
RESEARCH ARTICLE

HUIL-TN & HUI-TN: Mining high utility

itemsets based on pattern-growth

Le Wang☯, Shui WangID
☯*

College of Digital Technology and Engineering, Ningbo University of Finance and Economics, Ningbo,

Zhejiang, China

☯ These authors contributed equally to this work.

* seawan@163.com

Abstract

In recent years, high utility itemsets (HUIs) mining has been an active research topic in data

mining. In this study, we propose two efficient pattern-growth based HUI mining algorithms,

called High Utility Itemset based on Length and Tail-Node tree (HUIL-TN) and High Utility

Itemset based on Tail-Node tree (HUI-TN). These two algorithms avoid the time-consuming

candidate generation stage and the need of scanning the original dataset multiple times for

exact utility values. A novel tree structure, named tail-node tree (TN-tree) is proposed as a

key element of our algorithms to maintain complete utililty-information of existing itemsets of

a dataset. The performance of HUIL-TN and HUI-TN was evaluated against state-of-the-art

reference methods on various datasets. Experimental results showed that our algorithms

exceed or close to the best performance on all datasets in terms of running time, while other

algorithms can only excel in certain types of dataset. Scalability tests were also performed

and our algorithms obtained the flattest curves among all competitors.

1 Introduction

Pattern discovery has been an important topic in data mining and has been applied in many

fields [1–4]. Since the development of the Apriori algorithm for mining frequent itemsets [1],

new algorithms [2, 5] have been continually proposed for various formulations and perfor-

mance enhancements. Traditional frequent itemset mining treats each item in a transaction as

binary. In other words, each itemset either occurs or does not occur in a transaction. However,

in the real-world, real-valued quantities, such as profit, may be practically important. The unit

profit and purchase quantity of items are vital for finding the most valuable itemsets that con-

tribute most to the overall profit. To address this problem, mining HUIs (High Utility Item-

sets) was proposed and studied extensively in the data mining literatures [6–11].

A typical method of mining HUIs consists of two steps: generating candidates and calculat-

ing utility values of these candidate itemsets. The performance bottleneck of these algorithms

has primarily been in the candidate generation process, thus lots of research efforts have been

focused on improving this step by reducing the number of candidates or avoiding the candi-

date generation step completely.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Wang L, Wang S (2021) HUIL-TN & HUI-

TN: Mining high utility itemsets based on pattern-

growth. PLoS ONE 16(3): e0248349. https://doi.

org/10.1371/journal.pone.0248349

Editor: Unil Yun, Sejong University, KOREA,

REPUBLIC OF

Received: August 2, 2020

Accepted: February 24, 2021

Published: March 12, 2021

Copyright: © 2021 Wang, Wang. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All dataset files are

available from the SPMF Website/database (http://

www.philippe-fournier-viger.com/spmf/).

Funding: This work is partially supported by the

Zhejiang Basic Public Welfare Research Project

(2017C35014, Shui Wang), Zhejiang Philosophy

and Social Science Project (19GXSZ49YB, Le

Wang), Ningbo Natural Science Foundation

(2017A610122, Le Wang). There was no additional

external funding received for this study. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

https://orcid.org/0000-0002-0108-167X
https://doi.org/10.1371/journal.pone.0248349
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248349&domain=pdf&date_stamp=2021-03-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248349&domain=pdf&date_stamp=2021-03-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248349&domain=pdf&date_stamp=2021-03-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248349&domain=pdf&date_stamp=2021-03-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248349&domain=pdf&date_stamp=2021-03-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248349&domain=pdf&date_stamp=2021-03-12
https://doi.org/10.1371/journal.pone.0248349
https://doi.org/10.1371/journal.pone.0248349
http://creativecommons.org/licenses/by/4.0/
http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/

For example, a number of algorithms that generate candidate itemsets based on the apriori

method [12–14] or map the transaction itemsets to utility lists [8, 15] may generate non-

existing candidate itemsets (i.e., itemsets that may co-occur but never co-occurred in the

dataset), which results in unnecessary computing that negatively impacts the computational

performance.

In contrast, pattern-growth based algorithms [10, 16, 17] can avoid generating non-existing

candidates, thus are promising for superior computation performance in HUI mining.

Although the pattern-growth approach can effectively exclude non-existing itemsets from

candidate itemsets, they still generate candidate itemsets and require additional scans of the

original dataset to calculate the exact utility value of these candidates and identify HUIs. The

reason is that they apply an over-estimated utility value to generate candidate itemsets after

mapping transaction itemsets to a tree structure. Unlike in frequent pattern mining, the down-

ward closure property of the support measure is no longer applicable in HUI mining, and can-

not be used for effectively removing low utility patterns from the candidates. Therefore, an

over-estimated utility value that has a computation friendly downward closure property has

been a commonly adopted strategy in HUI mining [13, 14, 18–21]. The bigger the over-esti-

mated utility value, the more candidates the algorithm will generate, and thus the less efficient

it will be. Without the ability of directly retrieving the exact utility values from the tree, existing

pattern-growth based HUI mining methods need to scan the original dataset to identify HUIs,

which required additional passes of data I/O, resulting in much computation overhead.

There is a fact that themaxlength of HUIs is less than the length of many transactions in

many datasets, so we can reduce the number of items in global header table and sub-header

table if we calculate TWU value of items using part items of transactions, not all items of

transactions.

Bearing in mind the above reasoning, we propose a novel tree structure, called tail-node

tree (TN-tree), from which we can retrieve the exact utility value of an exisiting itemset with-

out re-scanning the original dataset. The basic idea is that we maintain the utility of each

individual item in the itemset in a special node (called the tail-node) when mapping the trans-

action itemsets to a tree. Correspondingly, the tail-node tree based HUI mining algorithms,

named HUIL-TN and HUI-TN, are proposed for discovering HUIs efficiently. With this con-

cise enhancement, our algorithms can find HUIs from a dataset with outstanding perfor-

mance. Experimental results with both dense and sparse datasets also verified the effectiveness

of the proposed methods.

Our contributions may be summarized as follows:

1. We designed a novel tree structure whose tail-nodes are used to store item-specific utility

information, so that the exact utility value of an itemset may be easily retrieved later.

2. Based on the pattern-growth approach, we designed two HUI mining algorithms with no

need of generating candidate itemsets: one uses part items of transactions and another one

uses all items of transactions when creating global header table and sub-header tables.

3. Extensive experiments under different situations were performed to compare HUIL-TN

and HUI-TN with four state-of-the-art algorithms EFIM [7], D2HUP [8], HMiner [6] and

ULBMiner [9]. Experimental results demonstrated that the proposed algorithms outper-

formed the state-of-the-art algorithms.

The rest of this paper is organized as follows. section 2 describes related work for HUI min-

ing. section 3 describes the background. section 4 describes the proposed algorithms. section 5

reports our experimental results. section 6 draws the conclusions and point out possible future

work.

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 2 / 24

the manuscript. There was no additional external

funding received for this study.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0248349

2 Related work

Existing HUI mining algorithms may be categorized into two groups: two phase algorithms

and one phase algorithms.

2.1 Two phase algorithms

Yao et al. proposed the mathematical model for mining HUIs [14]. The authors estimated an

expected utility value to determine whether an itemset should be a candidate itemset for high

utility itemsets. However, the number of candidates may approach the number of all the com-

binations of items if the minimum utility value is very small and a dataset contains many dis-

tinct items, so the mining process might be time-consuming. Later, Yao et al. proposed two

new algorithms for mining HUIs: UMining and UMining_H [21]. Algorithm UMining

employs the utility upper bound property for pruning. UMining_H employs a heuristic

method for pruning. These two algorithms may prune some HUIs, and also suffer from exces-

sive candidates.

Liu et al. proposed algorithm Two-Phase [13] for mining HUIs. The authors firstly pro-

posed the Transaction-Weighted-Utilization (TWU) model. The model maintains a TWU

downward closure property. In this model, an itemset can be considered as a candidate itemset

for HUIs if its TWU value is not less than a minimum utility value. Two-Phase consists of two

phases; in the first phase, Two-Phase finds all the candidate itemsets; in the second phase, the

algorithm discovers the actual HUIs from the candidate itemsets by an additional dataset scan.

