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Trajectories of the heart rate
characteristics index, a physiomarker
of sepsis in premature infants, predict
Neonatal ICU mortality
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Abstract

Objective: Trajectories of physiomarkers over time can be useful to define phenotypes of disease progression and as

predictors of clinical outcomes. The aim of this study was to identify phenotypes of the time course of late-onset sepsis

in premature infants in Neonatal Intensive Care Units.

Methods: We examined the trajectories of a validated continuous physiomarker, abnormal heart rate characteristics,

using functional data analysis and clustering techniques.

Participants: We analyzed continuous heart rate characteristics data from 2989 very low birth weight infants (<1500

grams) from nine NICUs from 2004–2010.

Result: Despite the relative homogeneity of the patients, we found extreme variability in the physiomarker trajectories.

We identified phenotypes that were indicative of seven and 30 day mortality beyond that predicted by individual heart

rate characteristics values or baseline demographic information.

Conclusion: Time courses of a heart rate characteristics physiomarker reveal snapshots of illness patterns, some of

which were more deadly than others.
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Introduction

Clinical features of neonatal sepsis can be non-specific,

hampering the ability to intervene early in the course of

disease. Continuous monitoring can identify subtler

signs of infection and facilitate earlier detection

of sepsis.1,2 Neonates have a unique physiological

response to infection, manifested as reduced heart

rate variability and transient decelerations in heart

rate.3 These heart rate characteristics (HRCs) can be

calculated from routine bedside monitoring data, and

have been developed into a predictive monitoring score

as the HRC index, allowing real-time computation of

fold-risk for sepsis in the next 24 hours.4 A previous

randomized controlled trial (RCT) demonstrated that

display of the HRC index at the bedside alongside its

five-day historic trend reduces infant mortality.5

The mean HRC index trajectory from this multicenter
trial plots as a flat line with a rise in the day before a
blood culture,6 but not all individual patients followed
this trajectory before sepsis diagnosis.

While the instantaneous HRC index is well calibrat-
ed to provide the fold-risk of sepsis at a given time, it is
not known whether the trajectory of the index could
provide additional clinical utility. Clinical intuition
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suggests an upward spike in the index should lead the
physician to consider obtaining a blood culture, and
this has borne out to be a high yield strategy.7

However, identification of other common trajectories
has not been explored and might add further informa-
tion to the clinical picture.

Functional data analysis is a body of statistical tools
which allow for the identification and analysis of
common trajectory shapes seen in a dataset. These
methods were developed to leverage the information
contained in a patient’s entire time series as a
“function” variable without the loss of information
inherent in creating summarized variables at a given
time point. We hypothesized that utilizing functional
data analysis alongside unsupervised clustering to iden-
tify and classify common trajectories in the HRC index
would add value in predicting mortality, sepsis, or cul-
ture result beyond the raw HRC index and basic demo-
graphic information. This may further assist in
identifying neonates at risk of impending clinical
deterioration.

Methods

The HRC Index

The HRC index combines mathematical algorithms to
detect reduced heart rate variability and transient
decelerations in heart rate into a single fold-risk score
for sepsis. It is computed via a normalized logistic
regression algorithm that combines the standard devi-
ation (indicator of reduced variability), sample asym-
metry (indicator of transient decelerations),8 and
sample entropy (a measure of pattern regularity that
reflects both variability and decelerations)9 of the RR
intervals from the bedside monitor.4 The HRC index
has been mapped to clinical events and shown to sup-
port decisions of neonatologists and nurses in saving
lives.2–5,10–12

The commercial HRC index monitor used in this
study was the HeRO (Heart Rate Observation) moni-
toring system (Medical Predictive Science Corporation,
Charlottesville, VA). It calculates the HRC index com-
ponents from bedside monitor data and displays the
current fold-risk alongside a time series plot of the
hourly HRC index from the past five days.

