7.01—6.81
(m, 2H), 6.79—6.65 (m, 1H), 5.66 (dq, ] = 17.4, 1.1 Hz, 1H),
5.17 (dt, J = 10.8, 1.3 Hz, 1H), 3.85 (s, 3H). 3C NMR (101
MHz, chloroform-d) § 159.38, 136.24, 130.4S, 127.40, 113.92,
111.59, 55.30.

1-Fluoro-4-vinylbenzene (2r).3" Purified by flash column
chromatography (eluted with petroleum ether/ethyl acetate
(v/v) = 50:1) as a light yellow oil (26 mg, 71%). 'H NMR
(400 MHz, chloroform-d) § 7.51-7.36 (m, 2H), 7.06 (t, ] =
8.7 Hz, 2H), 6.73 (dd, ] = 17.6, 10.9 Hz, 1H), 5.71 (d, ] = 17.5
Hz, 1H), 527 (d, J = 10.9 Hz, 1H). *C NMR (101 MHz,
chloroform-d) 6 162.49 (d, ] = 246.8 Hz), 135.71, 133.76 (d, ]
= 3.4 Hz), 127.76 (d, J = 8.1 Hz), 11542 (d, J = 21.6 Hz),
113.52 (d, J = 2.3 Hz).

2-Allylisoindoline-1,3-dione (2s).’” Purified by flash col-
umn chromatography (eluted with petroleum ether/ethyl
acetate (v/v) = 8:1) as a white solid (47 mg, 84%), mp =
66—68 °C. '"H NMR (400 MHz, chloroform-d) 5 7.87 (dq, ] =
6.0, 2.9 Hz, 2H), 7.73 (dt, ] = 5.5, 2.7 Hz, 2H), 6.00—5.82 (m,
1H), 5.35-5.15 (m, 2H), 4.31 (dq, J = 5.7, 1.6 Hz, 2H). *C
NMR (101 MHz, chloroform-d) § 167.92, 133.98, 132.10,
131.53, 123.31, 117.73, 40.05.

N-Allyl-N-phenylacetamide (2t).*> Purified by flash column
chromatography (eluted with petroleum ether/ethyl acetate
(v/v) = 8:1) as a white solid (37.8 mg, 72%), mp = 43—45 °C.
'H NMR (400 MHz, chloroform-d) 5 7.41 (dd, ] = 8.3, 6.7 Hz,
2H), 7.38—7.32 (m, 1H), 7.17 (dd, ] = 7.5, 1.7 Hz, 2H), 5.88
(ddt, ] = 16.6, 10.2, 6.3 Hz, 1H), 5.18—5.02 (m, 2H), 4.31 (dt,
J = 62, 1.3 Hz, 2H), 1.87 (s, 3H). *C NMR (101 MHz,
chloroform-d) & 170.15, 143.00, 133.14, 129.57, 128.10,
127.87, 117.80, 52.03, 22.72.

3-Allylbenzo[d]oxazol-2(3H)-one (2u).’* Purified by flash
column chromatography (eluted with petroleum ether/ethyl
acetate (v/v) = 8:1) as a white solid (41 mg, 78%), mp = 39—
40 °C. '"H NMR (400 MHz, chloroform-d) § 7.27—7.05 (m,
3H), 6.98 (d, ] = 7.4 Hz, 1H), 591 (ddd, J = 21.4, 10.5, 5.3
Hz, 1H), 5.37—-5.23 (m, 2H), 4.46 (dd, ] = 5.4, 1.8 Hz, 2H).
13C NMR (101 MHz, chloroform-d) § 154.35, 142.64, 130.93,
130.53, 123.80, 122.49, 118.75, 110.00, 108.90, 44.62.

1-Allyl-1,2,3,4-tetrahydroquinoline (2v).>* Purified by flash
column chromatography (eluted with petroleum ether/ethyl
acetate (v/v) = 6:1) as a brown oil (47 mg, 92%). '"H NMR
(400 MHz, chloroform-d) § 7.08 (t, ] = 7.7 Hz, 1H), 7.00 (dd,
J=17.0, 1.6 Hz, 1H), 6.68—6.54 (m, 2H), 5.90 (dddd, ] = 18.2,
10.1, 5.1, 1.1 Hz, 1H), 5.36—5.12 (m, 2H), 3.92 (dq, ] = 4.7,
1.5 Hz, 2H), 3.34—3.30 (m, 2H), 2.82 (t, ] = 6.3 Hz, 2H), 2.02
(dd, J = 6.6, 5.2 Hz, 2H). 3C NMR (101 MHz, chloroform-d)
6 14535, 133.58, 129.01, 127.08, 122.42, 11591, 115.77,
111.03, 53.87, 49.19, 28.19, 22.3S.