This algorithm outperforms the algorithm proposed in the paper [14]. However, this algorithm

still generates too many candidates in the first phase and needs multiple scans of the dataset.

To reduce the number of candidates in the first phase of algorithm Two-Phase, Li et al. pro-

posed an isolated items discarding strategy (IIDS) to reduce the number of candidates and

applied the strategy to the two existing algorithms, and get two new algorithms renamed

FUM and DCG+ [12]. These two new algorithms outperformed their original predecessors.

Although IIDS effectively reduces candidates, it still scans dataset multiple times and generates

candidate itemsets for HUIs.

In order to avoid multiple scans of the dataset for algorithms based on Pattern-growth,

HUP-Growth [19] creates HUP-Tree in a way like FP-Tree. When mapping a transaction

itemset to a tree, it stores the utility values of this node as well as the node’s ancestors into a list

(this list is called “utility list”). If the node’s utility list already exists, the itemset’s utility values

are added up to the list. This way the utility values of all possible itemsets of the dataset can be

calculated from the tree. HUP-Growth takes a bottom-up approach to process each item, col-

lecting items along the path, generates all possible combinations containing this item, and cal-

culates their utility values, thereby determines all HUIs for current item. The merit of this

algorithm is that utility values of itemsets can be calculated efficiently from the tree. But it still

generates too many candidate itemsets.

Algorithm IHUP [16] also adopts FP-Tree’s approach to create IHUP-Tree. When it maps

a transaction itemset to a tree, the utility value of this transaction itemset is stored on each

node of this itemset. If the node already contains a utility value, new value is simply added to

it. IHUP utilizes pattern-growth approach (FP-Growth method [2]) to generate candidate

itemset, and uses the sum of all utility values of the corresponding nodes of the current item as

the over-estimated threshold to determine whether this itemset is a promising candidate.

Compared with HUP-Growth’s approach that combines items along the path to get candidate

itemsets, IHUP’s candidates are lesser and the mining efficiency is increased.

IHUP cannot retrieve an itemset’s utility value directly after it maps the transaction itemset

to a tree. Instead, it gets the sum of all utility values of the transactions containing this itemset

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 3 / 24

https://doi.org/10.1371/journal.pone.0248349

(over-estimated utility value). Therefore, it needs to scan the original dataset to calculate candi-

dates’ utility after these candidates are generated. Algorithm UP-Growth [10] is an improve-

ment of IHUP. When it maps a transaction itemset to a tree, it registers the utility values of the

corresponding node and this node’s ancestors in the transaction. If a node has already regis-

tered with a utility value, the algorithm just adds the new value to it. Sub-trees are constructed

by the same way, i.e., each node does not contain utility values of its children nodes. So

UP-Growth’s over-estimated utility value (used for judging whether an itemset is a candidate)

is lower than that of IHUP. UP-Growth effectively reduces the number of candidates and

improves the time efficiency of identifying of candidates.

2.2 One phase algorithms

The main shortcoming of Two-phase algorithms is that they generate a large number of candi-

dates including non-existing itemsets of the dataset, and they need multiple scans on the origi-

nal dataset. To address this main shortcoming, some one-phase algorithms have been proposed.

HUI-Miner [15] firstly introduced the utility-list structure. Then some algorithms based on

the utility-list structure have been proposed, such as FHM [22], HUP-Miner [23], mHUIMiner

[24], and ULB-Miner [9]. Algorithm FHM [22] applied a depth-first search to find high utility

itemsets, and was shown to be up to seven times faster than HUI-Miner. Algorithm mHUIMi-

ner [24] combined ideas from the HUI-Miner and IHUP algorithms to efficiently mine high

utility itemsets from sparse datasets. Algorithm ULB-Miner [9] extended algorithm FHM [22]

and HUI-Miner [15] by utilizing a utility list buffer structure, which helped reduce the mem-

ory and runtime usage of FHM algorithm.

Algorithm D2HUP [8] directly found high utility itemsets without generating candidates

based on pattern-growth, represented the databases using a hyper structure, and was shown to

be up to one order of magnitude faster than UP-Growth.

Algorithm EFIM [7] directly found high utility itemsets without generating candidates. It

applied a horizontal database representation for storing itemset information to reduce mem-

ory usage, and utilized the concepts of transaction merging, database projection, and fast util-

ity computation for mining high utility itemsets. The experimental results showed that

algorithm EFIM was 2 to 3 order of magnitudes faster than these algorithms HUI-Miner [15],

UP-Growth [10], FHM [22], and HUP-Miner [23].

IMHUP [25] uses an indexed utility list for mining HUIs, and neither stores transaction

identifiers nor perform costly transaction list intersections. IMHUP algorithm is about 2-12

times faster than FHM algorithm. But IMHUP algorithm is not superior to EFIM algorithm

[6]. HMiner [6] is based on algorithm HUI-Miner [15], adopts a compact utility list for merg-

ing transactions containing all extended items, avoids the expensive cost of computing, and

finally gets obviously performance improvement.

2.3 Variant algorithms

Based on existing research on HUI mining, several variant algorithms have been proposed,

e.g., high average-utility mining [26–28], Top-K high utility mining [29, 30], HUI mining

from data stream [31, 32], high-utility association rules [33], multi-core or parallel mining [34,

35], and HUIM over multiple data sources [36]. Most of these studies mainly apply methods of

one phase or two phase.

2.4 Differences from previous works

The pattern-tree based algorithms [10, 16, 19] mentioned above discard utility value of indi-

vidual item of a transaction. They cannot retrieve the exact utility value of an itemset, and

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 4 / 24

https://doi.org/10.1371/journal.pone.0248349

must utilize an over-estimated utility value to generate candidate itemsets. It is obvious that

the smaller the over-estimated utility threshold is, the lesser the candidates will be, and the bet-

ter the performance of the mining algorithm may achieve. If we can get the exact utility value

of an itemset, we can identify directly whether it is a HUI without bothering the processing of

candidates. For this reason, we construct a novel tree structure for mapping transaction item-

sets, the itemsets’ exact utility values can be retrieved from the tree. In summary, our study

adopts this pattern-growth approach to mine HUIs from a tree without generating candidate

itemsets.

3 Preliminaries

In this section, we give the definition of the HUI mining.

3.1 Basic concepts

Given a set ofm unique items I = {i1, i2, . . ., im}, an itemset X� I containing k distinct items is

called a k-itemset. A transaction dataset DB = {T1, T2, . . ., Tn} contains n transactions. Each

transaction Td (d = 1, 2, . . ., n) involves a subset of all unique items in I, called a transaction

itemset. For convenience, we use the notation Td represent the transaction itemset.

For a utility-valued transaction database, each item ir (r = 1, 2, . . .,m) has a unit profit

pðirÞ 2 R, and each item ir in a transaction Td is attached with a quantity qðir;TdÞ 2 R with its

occurrence in the transaction (e.g., quantity purchased, dollar amount paid, or profit from the

transaction).

Definition 1 (Item Utility). The utility of the item ir in a transaction Td is denoted as u(ir,
Td) and calculated as

uðir;TdÞ ¼ pðirÞ � qðir;TdÞ; ð1Þ

where p(ir) is the unit profit of item ir, and q(ir, Td) is the quantity of item ir’s occurrence in trans-
action Td, 8i = 1, 2, . . .,m, 8d = 1, 2, . . ., n.

Definition 2 (Itemset Utility). The utility of an itemset X in a transaction Td is denoted as
u(X, Td) and calculated as

uðX;TdÞ ¼
0; if X ⊈ Td;
P

ir2X
uðir;TdÞ; if X � Td;

8
<

:
ð2Þ

where u(ir, Td) is the utility of the item ir in transaction Td. The utility of the itemset X in the
whole transaction dataset DB = {T1, T2, . . ., Tn} is denoted as u(X) and calculated by

uðXÞ ¼
X

Td2DB

uðX;TdÞ: ð3Þ

Since a transaction corresponds to a transaction itemset, the transaction utility is a special

case of itemset utility. More specifically, the utility of a transaction Td is denoted as tu(Td) and

calculated by

tuðTdÞ ¼
X

ir2Td

uðir;TdÞ: ð4Þ

Definition 3 (Support Number). The support number (sn) of an itemset X is the number of
transaction itemsets containing X.