Because the HRC index is a fold-risk score, the pop-
ulation mean of the index over all time is set at one.
Consequently, a HRC index of two should be under-
stood as a twofold risk of sepsis compared to baseline
in the next 24 hours. The HRC index is truncated at a
maximum value of seven and waxes and wanes
throughout the NICU stay. Infants with persistently
low HRC indices tend to have smooth clinical courses,
while infants with severe chronic lung disease or brain

injury can have persistently high HRC indices.10,13,14

We studied the HRC trajectory shapes in the five day

period leading up to blood culture orders. The five day

window was chosen to match the five day historic HRC

index trend shown to clinicians on the display.

Dataset

HRC index data from very low birth weight infants

(<1500 grams) from nine NICUs were collected from

2004–2010 in a randomized control trial (RCT) where

half of the infants had their HRC indices displayed and

the other did not.5 Parents provided written informed

consent when necessary to participate in the trial. This

study re-analyzes the data recorded in the trial.
Since most of the survival benefit occurred in infants

who had sepsis, the benefit of the monitoring display

was attributed to early warning of impending illness,

leading to earlier intervention (Fairchild, 2013).12

Importantly, the display group might exhibit a differ-

ent time course leading to blood culture than the non-

display group due to this early warning. To investigate

whether the HRC index trajectory added valuable

information to the current HRC index, we developed

a model based on the five days of data from the display

group. Then, we applied a version of that model

(described below in the Comparison to Non-Display

Group Infants section) to the non-display group as an

out-of-group comparison.
The analytic sample consisted of HRC index data

five days prior to every bacterial, yeast, and/or fungal

culture with at least 50% of the measurements avail-

able. Data leading to both positive and negative cul-

tures were analyzed. All blood cultures taken in the

seven days after a positive culture were excluded

except for new positive cultures of a different organism.

Cultures obtained on the day of admission, when the

infant was less than three days old, and those which

returned an unknown or questionable result were also

excluded.

Identification of Characteristic Trajectory Phenotypes

We used functional data analysis15 to model the HRC

index trajectories of display group infants in the five

days leading up to a blood culture. Functional data

analysis refers to a branch of statistical techniques

that can identify and analyze the unique shapes seen

in a dataset of trajectories. We used functional princi-

pal component analysis16,17 to reduce the dimensional-

ity of the five days of data from each patient while

maintaining the essential features of the curvature of

the trajectory. This works by finding a set of principal

component curves which represent most of the variabil-

ity in the dataset. Each individual trajectory can then
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be represented by the sum of these principal component
curves multiplied by a set of corresponding coefficients.
This reduction in the dimensionality of the dataset
allows for the use of clustering (see the Clustering sub-
section) to find the coefficients that are most commonly
seen together. Then, we multiplied the principle com-
ponent curves by these sets of characteristic coefficients
and summed the curves to generate visualizations of
the most common curves seen in the dataset (see
Characteristic Curves subsection).

Functional Data Analysis. In functional data analysis, each
trajectory is represented by a linear combination of
basis functions that captures the time-varying compo-
nents. A variety of basis functions can be selected based
on the characteristics of the original trajectories, the
most familiar being the Fourier series, which is useful
for fitting periodic data. Here we chose a B-spline basis
because we sought to capture the subtleties of non-
periodic trajectories.

Hourly HRC indices over the five day period were
captured, yielding up to 121 data points per infant.
Infants with missing data at either end of the five day
window were extrapolated to the window edge by
repeating the most proximal HRC index value.
Interior missing values were filled with linear
interpolation.

The HRC index monitor algorithm uses the past 12
hours of patient data to generate a single score per
hour. Thus, HRC indices 12 samples apart are inde-
pendent. In order to capture enough information about
the curvature of these independent samples we chose to
fit one B-spline per six samples (plus one due to the odd
number of input data points), resulting in a choice of 21
B-splines. In order to be able to look at the acceleration
function, which requires trajectories to be smooth to
the fourth derivative, we used fifth order B-splines with
equally spaced knots.18

