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A B S T R A C T

Understanding the association between SARS-CoV-2 Spatial Transmission Risk (SSTR) and Built 
Environments (BE) is crucial for implementing effective pandemic prevention measures. Massive 
efforts have been made to examine the macro-built environment at the regional level, which has 
neglected the living service areas at the residential scale. Therefore, this study aims to explore the 
association between Street-level Built Environments (SLBE) and SSTR in Hong Kong from the 1st 
to the early 5th waves of the pandemic to address this gap. A total of 3693 visited/resided 
buildings were collected and clustered by spatial autocorrelation, and then Google Street View 
(GSV) was employed to obtain SLBE features around the buildings. Eventually, the interpretable 
machine learning framework based on the random forest algorithm (RFA)-based SHapley Addi
tive exPlanations (SHAP) model was proposed to reveal the hidden non-linear association be
tween SSTR and SLBE.

The results indicated that in the high-risk cluster area, street sidewalks, street sanitation fa
cilities, and artificial structures were the primary risk factors positively associated with SSTR, in 
low-risk cluster areas with a significant positive association with traffic control facilities. Our 
study elucidates the role of SLBE in COVID-19 transmission, facilitates strategic resource allo
cation, and guides the optimization of outdoor behavior during pandemics for urban 
policymakers.

1. Introduction

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic has had profound implications for public health and has significantly 
impacted various sectors and economies globally since its emergence in December 2019 [1]. As of April 30, 2023, WHO’s 114th edition 
of Weekly Epidemiological Update, over 765 million confirmed cases and more than six million deaths have been recorded worldwide 
[2]. Previous research indicates that transmission risk within high population density metropolitan areas was heterogeneous and 
related to various built environment factors [3]. The built environment (BE) was a crucial factor for non-pharmacological measures, 
and it was feasible to make specific environmental modifications to prevent the spread of viruses, such as improving transportation 
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accessibility and increasing green spaces in densely populated areas; these modifications can effectively influence human behaviors 
and interactions, ultimately reducing the probability of SARS-CoV-2 transmission risk [4,5].

This study explored the association of overlooked Street-level Built Environments (SLBE) with SARS-CoV-2 Spatial Transmission 
Risk (SSTR). 3693 buildings involved in 28,003 visited/reside COVID-19 cases records. SLBE features were generated using 84,045 
Hong Kong Google Street View (GSV) images, eventually establishing the spatial connection between buildings and outdoor walkable 
service areas. This spatial relationship evaluation surpassed the constraints of solely relying on SLBE as a covariate in regional-level 
research [6,7]. To aim to investigate the following three sub-questions.

1) What is the better approach to revealing the association between SBLE and SSTR?
2) What SLBE features are more influential, and are their impacts different across the various waves of the pandemic?
3) From a policy and management perspective, what specific SLBE should be prioritized for spatial management to reduce street-level 

transmission effectively?

2. Literature reviews

The concept of the BE varies across different scientific fields. Public health refers to external physical conditions, including 
structures, areas, and items designed or altered by individuals’ health [8,9]. These factors significantly impact the movement of people 
in specific spaces, which in turn affects disease transmission [10]. The revealed risk factors in the BE contributing to SARS-CoV-2 
transmission include crowding, poverty, racism reflected in housing and neighborhood characteristics, inadequate indoor air circu
lation, and ambient air pollution [11]. However, past studies in spatial epidemiology have typically utilized a regional-level scale to 
investigate the relationship between SSTR and the BE to balance the safeguard of privacy [12,13].

2.1. Necessary to assess the impact of SLBE

Some recent studies suggested that there may be an unrevealed association between the SLBE and SSTR. Regarding spatial factors, 
Hamidi et al.’s research indicated that traffic connectivity played a more significant role in the spread of the pandemic, primarily in 
large metropolitan areas with numerous economic, social, and commuting linkages [14]. In terms of transmission probabilities, 
although indoor transmission is more likely, outdoor transmission cannot be ignored, especially with higher air pollutant levels, 
leading to increased morbidity and mortality [15]. Another important finding showed that the virulence of SARS-CoV-2 can survive for 
3 h in aerosols and up to 72 h on surfaces like plastic and stainless steel in outdoor environments [16]. Furthermore, Because nations 
had initially implemented a range of restricted policies to address the transmission, a multitude of mental illnesses, including anxiety, 
depression, post-traumatic stress disorder, and psychological distress, had increased incidence rates varying from 6.33 % to 81.9 % 
[17]. Thus, leading prevention policies turn into encouraging outdoor exercise for residents to remain mentally active and access 
essential outdoor space usage and living supplies, indirectly increasing outdoor infectious risk [18]. These recent studies highlight the 
importance of exploring the association between SLBE and SSTR, which may have been overlooked in assessing SARS-CoV-2 trans
mission risk.

2.2. Computer vision’s potential in SLBE analysis

The historical method for obtaining recognition of SLBE was often through on-site interviews and telephone surveys [19]. On the 
one hand, these low-efficiency approaches pose challenges in quantification and utilization in studies conducted at the desired spatial 
and geographic scale [19].In contrast, measurements are time-consuming and expensive but provide limited heuristic insights for 
policymakers [20]. The use of abstract metrics to describe SLBE is another common approach. A study investigated the spatial 
arrangement of the street network with the spread of SARS-CoV-2 by analyzing the locations of 3815 confirmed cases in Hong Kong 
before the 2nd wave, indicated that areas with higher levels of integration (a measure of the cognitive complexity of pedestrians face 
when navigating a street) and betweenness centrality values (a measure of spatial network accessibility) tend to have more COVID-19 
confirmed cases [21]. However, the space syntax questioned does not fully represent SLBE. It is more of an auxiliary method based on 
the topological method of limits as a representation of simple streets and urban zoning boundaries. Also, it only had the function of 
describing the evaluation of abstract spatial concept indexes [22,23].