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 5 / 24

https://doi.org/10.1371/journal.pone.0248349

Definition 4 (Transaction-Weighted Utility). The transaction-weighted utility of an itemset
X is denoted as TWU(X), and is calculated by

TWUðXÞ ¼
X

Td2fT2DB:X�Tg

tuðTdÞ: ð5Þ

TWU(X) is the sum of the transaction utilities of all transaction itemsets containing X.

Example 1 (Utility-Valued Transaction Database). The first two columns in Table 1 and the
first two columns in Table 2 provide an example utility-valued transaction database.More spe-
cifically, Table 1 is a dataset containing 7 transaction itemsets, and Table 2 shows the unit profit
value of each item in Table 1.

Definition 5 (Promising Itemset). An itemset/item X is called a promising itemset/item for
high utility itemsets/item if TWU(X)�min_uti (min_uti is a user-specified minimum utility
value), otherwise it is an unpromising itemset/item. A promising itemset is also called a candidate
itemset for HUIs.

Lemma 1 (Transaction-Weighted Downward Closure Property). Any subset of a promising
itemset is a promising itemset and any superset of an unpromising itemset is an unpromising
itemset.

Lemma 1 has been proved in [13]. For example, if {ACD} is a promising itemset, the itemset

{AC} (or any sub itemset of {ACD}) is also a promising itemset. On the other hand, if {AC} is

unpromising, all its super itemsets (such as {ACD}) are unpromising.

Theorem 1. Let item Q be an unpromising item in dataset DB, then any itemset X containing
Q is not a high utility itemset [10].

Proof. According to Lemma 1, itemset X is an unpromising itemset. According to Defini-

tion 2 and 4, u(X)� TWU(X), the utility of itemset X is less than the minimum utility value,

thus itemset X is not a HUI.

Table 1. An example database.

TID Items and Quantities tu(Ti) MU(;, Ti, 3) u(B, Ti) u(C, Ti) u({B, C}, Ti)

T1 (B, 4)(C, 3)(D, 3)(E, 1) 24 21 12 3 15

T2 (B, 2)(C, 2)(E, 1)(G, 4) 15 13 6 2 8

T3 (B, 3)(C, 4) 13 13 9 4 13

T4 (A, 1)(C, 1)(D, 2) 15 15 0 1 0

T5 (A, 2)(B, 2)(C, 2)(D, 2)(E, 1)(F, 9) 44 35 6 2 8

T6 (A, 1)(C, 6)(D, 2)(E, 1)(G, 8) 31 24 0 6 0

T7 (A, 2)(C, 4)(D, 3) 30 30 0 4 0

https://doi.org/10.1371/journal.pone.0248349.t001

Table 2. Profit table.

Item Profit MU sn
A 10 104 4

B 3 82 4

C 1 151 7

D 2 125 5

E 3 93 4

F 1 35 1

G 1 37 2

https://doi.org/10.1371/journal.pone.0248349.t002

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 6 / 24

https://doi.org/10.1371/journal.pone.0248349.t001
https://doi.org/10.1371/journal.pone.0248349.t002
https://doi.org/10.1371/journal.pone.0248349

Definition 6 (Maximum Utility of transaction). The transaction utility of an itemset X with
k-length is denoted as mu(X, Td, k), and is calculated by

muðX;Td; kÞ ¼ uðX;TdÞ þmax
Xminðk;jTd jÞ

i¼1

uðxi;TdÞjxi 2 Td ^ xi=2X

()

ð6Þ

Definition 7 (Maximum Utility). The maximum utility of an itemset X with k-length is denoted
as mu(X, k), and is calculated by

muðX; kÞ ¼
X

X2Td^Td2DB

muðX;Td; kÞ: ð7Þ

Theorem 2. Let mu(X, k) be less than the minimum utility threshold in dataset DB, then any l-
itemset Y(l� k) containing X is not a high utility itemset.
Proof. According to Eqs 4 and 6,mu(X, Td, k)� tu(Td) and tu(Y, Td)�mu(X, Td, k). So for

any itemset X in dataset DB,mu(X, k)� TWU(X) and tu(Y)�mu(X, k).

Definition 8 (Remain Transaction-itemset). Given a transaction itemset Td = {x1, x2, � � �, xi,
� � �}, and an ordered subset X of itemset Td ðX ¼ fxi; xi1 ; xi2 ; � � � ; xijgÞ, then itemset {x1, x2, � � �,

xi−1} is named remain transaction-itemset of X in Td, and denoted as rt(X, Td).
Definition 9 (Remain Transaction-Weighted Utility). The remain transaction-weighted

utility of an itemset X is denoted as RTWU(X), and is calculated by

RTWUðXÞ ¼
X

Td2fT2DB:X�Tg

tuðrtðX;TdÞÞ: ð8Þ

Definition 10 (Remain Maximum Utility). The remain maximum utility X with k-length is
denoted as RMU(X, k), and is calculated by

RMUðX; kÞ ¼
X

X2Td^Td2DB

muðX; rtðX;TdÞ; kÞ: ð9Þ

3.2 Problem definition

In a transaction dataset, an itemset is a high utility itemset if its utility value is not less than a

user-specified minimum utility value, where the utility of an item in a transaction is defined

as its internal utility multiplied by its external utility. The utility of an itemset in a transaction

is defined as the sum of its all items’ utility in the transaction. For example, the utility of an

itemset X in a transaction dataset is defined as the sum of its utility in each transaction contain-

ing X.

Definition 11 (High Utility Itemset). An itemset X is called a high utility itemset if its utility
(u(X)) is not less than a user-specified minimum utility value.

Given a transaction database DB, the problem of HUI mining aims at finding all HUIs

from DB. Mining HUIs from a database also refers to finding all itemsets whose utility value is

not less than a user-specified minimum utility value.

4 Proposed algorithms

Several algorithms have been proposed to mine HUIs based on pattern-growth, but they can

not mine HUIs without generating candidate itemsets. This paper proposed an algorithm

HUIL-TN (High-Utility Itemsets mining based on Length and Tail-Node tree) for mining

HUIs by using pattern-growth without generating candidates.

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 7 / 24

https://doi.org/10.1371/journal.pone.0248349

Algorithm 1: Algorithm HUIL-TN
Input: DB: transactions data; η: minimum utility threshold; k: the

maximum length of high utility itemsets in DB.
Output: HUIs

1 find the maximum length k of HUIs on part of DB;
// create global TN-tree T and Header Table H

2 CreateGTree(DB, η, k);
// find all HUIs, which lenth is not more than k, from the TN-tree T

3 MHUIs(T, H, base-itemset, k);

Algorithm HUIL-TN is shown in Algorithm 1, and includes three parts:

• First, we randomly select some data to find the maximum length k of HUIs (Line 1), and use

k to estimate the maximum length of HUIs in DB.

• Second, we map the dataset DB to a global TN-tree and header table (Line 2).

• Finally, we mine HUIs from the global tree (Line 3). We explain in detail the process of cre-

ating a global tree and mining HUIs from the global tree in the following subsections.

Section 4.1 describes constructing process of tree using transaction datasets, including

description of tree structure(4.1.1) and tree construction(4.1.2). Section 4.2 describes algo-

rithm of mining HUIs from a tree. Section 4.3 describes comparison with existing Algorithms.

Section 4.4 gives algorithm analysis.

4.1 Constructing trees for maintaining data

To facilitate the mining process and avoid scanning the dataset many times, a tree structure is

employed to maintain the dataset in our algorithm. In this subsection, we firstly introduce a

new tree structure called TN-tree (Tail-Node tree) to maintain a transaction dataset, and then

we describe the algorithm of mining HUIs from the TN-tree.

4.1.1 The structure of TN-tree. In this study, we propose a new data structure TN-tree

for storing critical utility information from the dataset for HUI mining. TN-tree can be used to

store the utility values of itemsets. Utility value of an itemset can be retrieved from the TN-tree

and can be used to determine whether this itemset is a HUI.

Like other tree-structures for pattern generation, in a TN-tree, each node N contains the

following fields:

• N.name: item name of the node N,

• N.parent: parent node of the node N, and

• N.children: a set of the children nodes of N.