Functional principal component analysis16,17 was
used to determine the dominant variability in the
HRC index trajectories. The top four principal compo-
nents were selected since they explained 89% of the
data’s variability. The functional principal components
were then used to represent each infant’s data by a
linear combination of the four component curves.
This generated a smoothed version of the infant’s orig-
inal curve, and reduced the dimensionality of each
infant’s data from 121 hourly HRC indices to four
principal component coefficients. These above steps
were completed using modified code from J.O.
Ramsay.19,20

Clustering. To find the common characteristics of these
sets of principal component coefficients, we used an
unsupervised ensemble clustering technique. This

method uses a k-means cluster generation mechanism
with different values of k; the ensemble members were
refined using selective clustering by cluster entropy; and
the consensus function was locally weighted evidence
accumulation (LWEA), a version of hierarchical
agglomerative clustering.21,22

Characteristic Curves. To generate a visualization of the
characteristic curve from each cluster, we found the
coordinates of the centroid of each cluster. The linear
combination of these coordinates (which are coeffi-
cients of the four principal components) with the cor-
responding principal component curves yielded the
characteristic curve. We recognize that, given this is
ensemble clustering, the clusters are not necessarily
spherical, so the centroid has less meaning than it
would in a k-means clustering and is not necessarily
the ideal representative curve for the cluster.
However, our hope was that the curve would allow
us to pair statistical outcomes with a rough visualiza-
tion of a clinical trajectory.

Model Comparison

In premature infants, baseline risk of late onset neona-
tal sepsis is correlated with birthweight and days of age.
The HRC index at time of blood culture adds further
information.6 We investigated the additional informa-
tion that cluster (trajectory phenotype) membership
added to the risk of a variety of outcomes. Outcomes
investigated were all binary in nature: positive vs neg-
ative blood culture, mortality within 30 days vs survival
for 30 days, mortality within seven days vs survival for
seven days, culture-proven sepsis vs clinical sepsis or
sepsis ruled out, positive blood culture (excluding coag-
ulase negative staphylococcus species (CONS)) vs neg-
ative culture or CONS, and gram-negative organism
cultured vs gram positive organism cultured or nega-
tive culture. These outcome labels were determined
based on detailed data collected by research personnel
and manual neonatologist corrections as part of the
randomized clinical trial.12

Baseline risk of each outcome for each infant was
calculated as the discrete prior probability of the out-
come given birthweight and days of age. Bins were cre-
ated for birthweight in 200 g intervals from 200 to 1600
g (since the max birthweight was 1500 g, the last bin
contained infants only between 1400 and 1500 g) and
for age in four day intervals from zero to 224 days.
Baseline risk was calculated as the rate of the outcome
in that infant’s bin excluding the infant of interest.

Logistic regression was used to determine whether
the cluster category provided additional information
about any of the outcomes. The inputs to the logistic
regression model were the prior probability of the
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outcome given birthweight and days of age, the HRC
index at the time of blood culture, and a binary vari-
able indicating the cluster to which the infant was
assigned. We repeated this process with each of the
different outcomes, with the number of clusters ranging
from two to 12. The number of clusters included in
each model is denoted by “þ [number] Clusters” in
the model name.

Re-seeded Clustering

To rule out the possibility of the seed skewing our
modeling results, we re-ran the clustering algorithm
with 100 different seed values for every model. These
cluster results were used for the logistic regression pro-
cedure and an average Akaike information criterion
(AIC), Bayesian information criterion (BIC), and
area under the receiver operating characteristic curve
(AUC) (across seeds) were computed for each model.

Comparison to Non-Display Group Infants

Validity of the results was investigated by applying the
display group infants’ functional principal components
and clustering to the non-display group infants. While
non-display group infants might not have the same
decision point for cultures as the display group infants,
changes in cluster membership percentages and out-
comes risks by trajectory phenotypes might help quan-
tify the utility of HRC index display. Because the
clustering method we used for the display group infants
was a hierarchical agglomerative clustering method,
new samples could not be incorporated into the clus-
tering algorithm without altering the model itself.
Therefore, we used the principal component coeffi-
cients and cluster labels from the display group infants
in Matlab’s bagged trees classifier to create a classifica-
tion algorithm. This algorithm took in the four princi-
pal component coefficients for each infant and output a
cluster label.