Recent GSV images have proven to be a more efficient method for large-scale objective data collection than costly and time- 
consuming on-site auditing [24]. It is publicly accessible, capturing street-level images of urban streets throughout metropolitan 
areas [25]. Meanwhile, GSV image audits produce a high agreement (75–96.7 %) with in-person auditing, and the intra-rater 
agreements are also high, indicating that this approach is reliable for evaluating SLBE features [26]. The GSV segments at the 
beginning were used in non-communicable diseases (NCD) within public health research to analyze the inherent street physical 
features and their association with chronic diseases such as diabetes and obesity in communities [27]. GSV have demonstrated 78 % 
and 80 % confidence in the validity and reliability of investigating chronic NCD, respectively [28]. Research has shown that certain 
street physical features, such as crosswalks, are associated with a lower ratio of obesity and premature mortality, and the presence of 
visible wires and single-lane highways has been linked to higher obesity rates and reduced physical activity [29,30]. After the 
COVID-19 pandemic, an analysis of 164 million GSV images across the United States on a zip code scale found that mixed land use, 
sidewalks, dilapidated buildings and visible wires were associated with higher COVID-19 cases, green streets are the opposite [6].
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2.3. Existing evaluating implements

The optimal assessment method for assessing the association between BE and SSTR remains controversial. Geographically 
Weighted Regression (GWR) model was widely adopted for BE investigation in several countries and states, including Brazil, 
Indonesia, and Africa [31–34], and it was more accurate than other models, including the Long Short-Term Memory (LSTM) and 
Susceptible-Exposed-Infected-Recovered-Dead (SEIRD) model [35]. But GWR accounting for the spatial location effect in its results, it 
remained fundamentally a linear model, which was less effective in revealing the nonlinear association between BE and SSTR. As 
researchers gradually began exploring the nonlinear effects of BE, they increasingly employed machine learning (ML) models [36,37]. 
Among these, methods that combined spatial autocorrelation with ML were particularly valuable, as they considered both the spatial 
location effect and nonlinear associations in their evaluations [36].

3. Materials and method

The comprehensive process of this study is presented in Fig. 1 and consists of three main phases. (1) Data collection: Download the 
1st to the early 5th visit and residence buildings of COVID-19-confirmed cases from open data sources. Also, the GSV image was 
downloaded and segmented into different SLBE variables. (2) Data processing: The spatial autocorrelation analysis on the SSTR was 
conducted, considering both Tertiary Planning Units (TPU) and building-weighted risk. Subsequently, SLBE variables of the 800-m 
walking service range were matched to a COVID-19 related building. (3) Interpretable machine learning: The random forest algo
rithm (RFA)-based SHapley Additive exPlanations (SHAP) model was used to interpret the overall ranking of values, interactions 
between street physical features, and variations among successive outbreak waves.

3.1. Study area

Hong Kong is a special administrative region in China’s eastern Pearl River Delta. It is comprised of 18 administrative districts and 
291 TPUs. The city features a well-developed BE with compactness and connectivity, with public transportation accounting for 88.8 % 
of the overall road network [38]. Since the first SARS-CoV-2 confirmed imported case from Wuhan on January 23, 2022, Hong Kong 
has experienced five waves of COVID-19 outbreak involving Alpha, Delta, and Omicron variants. As of April 10, 2023, 9148 deaths and 
748,050 confirmed cases were recorded (https://www.coronavirus.gov.hk/sim/index.html).

Despite a busy transportation hub and high population density, Hong Kong did not impose a city lockdown. Instead, it implemented 
a series of dynamic strict measures before the 1st wave till the early part of the 5th wave, depending on the severity of the pandemic, 
including social quarantine, telecommuting, traffic control measures, school closures, bar and restaurant closures, and official tele
commuting, which limited the scope of residents’ lives and reduced the number of transmissions [39,40]. This resulted in a decrease in 
public transport and local travel by 36.1 % and 52.3 %, and an increase of 32.2 % in indoor time compared with 2019 [41,42]. 

Fig. 1. The schematic framework for assessing the association between SSTR and SLBE.
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Residents were more likely to relocate within proximity of their homes. The travel-restricted regulations in Hong Kong provided an 
ideal setting for studying the association between SLBE around COVID-19 related buildings and SSTR during different pandemic 
waves.

3.2. COVID-19 cases location

Hong Kong Common Spatial Data Infrastructure Portal offered data access to the cumulative COVID-19 confirmed cases (https:// 
portal.csdi.gov.hk/geoportal/#metadataInfoPanel), which includes confirmed dates and building geo-coordinates where confirmed 
cases resided and visited. Fig. 2 shows the spatial distribution of buildings (n = 3693) related to COVID-19-confirmed cases during the 
five waves. Table 1 summarizes the number of confirmed cases and involved buildings during each pandemic wave.

3.3. Independent variables

Due to the limited space of the main body and for the sake of concision, the statistical description of independent variables was 

Fig. 2. Spatial-temporal distribution of Hong Kong COVID-19 outbreak: (A) The spatial distribution of COVID-19-related buildings, (B) The tem
poral accumulation of COVID-19 confirmed cases.
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summarized in Appendix 1.

3.3.1. SSTR weighted risk
The regional-level SSTR was defined as the proportion of cases to population and spatial risk density based on TPU’s administrative 

areas [43,44]. The Hong Kong TPUs, consisting of 291 units, were obtained TPU boundaries from the Hong Kong Common Spatial Data 
Infrastructure Portal as well (https://portal.csdi.gov.hk/geoportal/#metadataInfoPanel), and then we integrate the building-level 
transmission risk by weighting the number of confirmed cases of residents and visits at the corresponding building. Subsequent ref
erences to SSTR were all at the building level, and its mathematical expression was described in Equation (1)

SSTR=
ωb • Nc

S • Np
(1) 

Where.

Nc = Number of COVID-19 confirmed resident and visit cases within a single TPU
Np = Total population within the TPU
S = Area of the TPU in square kilometres
ωb = Normalized building weight risk coefficient for the number of COVID-19 confirmed resident and visit cases, ranging from 0 to 
1

3.3.2. SLBE features

3.3.2.1. GSV images. The road network data was downloaded from the Data.Gov.HK(https://data.gov.hk/en-data/dataset/hk-landsd- 
openmap-3d-pedestrian-network), which covers the Hong Kong primary and secondary roads, significant footways inside villages, 
major footpaths inside country parks and the footways inside estates. As illustrated in Fig. 3(A), the Sampling frequency along the 
pedestrian network was set at 50-m intervals, representing a balance between the minimum image collection required and the 
maximum coverage of the entire pedestrian network by referring to the past method [45–47]. The GSV images (n = 84,045) were 
acquired by Google API and named by Place IDs (PID). The highest image resolution available was 800 × 400 pixels, with a camera 
pitch of heading angle forward (0◦) and a horizontal field of view of 120◦ to simulate a pedestrian’s visual field. 84,045 PIDs were 
downloaded geographically across Hong Kong in Fig. 3(B).

3.3.2.2. GSV images classification and physical feature segmentation. We employed two pixel-level recognition algorithms to segment 
SLBE features for GSV images. The first was the pyramid scene parsing network (PSPNet), known for its accurate semantic segmen
tation performance in street visual elements proportion [48]. Another segmentation quantity method, the Mask R-CNN, was calculated 
for traffic feature quantities [49,50]. Prior research had used Street Greenness (SG), Street Building (SB), street sidewalks (SS), Street 
Road Surface (SRU), Street Unpaved Road Surface (SURS), Traffic Control facilities (TCF), and sky as classification categories for SLBE 

Table 1 
The number of COVID-19-related cases and related buildings.