Definition 12 (Tail-node).When a transaction is inserted to a tree, its last node is called a
Tail-node of this transaction.

Definition 13 (Path-itemset). A set of items on path that is from a node to root is called path-
itemset of this node.

In order to get utility value of each itemset from the tree, a tail-node contains the following

fields in addition:

• N.piu is a list which records each item utility in a path-itemset;

• N.bu is the utility of the base-itemset in a path-itemset.

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 8 / 24

https://doi.org/10.1371/journal.pone.0248349

N.bu and N.piu are called the tail-information of node N. The tail-information is important,

because all itemsets that potentially have a utility score above the minimum utility threshold

can be found by using tail-information stored on the tree.

Fig 1 illustrates an example TN-tree, which was constructed based on data in Tables 1 and

2. For example, the leftmost node B is a tail-node of the itemset {C, D, E, B}, and the sequence

of numbers, “3, 6, 3, 12” on the node, represent the total utility values of items C, D, E, and B in

the entire dataset, respectively.

4.1.2 TN-tree construction. A TN-tree can be constructed by two scans of a transaction

dataset. The pseudocode is provided in Algorithm 2.

Algorithm 2: CreateGTree
Input: DB: transactions data; η: minimum utility threshold; k: the

maximum length of high utility itemsets in DB.
Output: the TN tree T
// First scan of the database DB

1 Initiate a header table H containing the fields of item ID, TWU, sn,
and links;
2 for each transaction TS of DB do
3 for each item I in TS do
4 H.I.mu+ = mu(;, TS, k);
5 end
6 end
7 Delete unpromising items from H based on threshold η;
8 Sort H by the descending order of mu of H;
// Second scan of the database DB

9 Initialize a TN-tree T with an empty root node;
10 for each transaction TS of DB do
11 Delete unpromising items from TS;
12 Sort items of TS according to H, with utility values, to X;
13 Insert X to T;

// Process the tail-information for the tail-node
14 N.piu+ = X.piu; // element-by-element addition
15 H.N.RMU+ = RMU(N, X, k);
16 end

Fig 1. Example TN-tree constructed using data in Tables 1 and 2.

https://doi.org/10.1371/journal.pone.0248349.g001

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 9 / 24

https://doi.org/10.1371/journal.pone.0248349.g001
https://doi.org/10.1371/journal.pone.0248349

In the first scan of dataset, we create a header table. We first compute themu value of each

unique item in the dataset. The items of the header table are then arranged in the descending

order ofmu values (or TWU values, or support number). Unpromising items are then deleted

from the header table.

In the second scan, transaction itemsets are added into the TN-tree. The TN-tree is initial-

ized as an empty root node (i.e., its parent node and item name are null). For each transaction

in the dataset, we take the following process:

1. Delete unpromising items from the transaction itemset (Line 11).

2. Sort the remaining promising items according to their ordering in the header table and cre-

ate a sorted itemset X (Line 12).

3. Add itemset X into the TN-tree, and store the number of itemset X, and the utility of each

item in X to the tail-node of X, and store the RMU values of all items in X and link of new

nodes to the header table.

Note that the field bu on each tail-node is initialized as 0 in this (global) TN-tree. Its value

will be updated in the HUI mining process when sub-trees are constructed (see the following

subsection).

Example 2 illustrates the construction process of a TN-tree using the dataset in Tables 1

and 2.

Example 2 (TN-tree Construction). Suppose the minimum utility value min_uti is 70.

Firstly, a header table H is created by one scan of the dataset. The result is shown in Fig 2(a).

Then, a TN-tree is initialized as a root node whose parent node and item name are null. A sec-
ond scan of the dataset will add all transactions to the TN-tree by the following process.

Fig 2. Construction of a TN-tree.

https://doi.org/10.1371/journal.pone.0248349.g002

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 10 / 24

https://doi.org/10.1371/journal.pone.0248349.g002
https://doi.org/10.1371/journal.pone.0248349

1. For the first transaction itemset {B, C, D, E}, we remove unpromising items from the itemset
and sort items of the itemset according to the order of H. Then we get the itemset {C, D, E, B},

add the itemset to a TN-tree, and store the piu values (3, 6, 3, 12) to the field piu on the tail-
node. The TN-tree is shown in Fig 2(b) after T1 is added to the tree, where node B is a tail-
node, and 0; 3, 6, 3, 12 shows its bu = 0, and piu = {3, 6, 3, 12}.We also modify RMU values
of each item of the itemset {C, D, E, B}, as shown the header table in Fig 2(b).

2. For the second transaction itemset {B, C, E, G}, we remove unpromising item G, sort items of
the itemset according to the order of H, and get the itemset {C, E, B}. Fig 2(c) shows the TN-
tree and the header table after T2 was added to the tree.

3. For the third transaction itemset {B, C}, we obtained the sorted itemset {C, B}. Fig 2(d) shows
the TN-tree and the header table after T3 was added to the tree.

4. By the above method, the first six transactions were added to the TN-tree. The result was
shown in Fig 2(e).

5. After all the transaction itemsets were added to the tree, the TN-tree was shown as Fig 1.

When T7 was added to the tree, there was a path “root-C-D-A” on the TN-tree and node A
was also the tail-node in Fig 2(e). Therefore, we just need to modify the tail-information on
the tail-node A, and modify RMU values of each item of the itemset. The modified tail-infor-
mation and the header table is shown in Fig 1.

4.2 Mining HUIs from a TN-tree

In this section, we firstly introduce the concept of sub-tree, then describe and analyze the pro-

posed algorithm.

Like algorithm FP-growth [2], algorithm HUIL-TN applies a recursive method that iterates

over sub-tree of the global TN-tree initially constructed. To clarify the description of HUI-TN,

we firstly give the following definitions.

Definition 14 (Base-Itemset and Conditional Tree). A conditional tree (also called a sub-
tree) [2] of itemset X is a tree that is constructed using all transaction itemsets containing itemset
X (X is removed from these transactions itemsets before they are added to the conditional tree).
Itemset X is called the base-itemset of this conditional tree.

A tree that is constructed by all transaction itemsets of a dataset and, whose base-itemset is

null, is called a global tree. A global tree is also called a conditional tree whose base-itemset is

null. u(X, t) in a transaction itemset t containing X is also called base-utility (abbreviated as

bu) of transaction itemset t in the conditional tree T.

Definition 15 (Sub Dataset). In a conditional tree T whose base-itemset is X (if X is null, T is
a global tree), suppose item Q appears in k tail-nodes, and the corresponding path itemsets are
Y1, Y2, . . ., Yk, the itemsets Y1 [X, Y2 [X, . . ., Yk [X (along with their utility values) constitute
the sub dataset of itemset {Q} [X. Each record in sub dataset is called sub transaction-itemset.

Definition 16 (Local Candidate). If theMU value of an item in a sub dataset is less than the
minimum utility value, it is called a local unpromising item (local non-Candidate); otherwise, it
is called a local promising item (local candidate).

According to Theorem 2, algorithm HUIL-TN removes all unpromising items from origi-

nal transaction itemsets when it creates the TN-tree with transaction itemsets, and removes all

local unpromising items of a sub dataset when it creates a sub TN-tree.

The algorithm of mining HUIs from a TN-tree is shown in Algorithm 3.

We process each item (denoted as Q) in the header tableH, starting from the last item, by

the following steps.

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 11 / 24

https://doi.org/10.1371/journal.pone.0248349

First, if RMU is less than the predefined minimum utility value, go to the next step; other-

wise, we add item Q to a base-itemset (which is initialized as ;) and generate HUI and create

sub TN-tree to perform mining recursively (Lines 15-16). More specifically, if (BU+ NU) is not

less than the predefined minimum utility value, then the current base-itemset is a HUI (Lines

9-11); if there is only one node for the item Q, we do not generate sub TN-tree and directly

process the path-itemset of this node(line 13). We remove the item Q from the current base-

itemset after we perform a recursive mining process on the new sub TN-tree (line 18).

Then, for each of thesem tail-nodes (which we denote as Ni, i = 1, 2, . . .,m), we modify its

tail-information by deleting item Q’s utility from list Ni.piu. If its parent node contains a tail-

information, then accumulate this tail-information to its parent’s tail-information (lines 26-

27); otherwise move this tail-information to its parent(lines 23-24).