Results

The original RCT data set included 4379 blood cultures
on 1500 infants randomized to HRC index monitoring
display that met the inclusion criteria. Of these, 3800
(80.2%) had 50% or more data availability in the five
days prior to the culture and were included in the anal-
ysis. 1489 infants were randomized to the non-display
group. In the non-display group, there were 3827 blood
cultures. Of these, 3211 had 50% or more data avail-
ability, and thus were included in the analysis. There
was a great deal of variability among HRC index tra-
jectories (Figure 1a). Figures 1b-d show the transfor-
mation of this high dimensional dataset into a four
principal component representation.

With six clusters we achieved the best tradeoff
between adding information and variable parsimony.
Additionally, the most consistent performer in the
model fitting across all outcomes was the model with
Birthweight/Days of AgeþLast HRC indexþ 6
Clusters when varying the number of B-splines, the
number of basis functions, the starting seed, and the
outcome parameter. Mortality prediction (both seven
day and 30 day) was bolstered by the cluster assign-
ment information. The improvement in prediction
using six trajectory phenotypes is shown in Table 1
(for a table showing all models tested, including com-
parisons to alternative simple models such as maximum
HRC Index, see Supplemental Table 1). AUC and AIC
improved for both display and non-display groups for
both seven and 30 day mortality with addition of the 6
Clusters to the model. Characteristic curves are shown
in Figure 2 along with the associated mortality risk.
Figure 3 shows the Receiver Operating Characteristic
(ROC) Curves for each of the models in Table 1, along
with the baseline ROC curve for birthweight/days of
age alone (an augmented version of this figure includ-
ing more alternative models is included as
Supplemental Figure 1). Clusters 3 and 6 have higher
seven day mortality risk, while Clusters 5 and 6 have
higher 30 day mortality risk. The regression results for
the non-mortality outcomes are shown in Table 2.

Re-running each of the models with 100 different
cluster seeds supported our selection of six clusters.
The Birthweight/Days of AgeþLast HRC Indexþ 6
Clusters model had the lowest mean AIC of all the
models for seven day mortality, and the second
lowest mean AIC for 30 day mortality – superseded
only by the Birthweight/Days of AgeþLast HRC
Indexþ 5 Clusters model. For all of the models that
excluded the Last HRC Index, the Birthweight/Days
of Ageþ 6 Clusters model had the lowest AIC for
both seven and 30 day mortality. The mean AIC,
BIC, and AUC values are shown in Supplemental
Tables 2 and 3. Across the 100 cluster seeds, the addi-
tion of the six clusters maintained its improvement in
AUC. The Birthweight/Days of AgeþLast HRC Index
model and the Birthweight/Days of AgeþLast HRC
Indexþ 6 Clusters model returned 7 day mortality
AUC values of 0.735 and 0.761� 0.008, respectively
(an improvement of 0.026� 0.008) with the addition
of the six clusters. 30 day mortality AUC values
improved as well with the addition of the six clusters,
increasing from 0.714 to 0.735� 0.004 (an improve-
ment of 0.021� 0.004).

Display group infants had a higher overall culture
count (Table 3), which might be attributable to clini-
cians reacting to high scores by obtaining cultures.
These additional cultures were especially prevalent in
infants belonging to Clusters 2 through 4. Only the
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display group infants in Cluster 6 had a lower number

of cultures.

Discussion

We studied trajectories of the heart rate characteristics

index, the fold-increase in risk of sepsis in the next

24 hours, in a large cohort of infants from a multicenter
randomized trial. The findings expand considerably on
our prior work to examine how risk trajectories are
related to clinical events. Sullivan et al. previously
reported that a rise from a stable and low risk five-
day baseline to a high risk (more than threefold
increase in HRC index) had a more than 50% positive

Table 1. The cluster assignments added predictive value to both seven and 30 day mortality outcomes. The Birthweight/Days of
Ageþ Last HRC Indexþ 6 Clusters model shows an improvement in AUC and AIC over the baseline Birthweight/Days of Ageþ Last HRC
Index model for both seven and 30 day mortality outcomes for both the display and non-display groups. DF¼ degrees of freedom.
AUC¼ area under the receiver operating characteristic curve. AIC¼Akaike information criterion. BIC¼Bayesian information
criterion.