COVID-19 outbreak waves Number of visited/reside records Number of related buildings

1st wave (Jan–Mar 2020) 1435 607
2nd wave (Apr–Jun 2020) 694 123
3rd wave (Jul–Sept 2020) 7996 1724
4th wave (Nov 2020–May 2021) 11802 931
5th wave (Jan–Mar 2022) 6076 308

Fig. 3. GSV image capture approach: (A) Simulation of GSV image perspective, (B) Spatial density distribution of FIDs.
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[6,7]. We consulted earlier research on the streetscape integration approach, which had the potential to lead to more widely applicable 
policy recommendations [51], and using building density replaces building type [43]. We categorized objects into Street Sanitation 
Facilities (SSF), Artificial Structures (AS), Street Obstacles (SO), and Street Public Amenities (SPA). Fig. 4 is an example of streetscape 
segmentation, including prominent elements such as walls, trees, sidewalks, buildings, roads, earth, sky, trucks, buses, cars, and 
persons. Eventually, the street’s physical features were classified into 10 main classes with 26 specific elements, as outlined in Table 2.

3.4. Method

3.4.1. 800-Meter walkable service area
We correlated the COVID-19-related buildings with segmentation results of the GSV image of 800-m walkable service areas. The 

800-m walkable service area was frequently employed in urban travel behavior studies to examine residents’ walking range [52,53]. 
To better simulate the residents’ exposed frequency on the street and to account for Hong Kong’s challenging topography and its 
implications for road planning, we employed Euclidean distances to assign weights to the GSV image segmentation results. This 
approach was commonly used in studies related to the transmission of infectious diseases and geographical accessibility [54].

Fig. 5 demonstrated the integration of GSV images with COVID-19-related buildings to determine the value of each GSV image in 
calculating SLBE. This calculation was based on the Euclidean distance exponentially decaying locations within an 800-m walkable 
service. The calculation formula was described in Equation (2): 

GSVi = exp( − α*D(Bi,Gi)) (2) 

Where.

Bi = COVID-19 confirmed case related building location
Gi = GSV image i
D(Bi,Gi) = Euclidean distance between Bi and Gi.

3.4.2. Multi-collinearity estimation
The variance inflation factor (VIF) and tolerance (also known as 1/VIF) are closely related statistics for diagnosing multi- 

Fig. 4. Streetscape segmentation by PSPNet and Mask R-CNN.
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collinearity in multiple regression [55]. The former measures the degree of multi-collinearity between an independent variable and all 
other independent variables, while the latter, being the reciprocal of VIF, indicates the independence level of a variable from the other 
independent variables [56]. They are based on the R-squared (R2) score obtained by regressing a predictor on all the other predictors in 
the analysis. A rule of thumb frequently given is that the 1/VIF should not be less than 0.1, and consequently, VIF should not be greater 
than 10 [57].

As illustrated in Table 3, multi-collinearity was assessed before further analysis by estimating VIF and 1/VIF for the HH and LL 

Table 2 
Street physical features classes and sub-street attributes.

Street physical feature classes Sub-street elements Description

Street greenness P_tree The percentage of tree cover (%)
P_grass The percentage of grass areas (%)
P_plant The percentage of plant areas (%)
P_green_hill The percentage of green hill areas (%)

Street building P_skyscraper The percentage of skyscrapers (%)
P_windowpane The percentage of window glass (%)
P_normal_building The percentage of standard buildings (excluding skyscrapers) (%)
P_glass The percentage of glass curtain walls (%)

Street sidewalk P_sidewalk The percentage of sidewalks (pedestrian walkways) (%)
Street road surface P_road_surface The percentage of paved road surfaces (e.g., asphalt, concrete) for motorized and non-motorized vehicles 

(%)
Street unpaved road 

surface
P_vacant_land The percentage of bare road surfaces (e.g., wasteland, exposed ground)

Street sanitation facilities P_trash_can The percentage of waste disposal facilities available (%)
Artificial facilities P_stall The percentage of street vendor stalls or kiosks (%)

P_awning The percentage of awnings or overhead coverings (%)
P_billboard The percentage of advertising billboards or large promotional displays (%)
P_signboard The percentage of informational signboards or directional signs (%)

Street obstacles P_low_wall The percentage of low walls hindering movement (%)
P_fence The percentage of fences restricting access (%)
P_railing The percentage of railings providing safety or boundaries (%)

Street public amenities P_sculpture The percentage of sculptures or statues (%)
P_fountain The percentage of fountains features (%)
P_bench The percentage of bench seating (%)
P_streetlight The percentage of outdoor streetlights (%)

Sky P_sky The percentage of the visible sky (%)
Traffic control facilities N_stop_sign The number of stop signs

N_traffic_light The number of traffic lights

Fig. 5. GSV images weight calculation by 800-m walkable service areas.
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clusters across the 1st to 5th waves. Overall, the LL cluster parameters exhibited better control than the HH cluster, with all VIF values 
less than 5 and all 1/VIF values greater than 0.2. However, in the HH cluster, SPA and SB had VIF values greater than 10 and 1/VIF 
values less than 0.1, indicating potential significant multi-collinearity issues between these variables. Our strategy was to remove SPA 
for two reasons: first, this adjustment reduced all VIF values to below 9 and increased all 1/VIF values to above 0.1, providing better 
control than removing SB. SPA also contributed larger multi-collinearity values in the LL cluster. Its removal would also help improve 
the reliability of both clusters.

3.4.3. Spatial clustering
Spatial autocorrelation is a method that examines the similarity or correlation between neighbouring units in a geographic area. It 

was commonly employed to investigate the spatial clustering distribution of epidemic situations [58,59]. This paper utilized global 
spatial correlation, specifically the global Moran’s I score, to assess whether spatial autocorrelation effects existed in COVID-19-related 
buildings. Moran’s I score near 1 indicates positive spatial autocorrelation, values near 0 indicate no significant spatial autocorrelation, 
and values near − 1 indicate negative spatial autocorrelation. Also, the P-value measures significance, and the Z-score shows the 
significance and direction of clustering trends; typically, a P-value below 0.05 is considered statistically significant, and a Z-score 
above 1.96 or below − 1.96 is considered significant. As the results are indicated in Table 4, the spatial autocorrelation was evident 
across all outbreak waves and most pronounced when measuring the completed 1st-5th waves.

The Global Moran’s I index unable to adjust for the stability of local spatial processes. Therefore, it is necessary to examining the 
local spatial correlation characteristics of the COVID-19 related buildings. Local Indicators of Spatial Association (LISA) cluster map is 
a common approach to assistant visualization [60,61]. As demonstrated in Fig. 6 (A), the buildings were classified into High-High (HH) 
clusters, which indicate regions with aggregation of associated high-case-related buildings, and Low-Low (LL) clusters, which indicate 
regions with aggregation of low-case-related buildings. High-Low (HL) outliers also represented regions with high-case-related 
buildings associated with low-case-related buildings. Similarly, Low-High (LH) outliers represented regions with low-case-related 
buildings associated with high-case-related buildings, and Not-Significant categories meant a lack of significant aggregation effect.