The propose of Algorithm 4 is to find all HUIs from subsets of itemset X when itemset X is

a HUI. First, generate a HUI X (line 1). We remove one item from X in turn and obtain an

new itemset Y (lines 5-6). We will recursively process itemset Y (line 7) if the utility value of

itemset Y is less than the minimum utility valueminutil.
The constructing process of sub tree is summarized in Algorithm 5, is as follows. First, we

create a new header table subH by scanning the corresponding path-itemsets in the current

TN-tree (line 3), including deleting unpromising items from subH and sorting its items in the

descending order of RMU (lines 6-7). Second, we process each path-itemsets in the current

TN-tree, including deleting unpromising items(line 13), sorting items according to subH (line

14), and inserting the path-itemsets to a new TN-tree subT (lines 15-17).

Algorithm 3: MHUIs
Input: T: the TN-tree constructed from the transactions data; H: the
header table constructed from the transactions data; base-itemset; k:
the maximum length of HUIs.
Output: HUIs
1 foreach item Q in H (with a bottom-up sequence) do

// Step 1: Generate HUIs and create sub TN-tree
2 if RMU � min_util then
3 base-itemset = base-itemset [{Q}

// Calculate BU and NU
4 BU = 0, NU = 0;
5 foreach node N of item Q in T do
6 BU = BU + N.bu; // base itemset utility
7 NU = NU + N.nu; //N.nu is the utility of item Q in the list N.
piu
8 end
9 if BU+ NU � min_util then
10 Copy base-itemset to HUIs; // generate one HUI
11 end
12 if there is one node N for the item Q then
13 CreateHuibyOneTr(path-itemset of N, N.piu, 0);
14 else
15 Create a sub TN-tree subT and a header table subH for base-
itemset (see Algorithm 5);
16 MHUIs(subT; subH, base-itemset, k-1); // recursive call
17 end
18 Remove item Q from itemset base-itemset;
19 end

// Step 2: Remove item Q from tree T by moving each tail-node’s
tail-information to its parent
20 foreach node N of item Q in T do
21 Remove utility value of item Q from list N.piu;

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 12 / 24

https://doi.org/10.1371/journal.pone.0248349

22 if N.parent.bu==NULL then
23 N.parent.bu = N.bu;
24 N.parent.piu = N.piu;
25 else
26 N.parent.bu = N.parent.bu + N.bu;
27 N.parent.piu = N.parent.piu + N.piu;
28 end
29 Remove node N from T;
30 end
31 end
32 return HUIs;

Algorithm 4: Procedure CreateHuibyOneTr
Input: X: an itemset; U_X: utility value of each item in X; p: index of
X.
Output: HUIs
1 X is a HUI;
2 sumUtility = sum of utility values of all items in X;
3 for int i = p; i < X.length; i++ do
4 if sumUtility—U_X[i] < minutil then continue;
5 copy X into Y excluding item x;
6 copy U_X into U_Y excluding the utility of item x;
7 CreateHuibyOneTr(Y, U_Y, i);
end

Example 3 (HUI Mining based on TN-tree). For example, in Fig 1, item “B” is the last item
in the header table. Because the RMU value 72 is not less than the minimum utility value 70, we
firstly add item “B” to a base-itemset (initialized as null), resulting base-itemset B, and calculate
its BU = 0, NU = 12 + 6 + 6 + 9 = 33. Because BU + NU = 33 < 70, this itemset {B} is not a high
utility itemset. Then we still construct a sub header table and a sub TN-tree for the current base-
itemset {B}.

A sub header table is created as the following. From the path “root-C-D-E-B: 1, 0; 3, 6, 6, 12;

24” in Fig 1, get an itemset {C, D, E, B}, and utility of items C, D, E, B (i.e., 3, 6, 3, 12), respec-
tively. See the first sub transaction-itemset of the sub dataset in Fig 3(a). Similarly, we can get
other three sub transaction-itemset from the other three paths, respectively: root-C-D-A-E-B: 1,

0; 2, 4, 20, 3, 6, root-C-E-B: 1, 0; 2, 3, 6, and root-C-B: 1, 0; 4, 9. See the sub dataset in Fig 3(a)

(the number associated with each item, such as 3 in (C, 3), is the utility value of this item).

A sub header table is created by scanning the sub dataset in Fig 3(a), the result is shown in Fig

3(b). A sub header table just maintains all local promising items. A sub TN-tree is created by the
method of TN-tree in subsubsection 4.1.2, except that the utility values of itemset {B} of each sub
transaction-itemset in Fig 3(a) are accumulated to the field bu on the tail-node and the item B is
not added to the sub TN-tree. The result is shown in Fig 3(b).

Fig 3. The HUIL-TN algorithm for mining high utility itemsets.

https://doi.org/10.1371/journal.pone.0248349.g003

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 13 / 24

https://doi.org/10.1371/journal.pone.0248349.g003
https://doi.org/10.1371/journal.pone.0248349

Then we perform a recursive mining process on the new sub header table and sub TN-tree.
For the last item C in the header table (see Fig 3(b)): because RMU< 70, item C is not added to
the base itemset, and no new sub TN-tree or HUI is generated.

After processing all items in Fig 3(b), we go on processing remaining items of the header table
in Fig 1. Fig 3(c) is the sub dataset of itemset {A}. Because there is one transactoin in Fig 3(c), no
sub header or no sub TN-tree is created; i.e., {{AD}, {ACD}, {AC}}.

The “add/move” process (Step 2 of Algorithm 3) is a key operation of this algorithm. When

a transaction itemset (or sub transaction-itemset) is added to a TN-tree, its base-utility and

each item’s utility are stored in its tail-node, not in the node itself. Moreover, since a node can

appear in multiple branches, its base-utility, utility, etc., should be the sum of the correspond-

ing values of all its tail-nodes. So tail-information of one node should be passed to its parent

node after this node is processed. For example, after processing node B: 0; 3, 6, 3, 12 in Fig 1,

according to Step 3, remove B’s utility (12) from B.piu (3, 6, 3, 12), resulting a new tail-infor-

mation 0; 3, 6, 3. Since B’s parent node E does not contain tail-information, we move this new

tail-information to this node E, resulting in E: 0; 3, 6, 3 (see Fig 4). In the same manner, tail-

nodes B: 0; 2, 3, 6 and B: 0; 4, 9 in Fig 1 were processed and moved to their parent nodes,

resulting in E: 0; 2, 3 and C: 0; 4. Tail-node B: 0; 2, 4, 20, 3, 6 was added to its parent node

(because its parent node contains tail-information), resulting in E: 0; 8, 8, 30, 6, see Fig 4.

Algorithm 5: Create sub header table and sub TN-tree
Input: the previous TN-tree T, item Q, the length k
Output: subT and subH
// Construct subH

1 foreach node N of item Q in T do
2 foreach item I in path-itemset N in T (excluding Q) do
3 H.I.MU = H.I.MU+ N.MU;
4 end
5 end
6 Delete unpromising items from subH;
7 Sort subH in the descending order of MU of subH;
// Construct subT

8 Initialize subT with an empty root node;

Fig 4. After removing node B.

https://doi.org/10.1371/journal.pone.0248349.g004

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 14 / 24

https://doi.org/10.1371/journal.pone.0248349.g004
https://doi.org/10.1371/journal.pone.0248349

9 foreach node N of item Q in T do
10 X = path-itemset of N (excluding Q);
11 u = the utility of item Q in N.piu;
12 Tin = tail-information of N;
13 Delete unpromising items that is not in subH from X and modify
Tin;
14 Sort items of X according to subH and modify Tin;
15 Insert X to subT;

// Process the tail-information of the tail-node sN of itemset X
16 sN.piu = sN.piu + Tin.piu;
17 sN.bu = sN.bu + Tin.bu+ u;
18 end

The above algorithm HUIL-TN creates global header table or sub-header table by using

MU or RMU values. Moreover, we also design algorithm HUI-TN that creates global header

table or sub-header table by using TWU or RTWU values.