Outcome Model DF

Display Group Non-Display Group

AUC AIC BIC AUC AIC BIC

7 Day Mortality Birthweight/Days of Ageþ Last HRC Index 2 0.74 892.0 904.5 0.73 962.3 974.4

Birthweight/Days of Ageþ 6 Clusters 6 0.76 869.3 906.7 0.71 982.2 1018.7

Birthweight/Days of Ageþ Last HRC

Indexþ 6 Clusters

7 0.77 870.3 914.0 0.74 966.6 1009.1

30 Day Mortality Birthweight/Days of Ageþ Last HRC Index 2 0.71 1646.9 1659.4 0.75 1745.9 1758.1

Birthweight/Days of Ageþ 6 Clusters 6 0.74 1601.1 1638.6 0.75 1744.0 1780.4

Birthweight/Days of Ageþ Last HRC

Indexþ 6 Clusters

7 0.74 1597.9 1641.6 0.76 1728.9 1771.4

(a) (c)

(b) (d)

Figure 1. Examples of the Dimension Reduction Procedure
(a) Raw data from five infants show the wide variety of trajectories leading up to blood culture. (b) The tight B-spline fit to the raw
data for each of the five infants in (a). (c) The top four principal components that were generated from the full dataset. (d) For the five
example infants we show the low-dimensional representation of each infant. We multiply each infant’s four principal component
coefficients by the principal component curves in (c), sum them together, then add the result to the mean curve. This yields the
smooth curves shown here.
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Figure 2. Characteristic HRC Index Trajectories Leading to Blood Culture in Display Group Infants.
The centroids of the six clusters provide an approximation of the trajectory common in each cluster. Gray line¼mean trajectory
across all infants; black lines¼ cluster-specific characteristic trajectory. The infants from Figure 1 were assigned to the following
clusters: Infant A: Cluster 1, Infant B: Cluster 2, Infant C: Cluster 6, Infant D: Cluster 4, Infant E: Cluster 3.

Figure 3. ROC Curves for 7 and 30 Day Mortality
Adding the cluster assignments improves both seven and 30 day mortality prediction. Only display infants are shown here.
BWT¼Birthweight. DOA¼Days of Age.

6 JRSM Cardiovascular Disease



predictive value for suspected or clinical infection.7

Here, we have used sophisticated mathematical meth-
ods of functional data analysis and unsupervised clus-
tering to discover relevant trajectories beyond the
simplified approach of analyzing large spikes.

We found six trajectory clusters that are consistent
with clinical scenarios ranging from small increases

from a low baseline score to large decreases from a
high baseline score. Non-display group infants
showed similar trajectory clusters distributions as the
display group infants. These trajectories added predic-
tive value for mortality risk beyond that provided by
the instantaneous HRC index, birthweight, and days of
age. This finding underscores the utility of considering

Table 2. AUCs for non-mortality outcomes show that the clusters did not add predictive value to identifying any of the other
outcomes tested other than mortality. DF¼ degrees of freedom. CONS¼ coagulase negative staphylococcus.

Birthweight/

Days of Ageþ Last

HRC Index (DF¼ 2)

Birthweight/

Days of Ageþ 6

Clusters (DF¼ 6)

Birthweight/

Days of Ageþ Last

HRC Indexþ 6

Clusters (DF¼ 7)

Display Non-Display Display Non-Display Display Non-Display

[Positive] vs [Negative] Blood Culture 0.54 0.58 0.54 0.57 0.55 0.59

[Sepsis Ruled Out] vs [Clinical Sepsis or Sepsis] 0.56 0.58 0.55 0.57 0.56 0.59

[Non-CONS Bacteria] vs.