Fig. 6 (B) illustrates each category’s number and spatial distribution. The outlier and non-significant categories were excluded from 
the following analysis due to their non-uniform distribution and the lack of potential for discussing generalized results. The result was 
consistent with the finding that the local spatial cluster categories in the Chinese mainland primarily comprised the HH and LL clusters 
during the initial transmission of SARS-CoV-2 [60].

3.4.4. Interpretable machine learning
We compared six typical supervised ML regression models to reveal the association between STTR and SLBE [37,62], including.

• Linear regression (LR) is a statistical technique that establishes a mathematical model that describes the connection between input 
features and the target. The objective is to minimize the linear approximation by minimizing the sum of squared discrepancies 
between the actual values and the predicted values.

• Support Vector Machine (SVM) is a binary classification/regression model that operates based on the principle of hyperplane 
separation. This approach guarantees the identification of the hyperplane that may efficiently divide the training datasets within 
the most significant geometric interval by utilizing a Kernel function to facilitate mapping input spaces onto a feature space with 
many dimensions.

• Light Gradient Boosting Machine (LGBM) is a boosting-based methodology that demonstrates superior prediction speed and ac
curacy performance compared to alternative boosting and bagging algorithms. The method under consideration employs a 
gradient-boosting decision tree algorithm, which integrates gradient-based one-sided sampling with exclusive feature-bundling 
techniques. LGBM differs from the traditional way of dividing trees in gradient boosting machines by utilizing a leafwise tech
nique to improve accuracy by creating more complex models.

• XGBoost (XGBT) is based on decision trees and utilizes a gradient-boosting framework. This framework enables parallel tree 
boosting and combines the outcomes of many Classification and Regression Trees into an ensemble.

Table 3 
Multi-collinearity estimation.

HH cluster LL cluster

Variables VIF 1/VIF VIF (without SPA) 1/VIF (without SPA) VIF 1/VIF

SG 5.79 0.17 5.79 0.17 1.75 0.57
SSF 3.08 0.32 2.72 0.36 1.73 0.57
SPA 12.45 0.08 / / 4.27 0.23
SB 16.42 0.06 8.92 0.11 2.38 0.41
SO 3.30 0.30 3.28 0.30 2.26 0.44
SS 8.26 0.12 8.23 0.12 2.29 0.43
SRS 9.032 0.111 8.528 0.117 4.282 0.234
SURS 5.434 0.184 5.368 0.186 3.863 0.259
TCF 2.306 0.434 2.296 0.435 1.701 0.588
AS 3.367 0.297 3.334 0.300 1.233 0.811
Sky 1.925 0.519 1.745 0.573 2.385 0.419
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• Artificial neural networks (ANN) replicate the structural arrangement of human neurons, comprising three interconnected layers of 
neurons: the input layer, the hidden layer, and the output layer. In ANN, the neurons inside each layer connect with neurons in the 
next and previous layers using a weighted summation function. The input data is transmitted from the input layer to the output 
layer to calculate the prediction error. The error is subsequently backpropagated to adjust the weights of the neurons.

• Random forest (RF) is a widely recognized ensemble technique that combines a predetermined number of decision trees. The 
criterion for distributing each node among all trees is either information gain or Gini impurity. In general, it is observed that the 
initial nodes in decision trees tend to display the highest degree of impurity reduction. In contrast, the last nodes exhibit the lowest 
degree of impurity reduction. Therefore, creating a subset that includes the most essential features is feasible by intentionally 
eliminating branches at a specific node.

We utilized grid search for model hyperparameter selection with datasets division of training (75 %) and testing (25 %). Grid search 

Table 4 
Global Moran’s I index of the COVID-19 related buildings from 1st to 5th waves.

Metrics 1st wave 2nd wave 3rd wave 4th wave 5th wave 1st-5th wave

Moran’s I 0.70 0.62 0.42 0.32 0.41 0.74
P-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Z-Score 49.89 12.18 124.90 60.78 20.52 439.34

Fig. 6. A) Global Moran scatter plot integrated with LISA results, (B) LISA spatial distribution and clustering quantities across various waves.
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is a systematic method that optimizes model performance by exhaustively exploring predefined hyperparameter combinations, 
ensuring finding the optimal solution within a specific parameter space and enhancing model accuracy and robustness [63]. Since we 
used the grid search with the combined results from 1st to 5th, it was able to reflect the overall characteristics of the epidemic 
fluctuations and obtain a more representative and stable choice of parameters.

The outcome is displayed in Table 5. For the LR model, default settings were adopted due to the relatively limited range of 
parameter tuning, which is due to default settings already providing sufficient benchmark performance. Extensive hyperparameter 
tuning was performed for tree-based models, including RF, LGBM, and XGB. Key parameters tuned included the number of estimators 
(n_estimators), which reflects the number of base learners in the ensemble, and the minimum samples split (min_samples_split), which 
specifies the minimum number of samples required to split a node, helping to prevent overfitting. Additionally, the maximum depth 
(max_depth) controls the maximum depth of the trees, and the minimum samples per leaf (min_samples_leaf) indicates the minimum 
number of samples required to be at a leaf node, both contributing to model regularization and minimizing overfitting. For the boosting 
tree models LGBM and XGB, the learning rate (learning_rate) was tuned, determining the step size at each iteration while moving 
toward a minimum loss function. Although a lower learning rate requires more training time, it often results in better convergence to 
the optimal solution. The subsample and colsample_bytree parameters, which controlled the proportion of data and features used per 
tree, respectively, were critical for preventing overfitting. The C and gamma parameters were adjusted for the SVM model. The C 
parameter controls the trade-off between achieving a low error on the training data and minimizing the norm of the weights, while the 
gamma parameter defines the influence of a single training example. Lastly, the Adam optimizer was employed for the ANN, and the 
number of epochs was set for training. The network architecture included two hidden layers, each with 32 neurons and ReLU activation 
functions, and a single neuron output layer for regression tasks.

As ML results evaluation, we used the R2 score as a statistical measure to evaluate regression models’ fitness performance and Root 
Mean Square Error (RMSE), defined as the standard deviation of prediction errors [64,65]. 