But-3-en-1-yl 1-Naphthoate (2w).’° Purified by flash
column chromatography (eluted with petroleum ether/ethyl
acetate (v/v) = 10:1) as a light yellow oil (56 mg, 82%). 'H
NMR (400 MHz, chloroform-d) & 8.98 (dd, J = 8.9, 3.6 Hz,
1H), 823 (dd, J = 7.3, 1.7 Hz, 1H), 8.04 (d, ] = 8.2 Hz, 1H),
7.95-7.88 (m, 1H), 7.65 (tt, = 8.3, 1.5 Hz, 1H), 7.54 (dt, ] =
15.7, 7.4 Hz, 2H), 5.97 (ddtd, ] = 17.0, 10.3, 6.7, 1.2 Hz, 1H),
5.35—5.14 (m, 2H), 4.52 (td, ] = 6.6, 1.3 Hz, 2H), 2.63 (qd, J

= 6.7, 1.3 Hz, 2H). *C NMR (101 MHz, chloroform-d) &
167.56, 134.23, 133.86, 133.33, 131.38, 130.19, 128.56, 127.72,
127.33, 126.21, 125.89, 124.52, 117.47, 64.14, 33.30.

Ethyl Cinnamate (2x).”” Purified by flash column
chromatography (eluted with petroleum ether/ethyl acetate
(v/v) = 10:1) as a light yellow oil (47 mg, 90%). '"H NMR
(400 MHz, chloroform-d) & 7.71 (d, ] = 16.0 Hz, 1H), 7.54
(dd, ] = 6.6, 3.0 Hz, 2H), 7.40 (q, ] = 3.0 Hz, 3H), 6.46 (d, ] =
16.0 Hz, 1H), 429 (q, ] = 7.1 Hz, 2H), 1.36 (dd, ] = 7.6, 6.7
Hz, 3H). C NMR (101 MHz, chloroform-d) § 166.97,
144.57, 134.48, 130.20, 128.87, 128.04, 118.30, 60.49, 14.33.

Benzyl Cinnamate (2y).>* Purified by flash column
chromatography (eluted with petroleum ether/ethyl acetate
(v/v) = 12:1) as a light yellow oil (55 mg, 78%). '"H NMR
(400 MHz, chloroform-d) § 7.75 (dd, ] = 16.1, 3.4 Hz, 1H),
7.53 (dd, J = 6.5, 3.1 Hz, 2H), 7.40 (ddt, J = 13.8, 10.5, 5.2 Hz,
8H), 6.51 (dd, ] = 16.1, 2.9 Hz, 1H), 5.33—5.21 (m, 2H). *C
NMR (101 MHz, chloroform-d) & 166.81, 145.21, 136.10,
134.38, 130.38, 128.92, 128.63, 128.31, 128.29, 128.14, 117.91,
66.39.

N-Benzylcinnamamide (2z).”° Purified by flash column
chromatography (eluted with petroleum ether/ethyl acetate
(v/v) = 5:1) as a white solid (60 mg, 85%), mp = 108—110 °C.
'"H NMR (400 MHz, chloroform-d) & 7.69 (d, J = 15.6 Hz,
1H), 7.51 (dd, ] = 6.7, 2.9 Hz, 2H), 7.45—7.28 (m, 8H), 6.45
(d, J = 15.6 Hz, 1H), 6.10 (s, 1H), 4.59 (d, ] = 5.7 Hz, 2H).
13C NMR (101 MHz, chloroform-d) § 165.79, 141.41, 138.20,
134.79, 129.72, 128.82, 128.76, 127.93, 127.81, 127.59, 120.45,
43.88.