[Negative Culture or CONS]

0.55 0.58 0.56 0.56 0.58 0.58

[Gram Negative] vs [Everything Else] 0.56 0.57 0.57 0.58 0.61 0.58

Table 3. Cluster-Specific Event Distribution Reviewing both the event counts and rates is essential because an overall increase in the
number of cultures in a HRC index display cluster can lead to an increased event count but also a decreased event rate. A targeted
increase in culture rate could be warranted in a particular cluster because of the increased event rate, but the justification for such an
increase could be washed out if only reviewing the percentage.

Cluster 1 2 3 4 5 6 Total

Culture Count

Non-Display 1329 932 147 206 160 437 3211

Display 1458 1252 176 325 161 428 3800

7 Day Mortality Rate (% of cultures in cluster which preceded mortality within 7 days)

Non-Display 1.5% 3.1% 7.5% 3.9% 7.5% 9.8%

Display 0.9% 2.6% 3.4% 2.5% 2.5% 10.3%

7 Day Mortality Count (number of infants whose cultures in this cluster preceded mortality within seven days)

Non-Display 15 22 10 7 8 30 92

Display 11 28 6 7 4 30 86

30 Day Mortality Rate (% of cultures in cluster which preceded mortality within 30 days)

Non-Display 2.9% 7.7% 18.4% 13.1% 12.5% 25.9%

Display 2.0% 5.7% 8.0% 7.7% 14.9% 18.7%

30 Day Mortality Count (number of infants whose cultures in this cluster preceded mortality within 30 days)

Non-Display 24 42 21 20 13 48 168

Display 20 43 14 21 19 41 158

Clinical Sepsis Rate (% of cultures leading to 5þ days of antibiotics with negative blood culture)

Non-Display 27.8% 37.9% 34.7% 36.9% 32.5% 37.1%

Display 30.0% 36.7% 40.9% 34.2% 42.2% 38.8%

Clinical Sepsis Count (number of infants whose cultures in this cluster prompted 5þ days antibiotics with negative blood culture)

Non-Display 235 207 45 62 36 98 683

Display 258 262 62 78 55 103 818

Sepsis Rate (% of cultures positive and treated with 5þ days antibiotics)

Non-Display 11.3% 12.4% 15.6% 16.0% 9.4% 14.4%

Display 11.3% 10.3% 15.3% 9.2% 13.7% 12.9%

Sepsis Count (number of infants with positive blood cultures treated with 5þ days antibiotics)

Non-Display 136 105 22 31 15 58 367

Display 138 111 26 29 22 49 375

Zimmet et al. 7



trajectories rather than spot checks of risk estimates in
the field of predictive analytics monitoring.

Moorman et al. did not directly investigate the
mechanism of mortality reduction in the display
group infants in the randomized controlled trial, but
hypothesized that it was due to early detection of sepsis
or other systemic inflammation.5 This hypothesis was
supported by the Fairchild et al.12 finding that the mor-
tality reduction was greatest in septic infants. Here we
look at the changes in the distribution of cluster assign-
ments for both the display and non-display infants in
Table 3 to help elucidate places where the HRC index
monitor may have led to changes in clinical practice,
resulting in mortality reduction.

The six distinct trajectories in Figure 2 each tell a
story when paired with our clinical experience working
alongside these monitors and the outcomes computed
in Table 3. The clinical vignettes we deduce from these
sources provide a first glimpse toward explaining how
clinicians interacted with the HRC index monitor
system to reduce mortality.

Cluster 1 - Stable Clinical Course - Cluster 1, the
most common trajectory, represents infants with a
low baseline HRC index and likely stable clinical
course and a blood culture drawn just as the HRC
index began to rise, prompted by a clinical change
from baseline. Mortality rate in this group was low
and not significantly lower in display group infants.
Infants in this cluster had the lowest percentage of cul-
tures preceded by another within 5 days (21%).

Clusters 2 and 4 –Increased Risk - Clusters 2 and 4
represent a similar trajectory to Cluster 1 though with a
higher average 5-day baseline preceding culture and a
slightly higher mortality rate, likely indicating an over-
all moderately sicker group of infants compared to
Cluster 1. Infants in Cluster 4 had the highest percent-
age of cultures preceded by another within 5 days
(49%).