4.3 Comparison with algorithms based on pattern-tree

Tree structures have been used to represent transaction databases for pattern mining. For

example, for the dataset in Table 1 and the profit table in Table 2, a global IHUP-Tree is shown

in Fig 5, in which items are arranged in the descending order of TWU values. In the second

step, IHUP generates candidates for HUIs from the IHUP-Tree by employing the FP-Growth

method [2]. In the third step, IHUP scans the dataset to find all HUIs from the candidates.

During the construction of a UP-Tree Fig 6, the unpromising items and their utilities are elim-

inated from the transaction utilities, and the utilities of its descendants of any node are dis-

carded from the utility of the node. For any itemset X, the value of TWU(X) in the UP-Tree is

not bigger than that in the IHUP-Tree, so the number of candidates created by the algorithm

UP-Growth is not bigger than that created by the algorithm IHUP.

The structures of the header table in algorithms IHUP and UP-Growth contains item,

TWU value and link information, as shown in Figs 5 and 6. The structures of IHUP-Tree and

UP-Tree are identical: each node on them contains item, support number, TWU (or a value

derived from TWU value), link to parent, link to children, and link to the next node.

When a transaction itemset is inserted to a UP-tree, each node does not contain utility val-

ues of its children nodes. So UP-Growth’s over-estimated utility value (used for judging

whether an itemset is a candidate) is lower than that of IHUP. So this effectively reduces the

Fig 5. IHUP-Tree [16] based on toy data in Tables 1 and 2 (η = 70).

https://doi.org/10.1371/journal.pone.0248349.g005

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 15 / 24

https://doi.org/10.1371/journal.pone.0248349.g005
https://doi.org/10.1371/journal.pone.0248349

number of candidate and improves the time efficiency of the judging of candidates. After map-

ping transaction itemsets to a TN-tree, the itemsets’ exact utility values can be retrieved from

the tree, so HUIL-TN and HUI-TN mine HUIs without generating candidates.

4.4 Algorithm analysis

Property 1 (TN-tree Completeness). Given a transaction dataset DB and a minimum utility
value min_uti, its corresponding TN-tree contains the complete information of DB in relevance
to HUI mining with the length k constraint.

Based on the TN-tree construction process, all transactions itemsets that contains the same

(local) promising items are mapped to one path (for example, T4 and T7 in Table 1 are mapped

to one path in Fig 1), and have shared the same tail-node. The sum of utility of each item in

those transactions are stored to the field piu on the tail-node. Thus, the utility of a high utility

itemset X, whose length is not greater than k, can also be retrieved from the corresponding

tail-nodes.

Property 2. Let DB be a dataset, subDB be a sub dataset of itemset X, and itemset Y be in
subDB and X \ Y = ;. Then, the utility of X [Y in DB is equivalent to the utility of X [Y in
subDB, and itemset X [Y is a HUI if and only if it is a HUI in subDB.

Proof. Based on the sub dataset construction process in Example 3 and Definition 15, all

transactions containing itemset X [Y are mapped to subDB. Thus, the utility of itemset X [Y
in DB is equivalent to the utility of X [Y in subDB. So itemset X [Y is a HUI in DB if and

only if its utility in subDB is not less than the minimum utility value in subDB.

Property 3 (HUIL-TN Correctness). Given a base-itemset X, whose base utility is BU, for
any remaining promising item Q in the subDB, (1) if RMU<min_util then any superset of item-
set X [{Q} is not a HUI; (2) if BU + NU�min_util then itemset X [{Q} is a HUI, otherwise
not a HUI.
Proof. (1) Firstly, based on the (sub) header table construction process, the MU value in a

(sub) header table includes the utility values of (local) unpromising items in the correspond-

ing transactions. Secondly, after an item of a (sub) header table is processed, algorithm

HUIL-TN have mined all HUIs containing this item. So this algorithm needs not consider

those processed items when it processes the remaining items of a (sub) header table. Based

on these two reasons mentioned above, we need re-calculated the MU value of an item in

a (sub) header table. In algorithm HUIL-TN, the RMU value is the new MU value of itemset

Fig 6. UP-Tree [10] based on toy data in Tables 1 and 2 (η = 70).

https://doi.org/10.1371/journal.pone.0248349.g006

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 16 / 24

https://doi.org/10.1371/journal.pone.0248349.g006
https://doi.org/10.1371/journal.pone.0248349

X [{Q} and it does not include the utility values of the two kinds of items mentioned above

(unpromising items and processed items). According to Theorem 1, any superset Y of item-

set X [{Q} (Y does not include unpromising items and the processed items in sub header

and its length is not greater than k) is not a HUI if RMU is less than the minimum utility

value.

(2) Let subDB be the sub dataset of itemset X (if X is null, subDB is the original dataset).

Based on the sub TN-tree construction process, the value
Pk

i¼1
ðNi:buþ Ni:nuÞ is the utility of

itemset X [{Q} in subDB. According to Property 2, itemset X [{Q} is a high utility itemset if

and only if
Pk

i¼1
ðNi:buþ Ni:nuÞ is not less than the minimum utility value.

Property 3 guarantees all itemsets mined by algorithm HUIL-TN are HUIs. For example, in

Example 3, the utility value of each new base-itemset (BU+ NU) is obtained from the tree, so it

is a HUI if its utility value is not less than the minimum utility value. Note that in the special

case of X is null, a sub TN-tree is a global TN-tree.

5 Experimental results

We evaluated the performance of the proposed algorithms on eight standard datasets. Table 3

shows the characteristics of these transaction datasets, where column (I) shows the number of

distinct items, column (AS) shows the average size of transactions, column (T) shows the total

number of transactions, and the last column (DS) shows the percentage of total distinct items

that appear in each transaction. The last column (DS) in Table 3 provides a measure of

whether a dataset is dense or sparse. In general, a sparse dataset contains fewer items per trans-

action, but the set of items is relatively large. A dense dataset, in contrast, has many items per

transaction, but the set of items is relatively small. Therefore, when the value of DS parameter

of a dataset is relatively low (e.g., less than or equal to 10.0), a dataset is said to be sparse [37].

For example, the datasets Chess, Mushroom, Connect and Accident are dense datasets, and

the other four datasets are sparse datasets. These datasets can be downloaded from the website

[38]: http://www.philippe-fournier-viger.com/spmf/.

We compare the performance of algorithms HUIL-TN and HUI-TN with four state-of-the-

art algorithms, namely EFIM [7], D2HUP [8], HMiner [6] and ULBMiner [9]. All algorithms

were written in Java programming language. The source code of four compared algorithms

can be downloaded from the website [38]: http://www.philippe-fournier-viger.com/spmf/.

The configuration of the testing platform is as follows: Windows 10 operating system, 16G

Memory, Intel(R) Core(TM) i5-4460 CPU @ 3.20 GHz.

In order to assess the performance of the proposed algorithms, the runtime, memory usage

and scalability were tested in different situations.

Table 3. Dataset characteristics.

Dataset I AS T DS

Chess 76 37 3,196 48.68%

Mushroom 119 23 8,124 19.33%

Connect 129 43 67,557 33.33%

Accident 468 33.8 340,183 7.22%

Pumsb 2,111 74 49,046 3.50%

BMS 497 4.8 59,601 0.96%

Retail 16,470 10.3 88,162 0.0625%

Chainstore 46,086 7.2 1,112,949 0.0156%

https://doi.org/10.1371/journal.pone.0248349.t003

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 17 / 24

http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/
https://doi.org/10.1371/journal.pone.0248349.t003
https://doi.org/10.1371/journal.pone.0248349

5.1 Runtime performance comparison

The running time of six algorithms is compared as shown in Fig 7, and the resulting HUIs

mined by all algorithms are identical. Fig 7 shows the comparison of running time on each

dataset under various minimum utility thresholds. The smaller the minimum utility threshold

(η), the longer the algorithm will take. On datasets Chainstore and BMS, when the minimum

utility threshold is too small, ULBMiner, D2HUP, EFIM, and HMiner would cause memory

overflow or run too much time (more than 1 hour), so the corresponding data points are omit-

ted in Fig 7.