RMSE=
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where yi is the ground truth and pi is the predicted value.
The SHAP model is an interpretable ML Interpretive method based on game theory, which provides a different explanation pathway 

base on feature contribution compared to traditional statistical methods [66]. It calculates the Shapley value corresponding to each 
variable using the Monte Carlo sampling method [67]. SHAP was embedded with ML and had been widely employed to improve 
medical decision-making accuracy [68] and detect health risk factors [69].Ths calculation is defined in Equation (5) (6): 

g(ź )=ϕ0 +
∑M

i=1
ϕizi

ʹ (5) 

Where ź ∈ {0,1}M represents whether a feature is used to estimate the output variable, M is the number of input features, ϕi is the 
SHAP value of the ith feature, and ϕ0 is the mean value of the output variable. The SHAP value assesses feature importance by 
comparing model prediction performance with and without each SLBE feature in feature combinations: 

ϕi =
∑

S⊆ź {i}

|S|!(M − |S| − 1)
M!

[fx(S∪{i}) − fx(S)] (6) 

Where S is the set of non-zero ź , and fx(S) = E[|f(x)xS|] is the expected outcome of the model f(x) subjected to S.

3.4.5. GWR comparison
The study also compared the common GWR method in past studies [31–34]. Specifically, the purpose was to evaluate the dif

ferences in model performance, prediction accuracy, and the ability to capture spatial heterogeneity when revealing the association 

Table 5 
Parameter settings of various models in HH and LL clusters.

HH cluster LL cluster

LR default default
SVM {’C’: 9.796, ‘gamma’: ‘auto’, ‘kernel’: ‘rbf’} ‘C’: 9.494, ‘gamma’: ‘auto’, ‘kernel’: ‘rbf’
LGBM {’learning_rate’: 0.087, ‘max_depth’: 7, ‘n_estimators’: 300} learning_rate’: 0.070, ‘max_depth’: 7, ‘n_estimators’: 300
RF {’n_estimators’: 300, ‘min_samples_split’: 2, ‘min_samples_leaf’: 1, 

‘max_features’: ‘sqrt’, ‘max_depth’: None}
n_estimators’: 300, ‘min_samples_split’: 2, ‘min_samples_leaf’: 1, 
‘max_features’: ‘sqrt’, ‘max_depth’: None

XGB ‘colsample_bytree’: 0.865, ‘learning_rate’: 0.099, ‘max_depth’: 7, 
‘n_estimators’: 100, ‘subsample’: 0.810

colsample_bytree’: 0.743, ‘learning_rate’: 0.073, ‘max_depth’: 7, 
‘n_estimators’: 150, ‘subsample’: 0.790

ANN optimizer = ’adam’, epochs = 150, Dense (32, activation = ’relu’), Dense 
(32, activation = ’relu’), Dense (1)

optimizer = ’adam’, epochs = 100, Dense (32, activation = ’relu’), Dense 
(32, activation = ’relu’), Dense (1)
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between SLBE and SSTR. This comparison can highlight which method suits specific datasets and research objectives. The R2 metric is 
commonly used to evaluate the fitness performance of GWR models, like ML models [70].

However, R2 is not an adequate evaluation criterion for GWR fitness, AIC(Akaike information criterion), BIS(Bayesian information 
criterion), RSS(Residual sum of squares) as a supplementary evaluation method, a smaller AIC value represents a better GWR model 
and the degree of fit [71]. The AIC evaluates model quality by considering the model’s fit and complexity. Lower absolute values 
indicate a model that better balances fit and simplicity. The BIC is a model selection criterion like the AIC, while the BIC imposes a 
more stringent penalty for model complexity. The RSS metric measures the difference between predicted and observed values. Smaller 
RSS values indicate better model fit due to reduced prediction error.

4. Results and findings

4.1. Performance of ML

The fitting performance and prediction errors of various ML models on the training and testing datasets are evaluated in Tables 6 
and 7, respectively. The former reflects the result of the HH cluster, while the latter was about the LL cluster. The SLBE exhibits an 
obvious non-linear association with STTR, as evidenced by the significant differences in R2 between the LR model and other non-linear 
models. The fitting for the HH cluster surpasses that of the LL cluster across all models, likely due to sample size issues, which led to 
unsuccessful fitting in the 2nd and 5th waves of the LL cluster.

The LGBM and RF models achieved consistently high R2 and RMSE values across the various waves on both clusters’ training and 
test sets. However, RF is slightly better. Specifically, RF has shown slightly better fitting performance for each wave in the HH cluster 
while exhibiting greater stability in the LL cluster. In contrast, the R2 for LGBM significantly decreased to a mere 0.07 in the 4th wave in 
the LL cluster. We further visualized the RF model’s training and testing consistency performance in Fig. 7 to assess its fit across 
different data points. The results indicate that the model performs well overall in fitting the HH and LL cluster trends despite the 
deficiencies in capturing the extremes.

4.2. Performance of GWR

In addition, the performance results of the GWR were listed in Table 8, and the R2 for each wave ranged from 0.75 to 0.94, which 
indicates that the model effectively captures the primary patterns of the data for each pandemic wave. However, the overall R2 value in 
the 1st-5th wave was only 0.74, contrary to the expectation that a larger sample size would result in better model fit. Thus, observing 
the AIC and BIC values, which dramatically increased for all waves except the 1st and 2nd waves, suggests that the model may be 
overfitting and experiencing larger errors in local spatial regions.

Thus, we spatially visualized RSS and R2 values over the 291 TPUs for the 1st-5th wave, as shown in Fig. 8 (A&B). It was noticed 
that the GWR performed better in predicting SSTR suburban and peri-urban areas and performed poorly in urban areas. The inability of 
the GWR to predict the SSTR in high-density urban areas, where many buildings associated with COVID-19 confirmed cases are 
located, made RF the most suitable method for SHAP analysis.

Table 6 
ML performance estimation in the HH cluster.

HH cluster-training

1st wave 2nd wave 3rd wave 4th wave 5th wave 1st-5th wave

Method R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LR 0.55 0.75 0.24 1.24 0.32 1.02 0.40 0.91 0.37 0.98 0.32 1.03
SVM 0.83 0.45 0.68 0.80 0.73 0.64 0.74 0.59 0.83 0.50 0.74 0.63
LGBM 0.98 0.12 0.42 1.08 0.98 0.14 0.97 0.16 0.98 0.16 0.98 0.16
RF 0.96 0.22 0.85 0.54 0.97 0.23 0.96 0.22 0.95 0.26 0.96 0.17
XGB 0.99 0.02 0.99 0.02 0.99 0.07 0.99 0.04 0.99 0.02 0.99 0.10
ANN 0.75 0.57 0.52 0.99 0.78 0.54 0.74 0.53 0.77 0.58 0.86 0.46