Cluster 3 – Rapidly Rising Risk - Cluster 3 shows the
HRC index trajectory following a course from low to
rapidly rising approximately two days prior to blood
culture. This is the expected signature for the onset of
illness, and what would be expected to provide the
greatest clinical utility. The mortality outcomes sup-
port this: the display group infants in this group have
a lower 7 and 30 day mortality count (6 vs 10 for 7 day
mortality and 14 vs 21 for 30 day mortality) and rate
(3.4% vs 7.5% for 7 day mortality and 8.0% vs 18.4%
for 30 day mortality) than non-display infants.

Additionally, the clinical sepsis rate and counts were
higher for the display than the non-display infants in
Cluster 3. This points to the possibility that the HRC
index trajectory may have been used as an early warn-
ing or tiebreaker in the face of early, equivocal clinical
signs of sepsis, possibly influencing clinicians’ decisions

to continue antibiotics despite negative blood cultures.
While it is also important to avoid antibiotic overuse
for unproven sepsis, there may have been a mortality
benefit from empiric treatment for display group
infants with this trajectory, given that display group
infants showed a decrease in both the mortality rate
and count.

Cluster 5 - Not Out of the Woods Yet - We can con-
jecture that Cluster 5 represents infants whose initial
peak was missed clinically, and now they peak again. In
our earliest studies, we found that the HRC index has a
waxing and waning quality prior to clinical recognition
in some cases of sepsis4. Moreover, the periodic and
recurrent nature of bacteremia has been documented
in other clinical settings23. The large mortality differ-
ence seen here (between 2.5% mortality in seven days
vs 14.9% mortality in 30 days) indicates that though
the infant’s trajectory is improving in the days leading
to culture, he or she is still at increased risk for death in
the subsequent 30 days.

It is noteworthy that this is the only cluster where
the 30 day mortality rate increased in comparison to
the non-display group. This points to a potential
danger that a high score (5) dropping down to a
lower score (3), could unintentionally promote a false
sense of security, despite the score of 3 still indicating a
threefold risk in comparison to baseline.

Cluster 6 – High Risk - Cluster 6 had the highest
seven and 30 day mortality rate and count. Both
culture-positive and clinical sepsis were common in
this group. This cluster likely represents infants who
were sick for days before the blood culture was
drawn. Comparing cultures from display group infants
in this cluster to non-display, fewer blood cultures were
categorized into this cluster (428 vs 437), fewer resulted
in a diagnosis of sepsis (12.9% vs 14.4%), fewer were
followed by death within 30 days (18.7% vs 25.9%),
and more cultures (44% vs 40%) were preceded by
another culture during the prior five days. Moreover,
fewer infants with HRC index displayed were diag-
nosed with sepsis in Cluster 6, while sepsis counts
were generally higher in the display group than the
non-display group for the other trajectory clusters.
These data suggest that HRC index display may have
resulted in earlier diagnosis or treatment of sepsis and
fewer sepsis-related deaths. Overall, Table 3 provides
evidence supporting the hypothesis that the HRC index
monitoring system is allowing for earlier recognition of
illness in VLBW infants.

Conclusion

The results of our analysis inform use of HRC index
monitoring for clinical care in several ways. First, we
found that the most notable mortality advantage in
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patients randomized to HRC index display occurred in

infants with a rise in HRC index from a low baseline

that preceded blood culture by almost two days

(Cluster 3) and therefore may have encouraged antibi-
otic administration in a situation with equivocal clini-

cal signs of illness. Second, different HRC index

trajectories are associated with different patterns in

practice, measured by rates of blood cultures and clin-

ical sepsis diagnoses, or the decision to extend antibi-
otics in the face of a negative blood culture.

Furthermore, mortality and sepsis rates associated

with each of six distinct HRC index trajectories provide

information on mortality risk associated with different

patterns in the manifestation of abnormal physiology.
Finally, our analysis shows that knowing the trajectory

cluster adds information on mortality risk over that

predicted by birthweight, days of age and last

HRC index.
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