It can be seen from Fig 7 that the performance of algorithms HUIL-TN and HUI-TN is

stable on dense and sparse datasets. Algorithms HUIL-TN and HUI-TN outperform the

other four algorithms on datasets Pumsb, BMS and Chainstore. On the other four datasets,

the performance of HUIL-TN and HUI-TN also reach to the best. For example, on BMS,

the execution times of HUIL-TN and HUI-TN are less than 1 second when the minimum

utility threshold is 2.3%. Fig 7 also shows that HUIL-TN and HUI-TN not only outperform

significantly in terms of time efficiency, but also develop more smoothly when the threshold

decreases.

The reason that HUIL-TN and HUI-TN work well in terms of runtime is as follows.

1. These two algorithms map transaction itemsets to a TN-tree, and exact utility values of any

existing itemsets in the dataset can be retrieved from the tree. Thus, it can find all HUIs

from the tree using the pattern-growth approach.

2. These two algorithms use the RMU or RTWU values to determine whether a tree should be

generated. If they generate less trees and process less itemsets during mining process, the

performance of these two algorithms have been improved in terms of runtime and memory.

5.2 Memory performance comparison

In this section, we compare memory usage of six algorithms in different situations. The mem-

ory usage is tested under the same experimental conditions as those of the runtime tests in

the above section. The experimental results are shown in Fig 8. From Fig 8, we can find that

HUIL-TN and HUI-TN consume fewer memories on seven datasets Chess, Connect, Acci-

dent, Pumsb, BMS, Chainstore, and Retail. One reason is that the proposed algorithms

HUIL-TN and HUI-TN can map transaction dataset to a tree. The other reason is that the pro-

posed algorithms use the RMU or RTWU value to identify the candidate, so fewer sub-trees

are created and less space overhead is needed. But on the dataset Mushroom, the proposed

algorithms costs more space. The main reason is that this dataset can generate too many HUIs,

i.e. 977,990 HUIs with η = 2.8%.

5.3 Sclalability experiments

In order to test the scalability of the proposed algorithms, we choose two big datasets Chain-

store and Accidents, varied the size of these two datasets, and assess the performance of run-

time and memory usage. Chainstore is a sparse big data, and Accident is a dense big dataset.

The experimental results are shown in Figs 9 and 10. The more transactions processed, the

more time and memory it takes for mining HUIs. It can be seen from Figs 9 and 10 that

HUIL-TN and HUI-TN cost less time and memory under different situations, and the perfor-

mance of HUIL-TN and HUI-TN is stable on sparse and dense datasets.

In summary, the algorithms HUIL-TN and HUI-TN can map the dataset to a tree, and

directly obtain utility value of an itemset from the tree. These two algorithms can directly

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 18 / 24

https://doi.org/10.1371/journal.pone.0248349

Fig 7. Comparison of runtime.

https://doi.org/10.1371/journal.pone.0248349.g007

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 19 / 24

https://doi.org/10.1371/journal.pone.0248349.g007
https://doi.org/10.1371/journal.pone.0248349

Fig 8. Comparison of memory usage.

https://doi.org/10.1371/journal.pone.0248349.g008

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 20 / 24

https://doi.org/10.1371/journal.pone.0248349.g008
https://doi.org/10.1371/journal.pone.0248349

obtain HUIs from the tree using the pattern-growth approach. As a result, the performance of

these two proposed algorithms has been improved in terms of runtime, and is stable in differ-

ent situations.

6 Conclusions

In this paper, we proposed two efficient algorithms, called HUIL-TN and HUI-TN, for mining

HUIs from transaction dataset. Using the pattern-growth approach, it can mine HUIs directly

from a TN-tree without generating candidate itemsets through only two scans of a dataset. A

novel data structure TN-tree was proposed for storing the transaction dataset. The utility value

of each item of an existing itemset of a dataset is stored in a tail-node. Thus, HUIL-TN and

HUI-TN can retrieve the utility value of the itemset from the tree, i.e., find HUIs from this tree

without using over-esitimated utility value. Moreover, HUIL-TN reduces the estimated utility

value of an itemset by using the RMU value; as a result, it reduces the number of items in

header table and enhances computing efficiency. In the experiments, dense datasets, sparse

Fig 9. Comparison of runtime under varied dataset size.

https://doi.org/10.1371/journal.pone.0248349.g009

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 21 / 24

https://doi.org/10.1371/journal.pone.0248349.g009
https://doi.org/10.1371/journal.pone.0248349

datasets, real-life datasets, and datasets containing many long transaction itemsets are used to

evaluate the performance of our algorithms. Experimental results showed that our algorithms

exceed or close to the best performance on all datasets in terms of running time, while other

algorithms can only excel in certain types of dataset. Scalability tests were also performed and

our algorithms obtained the flattest curves among all competitors.

Author Contributions

Data curation: Shui Wang.

Methodology: Le Wang, Shui Wang.

Writing – original draft: Le Wang, Shui Wang.

Writing – review & editing: Le Wang, Shui Wang.

Fig 10. Comparison of memory usage under varied dataset size.

https://doi.org/10.1371/journal.pone.0248349.g010

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 22 / 24

https://doi.org/10.1371/journal.pone.0248349.g010
https://doi.org/10.1371/journal.pone.0248349

References
1. Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases. In: Proceedings

of the International Conference on Very Large Data Bases (VLDB); 1994. p. 487–487.

2. Han J, Pei J, Yin Y, Mao R. Mining Frequent Patterns without Candidate Generation: A Frequent-Pat-

tern Tree Approach. Data Mining & Knowledge Discovery. 2004; 8(1):53–87. https://doi.org/10.1023/B:

DAMI.0000005258.31418.83

3. Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: Proceedings of the ACM

SIGMOD International Conference on Management of Data; 2000. p. 1–12.

4. Cao B, Zhang X, Wu J, Wang B, Zhang Q, Wei X. Minimum free energy coding for DNA storage. IEEE

Transactions on Nanobioscience. 2021;. https://doi.org/10.1109/TNB.2021.3056351 PMID: 33534710

5. Wang ET, Chen AL. Mining frequent itemsets over distributed data streams by continuously maintaining

a global synopsis. Data Mining & Knowledge Discovery. 2011; 23(2):252–299. https://doi.org/10.1007/

s10618-010-0204-8

6. Krishnamoorthy S. HMiner: Efficiently mining high utility itemsets. Expert Systems with Applications.

2017; 90:168–183. https://doi.org/10.1016/j.eswa.2017.08.028

7. Zida S, Fournier-Viger P, Lin JCW, Wu CW, Tseng VS. EFIM: a highly efficient algorithm for high-utility

itemset mining. In: Mexican International Conference on Artificial Intelligence. Springer; 2015. p. 530–

546.

8. Liu J, Wang K, Fung B. Direct Discovery of High Utility Itemsets without Candidate Generation. In: Pro-

ceedings of the 2012 IEEE 12th International Conference on Data Mining (ICDM); 2012. p. 984–989.

9. Duong QH, Fournier-Viger P, Ramampiaro H, Nørvåg K, Dam TL. Efficient high utility itemset mining

using buffered utility-lists. Applied Intelligence. 2018; 48(7):1859–1877. https://doi.org/10.1007/

s10489-017-1057-2

10. Tseng VS, Shie B, Wu C, Yu PS. Efficient Algorithms for Mining High Utility Itemsets from Transactional

Databases. IEEE Transactions on Knowledge and Data Engineering. 2013; 25(8):1772–86. https://doi.

org/10.1109/TKDE.2012.59

11. Wu CW, Shie B, Tseng VS, Yu PS. Mining top-K High Utility Itemsets. In: Proceedings of the 18th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD); 2012. p. 78–86.

12. Li YC, Yeh JS, Chang CC. Isolated Items Discarding Strategy for Discovering High Utility Itemsets.

Data and Knowledge Engineering. 2008; 64(1):198–217. https://doi.org/10.1016/j.datak.2007.06.009

13. Liu Y, Liao WK, Choudhary A. A Two-Phase Algorithm for Fast Discovery of High Utility Itemsets. In:

Proceedings of the 9th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining

(PAKDD); 2005. p. 689–695.

14. Yao H, Hamilton HJ, Butz GJ. A Foundational Approach to Mining Itemset Utilities from Databases. In:

Proceedings of the 4th SIAM International Conference on Data Mining (SDM); 2004. p. 482–486.