HH cluster-testing

​ 1st wave 2nd wave 3rd wave 4th wave 5th wave 1st-5th wave

Method R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LR 0.24 1.17 0.31 0.87 0.17 1.19 0.25 1.03 0.06 1.37 0.28 1.04
SVM 0.25 1.10 0.48 0.75 0.60 0.82 0.59 0.77 0.44 1.06 0.70 0.67
LGBM 0.27 1.10 0.36 0.84 0.80 0.58 0.59 0.76 0.34 1.15 0.87 0.42
RF 0.28 1.10 0.50 0.74 0.82 0.54 0.68 0.67 0.37 1.12 0.86 0.45
XGB 0.23 1.12 0.29 0.88 0.82 0.55 0.70 0.64 0.39 1.10 0.85 0.47
ANN 0.16 1.17 0.46 0.76 0.69 0.73 0.59 0.72 0.42 1.07 0.80 0.54
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4.3. RFA-SHAP model analysis

The SHAP approach was utilized to enhance the interpretability of machine learning models and examine the impact of input 
features on the model’s output. Fig. 9 presents an overview of the SHAP summary plot to analyze the association and importance of 
street physical features and SSTR for the 1st-5th wave. The x-axis units represent the RF model’s change in average SHAP value impact 
on model output magnitude units of SSTR in Fig. 9(A＆C). The distribution of SHAP values for each feature is provided by overlapping 
points scattered vertically, and the SHAP x-value represents the effect of a feature on the SSTR prediction model for that feature. Each 
colored dot in the plot corresponds to the magnitude of the variable’s impact on the SSTR results, as indicated by the gradient scale on 
the x-axis in Fig. 9 (B&D).

Table 7 
ML performance estimation in LL cluster.

LL cluster-training

1st wave 2nd wave 3rd wave 4th wave 5th wave 1st-5th wave

Method R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LR 0.49 0.91 / / 0.35 0.75 0.20 0.66 / / 0.40 0.93
SVM 0.88 0.40 / / 0.82 0.39 0.94 0.17 / / 0.89 0.39
LGBM 0.96 0.25 / / 0.94 0.21 0.43 0.55 / / 0.98 0.16
RF 0.95 0.27 / / 0.93 0.23 0.88 0.24 / / 0.96 0.23
XGB 0.99 0.01 / / 0.99 0.01 0.99 0.01 / / 0.99 0.04
ANN 0.70 0.70 / / 0.77 0.74 0.80 0.32 / / 0.86 0.46

LL cluster-testing

​ 1st wave 2nd wave 3rd wave 4th wave 5th wave 1st-5th wave

Method R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LR 0.28 1.31 / / 0.12 0.79 / / / / 0.37 1.00
SVM 0.38 1.12 / / 0.46 0.62 0.14 0.69 / / 0.62 0.79
LGBM 0.54 1.04 / / 0.54 0.57 0.07 0.72 / / 0.67 0.75
RF 0.49 1.11 / / 0.50 0.60 0.48 0.53 / / 0.66 0.74
XGB 0.45 1.14 / / 0.54 0.57 0.51 0.52 / / 0.68 0.71
ANN 0.50 1.08 / / 0.30 0.71 / / / / 0.63 0.77

Fig. 7. RF fitness consistency analysis:(A) HH cluster residuals and R2 in 1st-5th wave, (B) LL cluster residuals, and R2 in 1st-5th wave.

Table 8 
GWR model fitting effect comparison between five-wave COVID-19 outbreaks.

Metrics 1st wave 2nd wave 3rd wave 4th wave 5th wave 1st-5th wave

R2 0.93 0.75 0.94 0.87 0.76 0.74
AIC 249.66 205.07 277.57 874.86 558.60 − 1313.94
BIC 989.29 293.51 2888.63 2003.39 802.45 5761.22
RSS 30.85 22.08 71.12 84.51 53.84 86.94
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Fig. 8. (A) GWR R2 spatial distribution from 1st to 5th wave on TPUs, (B) GWR RSS spatial distribution from 1st to 5th wave on TPUs.

Fig. 9. SHAP importance and correlation value in 1st to 5th waves; (A) Mean SHAP value importance in HH cluster; (B) SHAP value correlation in 
HH cluster; (C) Mean SHAP value importance in LL cluster; (D) SHAP value correlation in LL cluster.
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1) Regarding street physical features in the HH cluster, the SHAP value of AS, SS, SSF, SB, and SO exceeds 0.13, as shown in Fig. 9(A), 
indicating their greater significance compared to other variables. Aside from SO, these factors positively correlated with the model 
output in Fig. 9(B). However, it is worth noting that the association of those top influent variables tends to be a nonlinear pattern, 
except SB has an obvious positive association.

2) In Fig. 9(C), a SHAP value of 0.10 differentiates the high SHAP value contributor of the LL cluster. Besides SURS having a negative 
association with SHAP values, the TCF, SSF, and AS demonstrated non-linearity pattern in Fig. 9(D).

Thus, we generated partial correlation plots to analyze the primary contributing features of the two clusters and gain a deeper 
understanding of the nonlinear relationships. It is evident that these primary contributing characteristics are positively associated with 
the HH cluster (Fig. 10(A–D))and negatively associated with the LL cluster (Fig. (E to H)). Notably, their feature contribution is not 
gradual but exhibits a sudden change followed by a stable region.

For features among the HH cluster. AS shown in Fig. 10 (A), the risk suddenly increases when the density exceeds 0.05 %, after 
which the SHAP values stabilize around 3.2, but with strong downward fluctuations in the syphilis density (0.05 %–0.15 %) range. 
Fig.10 (B) demonstrates a notable and gradual decline in the positive association between SS and SSTR. The positive SHAP value 
decreases by nearly half (from 5.0 to around 2.7) at SS density(~0.75 %), indicating a higher likelihood of outdoor transmission in 
areas with narrower SS density, and the SHAP value exhibited greater instability and susceptibility to multiple factors. As shown in 
Fig. 10(C), SSF is quite unique. It experiences an initial decrease followed by stabilization, and then the SHAP value increases again 
from 2.8 to 3.3 at a density greater than approximately 0.5 %. As depicted in Fig. 10(D), a small proportion of SO, less than 4 %, 
demonstrated an increased risk of transmission, but beyond this range, the SHAP value decreased fluctuatedly.

In the LL cluster, as shown in Fig. 10(E–G), SSF, TCF, and AS all exhibit a diminishing negative correlation as their proportions rise. 
Among them, the increase in AS is highly volatile, suggesting potential influence from other variables. Conversely, a higher density of 
SURS could lead to a dramatic reduction in SSTR, with 0.8 % being a distinct threshold, unlike SO, which does not show significant 
fluctuation in reduction. Additionally, the SSF results in both clusters reveal that SSF demonstrates a robust positive correlation within 
the HH cluster but an opposite correlation and clear sudden SHAP value change in the LL cluster. The reason for this discrepancy 
requires further revealing.