(2)-2-(3-(p-Tolyl)allyl-2,3-d,)isoindoline-1,3-dione (d-2g).
Purified by flash column chromatography (eluted with
petroleum ether/ethyl acetate (v/v) = 3:1) as a white solid
(72 mg, 87%), mp = 85—87 °C. 'H NMR (400 MHz,
chloroform-d) & 7.86 (dd, J = 5.5, 3.1 Hz, 2H), 7.73 (dd, ] =
5.5, 3.1 Hz, 2H), 7.30 (d, ] = 7.9 Hz, 2H), 7.21 (d, ] = 7.8 Hz,
2H), 4.62 (s, 2H), 2.38 (s, 3H). C NMR (101 MHz,
chloroform-d) & 168.02, 137.10, 133.94, 133.30, 132.17,
129.11, 128.74, 123.26, 36.50, 21.24. HRMS-ESI (m/z):
caled for C,;iH;;D,NO,, [M + HJ]": 280.1307, found,
280.1306.

(Z)-3-(3-(p-Tolyl)allyl-2,3-d,)benzo[d]oxazol-2(3H)-one
(d-2k). Purified by flash column chromatography (eluted with
petroleum ether/ethyl acetate (v/v) = 3:1) as a white solid (72
mg, 90%), mp = 90—92 °C. 'H NMR (400 MHz, chloroform-
d) 8 7.30—7.22 (m, 4H), 7.20 (dd, J = 5.9, 3.3 Hz, 1H), 7.10
(dd, J = 5.8, 3.3 Hz, 2H), 6.73 (dd, ] = 5.8, 3.3 Hz, 1H), 4.77
(s, 2H), 2.42 (s, 3H). *C NMR (101 MHz, chloroform-d) &
154.31, 142.65, 137.70, 132.83, 130.77, 129.31, 128.77, 123.76,
12245, 109.92, 108.87, 77.44, 77.12, 76.80, 40.41, 21.28.
HRMS-ESI (m/z): caled for C,;H;;D,NO,, [M + H]*:
268.1307, found, 268.1309.

(E)-2-(Allyl-2,3-d,)isoindoline-1,3-dione (d-2s). Purified by
flash column chromatography (eluted with petroleum ether/
ethyl acetate (v/v) = 4:1) as a white solid (49 mg, 86%), mp =
62—64 °C. 'H NMR (400 MHz, chloroform-d) & 7.87 (dd, ] =
5.0,2.5 Hz, 2H), 7.73 (dd, ] = 5.5, 2.9 Hz, 2H), 5.24 (s, 0.5H),
4.30 (s, 2H). *C NMR (101 MHz, chloroform-d) § 167.93,
133.98, 132.10, 123.31, 39.93. HRMS-ESI (m/z): calcd for
C,,H,,D;NO,, [M + H]*: 191.0900, found, 191.0901.

(2)-2-(1,2-Diphenylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxa-
borolane (3).”° Purified by flash column chromatography
(eluted with petroleum ether/ethyl acetate (v/v) = 8:1) as a
white solid, (235 mg, 88%), mp = 89—91 °C. '"H NMR (400
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MHz, chloroform-d) & 7.40 (s, 1H), 7.31 (d, ] = 8.0 Hz, 2H),
7.26-7.22 (m, 1H), 7.20 (dt, ] = 8.1, 1.7 Hz, 2H), 7.17—7.12
(m, 3H), 7.12—7.04 (m, 2H), 1.34 (s, 12H). *C NMR (101
MHz, chloroform-d) § 143.17, 140.43, 136.98, 129.96, 128.85,
128.24, 127.85, 127.58, 126.26, 83.79, 77.23, 24.80.
(2)-N-Benzyl-3-phenylacrylamide ((2)-2y)."" Purified by
flash column chromatography (eluted with petroleum ether/
ethyl acetate (v/v) = S:1) as a white solid, (134 mg, 82%), mp
= 110—112 °C. 'H NMR (400 MHz, chloroform-d) & 7.46—
7.39 (m, 2H), 7.33—7.26 (m, 6H), 7.17 (dd, ] = 7.5, 2.1 Hz,
2H), 6.80 (d, ] = 12.5 Hz, 1H), 6.04 (d, ] = 12.5 Hz, 1H), 5.87
(s, 1H), 443 (d, ] = 5.9 Hz, 2H). C NMR (101 MHz,
chloroform-d) & 166.93, 137.59, 136.51, 134.91, 12891,
128.64, 128.57, 128.45, 127.99, 127.51, 124.72, 43.60.
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