15. Liu M, Qu J. Mining high utility itemsets without candidate generation. In: Proceedings of the 21st ACM

International Conference on Information and Knowledge Management (CIKM); 2012. p. 55–64.

16. Ahmed CF, Tanbeer SK, Jeong BS, Lee YK. Efficient Tree Structures for High Utility Pattern Mining in

Incremental Databases. IEEE Transactions on Knowledge and Data Engineering. 2009; 21(12):1708–

1721. https://doi.org/10.1109/TKDE.2009.46

17. Tseng VS, Wu CW, Shie BE, Yu PS. UP-Growth: An Efficient Algorithm for High Utility Itemset Mining.

In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Min-

ing; 2010. p. 253–262.

18. Lin CW, Hong TP, Lan GC, Wong JW, Lin WY. Mining High Utility Itemsets Based on the Pre-large Con-

cept. Advances in Intelligent Systems and Applications. 2013; 1:243–250.

19. Lin CW, Hong TP, Lu WH. An Effective Tree Structure for Mining High Utility Itemsets. Expert Systems

with Applications. 2011; 38(6):7419–7424. https://doi.org/10.1016/j.eswa.2010.12.082

20. Tseng VS, Wu CW, Fournier-Viger P, Yu PS. Efficient Algorithms for Mining Top-K High Utility Itemsets.

IEEE Transactions on Knowledge and Data Engineering. 2016; 28(1):54–67. https://doi.org/10.1109/

TKDE.2015.2458860

21. Yao H, Hamilton HJ. Mining Itemset Utilities from Transaction Databases. Data and Knowledge Engi-

neering. 2006; 59(3):603–626. https://doi.org/10.1016/j.datak.2005.10.004

22. Fournier-Viger P, Wu CW, Zida S, Tseng VS. FHM: Faster high-utility itemset mining using estimated

utility co-occurrence pruning. In: International symposium on methodologies for intelligent systems.

Springer; 2014. p. 83–92.

23. Krishnamoorthy S. Pruning strategies for mining high utility itemsets. Expert Systems with Applications.

2015; 42(5):2371–2381. https://doi.org/10.1016/j.eswa.2014.11.001

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 23 / 24

https://doi.org/10.1023/B:DAMI.0000005258.31418.83
https://doi.org/10.1023/B:DAMI.0000005258.31418.83
https://doi.org/10.1109/TNB.2021.3056351
http://www.ncbi.nlm.nih.gov/pubmed/33534710
https://doi.org/10.1007/s10618-010-0204-8
https://doi.org/10.1007/s10618-010-0204-8
https://doi.org/10.1016/j.eswa.2017.08.028
https://doi.org/10.1007/s10489-017-1057-2
https://doi.org/10.1007/s10489-017-1057-2
https://doi.org/10.1109/TKDE.2012.59
https://doi.org/10.1109/TKDE.2012.59
https://doi.org/10.1016/j.datak.2007.06.009
https://doi.org/10.1109/TKDE.2009.46
https://doi.org/10.1016/j.eswa.2010.12.082
https://doi.org/10.1109/TKDE.2015.2458860
https://doi.org/10.1109/TKDE.2015.2458860
https://doi.org/10.1016/j.datak.2005.10.004
https://doi.org/10.1016/j.eswa.2014.11.001
https://doi.org/10.1371/journal.pone.0248349

24. Peng AY, Koh YS, Riddle P. mHUIMiner: A fast high utility itemset mining algorithm for sparse datasets.

In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer; 2017. p. 196–207.

25. Ryang H, Yun U. Indexed list-based high utility pattern mining with utility upper-bound reduction and

pattern combination techniques. Knowledge and Information Systems. 2017; 51(2):627–659. https://

doi.org/10.1007/s10115-016-0989-x

26. Kim J, Yun U, Yoon E, Lin JCW, Fournier-Viger P. One scan based high average-utility pattern mining

in static and dynamic databases. Future Generation Computer Systems. 2020; p. Forthcoming. https://

doi.org/10.1016/j.future.2020.04.027

27. Truong T, Duong H, Le B, Fournier-Viger P, Yun U. Efficient high average-utility itemset mining using

novel vertical weak upper-bounds. Knowledge-Based Systems. 2019; 183:104847. https://doi.org/10.

1016/j.knosys.2019.07.018

28. Wu JMT, Teng Q, Lin JCW, Yun U, Chen HC. Updating high average-utility itemsets with pre-large con-

cept. Journal of Intelligent & Fuzzy Systems. 2020;(Preprint):Forthcoming.

29. Krishnamoorthy S. Mining top-k high utility itemsets with effective threshold raising strategies. Expert

Systems with Applications. 2019; 117:148–165. https://doi.org/10.1016/j.eswa.2018.09.051

30. Han X, Liu X, Li J, Gao H. Efficient top-k high utility itemset mining on massive data. Information Sci-

ences. 2020; p. Forthcoming. https://doi.org/10.1016/j.ins.2020.08.022

31. Nam H, Yun U, Vo B, Truong T, Deng ZH, Yoon E. Efficient approach for damped window-based high

utility pattern mining with list structure. IEEE Access. 2020; 8:50958–50968. https://doi.org/10.1109/

ACCESS.2020.2979289

32. Lee J, Yun U, Lee G, Yoon E. Efficient incremental high utility pattern mining based on pre-large con-

cept. Engineering Applications of Artificial Intelligence. 2018; 72:111–123. https://doi.org/10.1016/j.

engappai.2018.03.020

33. Mai T, Nguyen LT, Vo B, Yun U, Hong TP. Efficient algorithm for mining non-redundant high-utility asso-

ciation rules. Sensors. 2020; 20(4):1078. https://doi.org/10.3390/s20041078

34. Vo B, Nguyen LT, Nguyen TD, Fournier-Viger P, Yun U. A Multi-Core Approach to Efficiently Mining

High-Utility Itemsets in Dynamic Profit Databases. IEEE Access. 2020; 8:85890–85899. https://doi.org/

10.1109/ACCESS.2020.2992729

35. Chen Y, An A. Approximate parallel high utility itemset mining. Big data research. 2016; 6:26–42.

https://doi.org/10.1016/j.bdr.2016.07.001

36. Srivastava G, Lin JCW, Pirouz M, Li Y, Yun U. A Pre-large Weighted-Fusion System of Sensed High-

Utility Patterns. IEEE Sensors Journal. 2020; p. Forthcoming. https://doi.org/10.1109/JSEN.2020.

2991045

37. Ye FY, Wang JD, Shao BL. New Algorithm for Mining Frequent Itemsets in Sparse Database. In: Pro-

ceedings of the International Conference on Machine Learning and Cybernetics; 2005. p. 1554–1558.

38. Fournier-Viger P, Lin JCW, Gomariz A, Gueniche T, Soltani A, Deng Z, et al. The SPMF open-source

data mining library version 2. In: Joint European conference on machine learning and knowledge dis-

covery in databases. Springer; 2016. p. 36–40.

PLOS ONE HUIL-TN & HUI-TN

PLOS ONE | https://doi.org/10.1371/journal.pone.0248349 March 12, 2021 24 / 24

https://doi.org/10.1007/s10115-016-0989-x
https://doi.org/10.1007/s10115-016-0989-x
https://doi.org/10.1016/j.future.2020.04.027
https://doi.org/10.1016/j.future.2020.04.027
https://doi.org/10.1016/j.knosys.2019.07.018
https://doi.org/10.1016/j.knosys.2019.07.018
https://doi.org/10.1016/j.eswa.2018.09.051
https://doi.org/10.1016/j.ins.2020.08.022
https://doi.org/10.1109/ACCESS.2020.2979289
https://doi.org/10.1109/ACCESS.2020.2979289
https://doi.org/10.1016/j.engappai.2018.03.020
https://doi.org/10.1016/j.engappai.2018.03.020
https://doi.org/10.3390/s20041078
https://doi.org/10.1109/ACCESS.2020.2992729
https://doi.org/10.1109/ACCESS.2020.2992729
https://doi.org/10.1016/j.bdr.2016.07.001
https://doi.org/10.1109/JSEN.2020.2991045
https://doi.org/10.1109/JSEN.2020.2991045
https://doi.org/10.1371/journal.pone.0248349