We further examine the interactive effects using interactive SHAP maps for those fluctuating primary contributing features shown 
(Fig. (11)), including AS, SS, and SSF in both clusters. Because it is possible that the genuine impacts were caused in conjunction with 
other primary contributing features, this also helps us interpret the non-linear fluctuations in their effects.

In the HH cluster, as shown in Fig. 11(A). The higher distribution of AS and SSF at medium SS density (>1.5 %) may counteract 
each other, particularly at low SS density (~0.5 %), potentially leading to a negative effect on SSTR. Also, a negative correlation is 
especially apparent in SO. Regarding the interacting effects on SSF, which mainly reveal the decreased slope range (from 0 to 1.0 %), 
are associated with higher AS and SO values, as depicted in Fig. 11(B). The most crucial influence among them is that of SO. In the LL 
cluster, Fig. 11(C) demonstrates that SURS consistently exhibits a negative correlation, and the sudden SHAP value increase is 
associated with AS and TCF. Specifically with extremes of TCF density. In Fig. 11(D), higher SS density appears to interact with the AS 
rising SHAP process (ranging from 0.05 % to 0.20 %). However, it is unclear how the interactions impact the other two features.

Additionally, we analyze the feature contribution of SLBE variables in the 1st,3rd, and 4th waves, which are effectively fitted by the 
ML model (R2 > 0.5). By using the average SSTR of different waves as the baseline value E[f(x)] and f(x) as the predicted outcome after 
adding SLBE variables, we can clearly observe the positive or negative contributions of these variables in each wave. As shown in 
Fig. 12 (A＆B). In all clusters across different waves, f(x) is greater than E[f(x)], suggesting that these variables contribute positively to 
the predictions after accounting for the SLBE variables, leading to an increased model prediction of COVID-19 transmission risk. In the 

Fig. 10. Main contributed features partial correlation: (A) AS partial correlation in the HH cluster, (B) SS partial correlation in the HH cluster, (C) 
SSF partial correlation in the HH cluster, (D) SO partial correlation in the HH cluster, (E) TCF partial correlation in the LL cluster, (F) SSF partial 
correlation in the LL cluster, (G) SURS partial correlation in the LL cluster, (H) AS partial correlation in the LL cluster.
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HH cluster, SB, AS, and SS, are the main contributors in 1st and 4th waves, But SS exhibits inconsistent effects. During the 3rd wave, 
street infrastructure elements like SSF and AS become more positively pronounced. SS and SB are less significant in the LL clusters, 
with SSF and AS standing out as the primary positive contributors. Additionally, street natural features (e.g., SURS and SG) gradually 
influence SSTR.

5. Discussion

5.1. Main findings

This study made the following four research highlights.

1) The results show RF model can perform better in explaining the nonlinear relationship between SLBE and SSTR than other ML and 
GWR model in building-related 800-Meter walkable service area. Additionally, this study is the first to use the RFA-SHAP inter
pretable model to analyze associated Hong Kong SLBE features with SSTR from the 1st to early 5th wave of the COVID-19 
outbreaks.

2) This study is innovatively based on the buildings where the diagnosed cases visited and resided. It combined the building-related 
800-m walkable service with spatial autocorrelation to define SLBE under restricted travel conditions.

Fig. 11. Features: (A) SS interaction in HH cluster analysis, (B) SSF interaction in HH cluster analysis, (C) SSF interaction in LL cluster analysis, (D) 
AS interaction in LL cluster analysis.
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3) This study also highlights the importance of street physical features in influencing SSTR. We identified consistent results with prior 
studies. For example, residents of areas with higher SB and SS density had higher severity of COVID-19 transmissions. In contrast, 
higher levels of SG helped reduce the transmission risk, consistent with previous studies [6,12]. The only difference was in the SB 
within the LL cluster, but since it ranked very low in contribution, we did not focus on it. Instead, several interesting street risk 
factors and spatial patterns of SSTR are often overlooked but are essential in preventing respiratory transmissions and promoting 
health equity. In the HH cluster area (such as Sheung Wan and Tsim Sha Tsui) with a high-density area, we found that street 
infrastructure (e.g., AS, SO, and SSF) correlated highly with transmission risk. A similar distribution was observed in the LL cluster 
area (such as Tuen Mun and Tsuen Wan) with a low COVID-19 confirmed cases distribution, but the presence of TCF and SSF was 
highly contributory. Outdoor vacant land (named SURS in the study) was mainly unconstructive land where the reduction in SSTR 
was greater than SG. Regarding the synergistic effects of SLBE characteristics, we found that (a) in the HH cluster region, a 
reasonable distribution of SO contributes to the reduction of SSTR with low to medium density of SS or SSF, and (b) in the LL cluster 
region, the co-presence of TCF and SSF is risker for SSTR, whereas the presence of SO in areas with more AS is also effective in 
reducing risk as well.

4) In addition, we also analyzed the impact contribution of the three waves of outbreaks in both clusters. We found that street 
infrastructure and hard space (e.g., SS, SSF, AS) and street natural features (e.g., Sky, SG, SURS) revealed high contribution in the 
1st wave of the outbreak with minor population diagnoses situation and in large-scale COVID-19 outbreaks in the 3rd and 4th 
waves.

5.2. Mechanisms and policy suggestions

Based on the above results, the following three recommendations for future infectious disease prevention regarding policy 
implications.

1) Some causal relationships between solid waste exposure and health outcomes have been demonstrated, but others remain unclear 
or have not been prioritized as a current public health issue [72]. In particular, people working in waste collection are more likely 
to be severely affected by injuries, respiratory complications, and transmissions due to their lack of protective equipment [73,74]. 
Prior studies have shown that indirect contact with surfaces contaminated with infectious droplets can lead to SARS-CoV-2 
contamination through waste from COVID-19-affected patients or residents undergoing isolation treatment in areas other than 
private homes, hospitals, and healthcare centres [75]. Therefore, not only do we need to reduce the spread of SARS-CoV-2 through 
household waste generated by COVID-19 patients or isolates through proper packaging, incineration, and well-managed landfills. 
Our study suggests that we also need to clean SSFs that confirmed populations might come into contact with when they are out and 
about, as pedestrians may come into contact with these solid waste recycling facilities and thus carry infectious toxins on their 
hands, increasing community morbidity [76]. Meanwhile, prioritizing the management of SSF around TCF may be of more value.

To better clarify policy guiding recommendations, we will further discuss the average SHAP value of the SSF spatial distribution in 
Hong Kong’s 18 districts. Fig. 13 displays the distribution of the mean SHAP values of SSF in the HH and LL clusters. Even in densely 

Fig. 12. (A) SLBE-variables value in the 1st wave; (B) SLBE-variables value in the 3rd wave; (C) SLBE-variables value in the 4th wave.
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populated and urbanized parts of Hong Kong, the distribution of the HH cluster does not show a clear positive or negative correlation. 
The regions with a strong positive correlation (0.0–1.2) are primarily located in the southern part of Yau Tsim Mong and Kowloon City. 
The areas with a high positive correlation (0.4–1.2) are concentrated in Central & Western and Wan Chai, as seen in Fig. 13(A). Within 
the mixed cluster area depicted in Fig. 13(B), there is no notable disparity in the positive and negative correlations observed in the 
average SHAP values. The LL cluster has a concentration of locations with a high positive correlation (0.4–0.8) around the confluence 
of Tsuen Wan and Sham Shui Po, as depicted in Fig. 13(C).

2) SO is another notable street physical feature that deserves careful consideration, while it did not significantly contribute to the RFA- 
SHAP model of overall five-wave or individual wave studies. However, its interacting effects on high-risk SS and AS, SSF could 
effectively reduce SSTR. They are considering that AS.SSF is disseminated through SS; we hypothesize that SO may cause people to 
maintain a certain physical distance in SS. Prior studies confirmed that maintaining a physical distance of 1 m or more outdoors can 
significantly reduce person-to-person transmission of SARS-CoV-2 [77].Thus, erecting barriers to restrict people’s movement can 
reduce the rate of SARS-CoV-2 transmission [78]. The results of this article may indicate that arranging and implementing physical 
barriers to reduce mobility and physical contact, such as physical collisions in some higher-risk areas outdoors, mainly it is vital to 
consider when the SSF and SS are less than 1.5 % in the HH cluster and when the AS less 1.5 % in the LL cluster.

3) Closed public recreational facilities and a ban on public gatherings can reduce COVID-19 transmission through built environment- 
mediated pathways [79]. However, these studies focus on closed indoor environments and utilize data from points of interest. In 
our study, AS is considered a combined outdoor commercial and advertising element, positively associated with SSTR in both 
clusters. This indirectly validates previous studies’ conclusions and further suggests that the management of commercial and public 
gatherings in these clusters should also consider the risks associated with outdoor environments.

5.3. Limitations and future works

This study encounters certain unavoidable limitations. The SSTR of our analysis was calculated by building with visited/residence 
COVID-19 confirmed cases, but due to privacy concerns, the data did not break down residents and visitors, and the potential 
transmission within buildings was not considered. Those limitations may misjudge the building’s true SSTR level. The RFA-SHAP 
interpretable model offers significant explanatory power within the public health sector. However, we identified two weaknesses in 
our model: the less effective performance in extreme risk scenarios and the suboptimal performance during the 1st and 2nd wave. The 
reason is that higher model performance demands substantial data volumes for training, but it does not satisfy samples in the 1st and 
2nd waves and less extreme risk cases. Given that the GWR shows high fitness in the first two waves, future studies could consider the 
GWR model for initial modelling and then use the RFA-SHAP model for in-depth analyses. This combined approach may provide more 
robust and comprehensive results under different risk conditions. Also, model performance under less extreme case conditions may be 

Fig. 13. Spatial distribution of mean SHAP values of the SSF: (A)Mean SHAP value of SSF at HH cluster area, (B) Mean SHAP value of SSF at mixed 
cluster area, and (C) Mean SHAP value of SSF at LL cluster area.
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beneficial when weighted calculations are applied to the extreme cases.
Additionally, future studies could consider exploring the association between macro-built environment characteristics and regional 

features, which could provide deeper insights. Attributes such as transport accessibility, the density of high-rise buildings, commercial 
land concentration, land-use mix, green space density, and building shapes are crucial for understanding SSTR in Hong Kong [12,43]. 
Integrating SLBE with other BE features could reveal how street-level factors interact with broader urban characteristics to better 
understand the robustness of SLBE. Additionally, we can explore how SLBE features might have varying impacts depending on the 
multiple infectious diseases and analyze how these relationships might differ across various phases of a disease, such as the stable, 
rising, and declining periods.

6. Conclusion

Leveraging advancements in SARS-CoV-2 research, including spatial transmission risk and virus survival strategies, this study 
utilizes Hong Kong as a case study to introduce an RFA-SHAP model. This model assesses the influence of SLBE features on SSTR within 
an 800-m walkable service around COVID-19 related buildings during periods of travel restriction. Demonstrating notable efficacy, 
especially in areas associated with high COVID-19 confirmed cases related to buildings. After fitting the data from the 1st to 5th wave 
outbreak, the model showed strong predictive ability for HH clusters of COVID-related building clusters, with R2 test accuracy of 0.86 
and RMSE of 0.17. Also, for LL clusters of COVID-related building clusters area, R2 test accuracy of 0.66 and RMSE of 0.34. The model 
maintained robustness when fitting individual waves of the outbreak. Key findings and suggestions from this study included.

1) The findings corroborate previous research that SS, SB, and SS are associated with SSTR. In addition, our analysis reveals that in HH 
cluster areas (e.g., Sheung Wan and Tsim Sha Tsui), street infrastructures such as SSF, SO, and AS play a more substantial role in 
SARS-CoV-2 transmission, while in LL cluster areas (e.g., Tuen Mun and Tsuen Wan), features like TCF and SSF are more strongly 
associated with transmission risk. Natural features were more associated with transmission risk during the 1st wave, whereas street 
infrastructure had a more significant impact during the 3rd and 4th waves.

2) The study suggests a few potential policies recommended for future street management in Hong Kong: (a) For solid waste treat
ment, especially prioritizing cleaning and managing SSF around street traffic junctions’ space; (b) Rational increase of the SO 
distribution may contribute to reducing SSTR, especially in SS, SSF, AS areas with low and medium distribution density area; and 
(c) Closing of AS may reduce SSTR by addressing outdoor commercial and public gatherings.
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Geographically Weighted Regression (GWR)
Google Street View (GSV)
High-High (HH)
High-Low (HL)
Linear Regression (LR)
Light Gradient Boosting Machine (LGBM)
Long short-Term Memory (LSTM)
Low-High (LH)
Low-Low (LL)
Place IDs (PID)
Random Forest (RF)
Random Forest Analysis-SHapley Additive explanations (RFA-SHAP)
R-squared (R2)
Root Mean Square Error (RMSE)
SHapley Additive explanations (SHAP)
Street Building (SB)
Street Greenness (SG)
Street-level Built Environment (SLBE)
street Obstacles (SO)
Street Public Amenity (SPA)
Street Road Surface (SRU)
Street Sanitation Facility (SSF)
Street Sidewalks (SS)
Street Unpaved Road Surface (SURS)
Support Vector Machine (SVM)
Susceptible-Exposed-Infected-Recovered-Dead (SEIRD)
Traffic Control Facility (TCF)
Tertiary Planning Unit (TPU)
Xgboost (XGBT)
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