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Pea aphids represent a complex genetic system that could be used for QTL analysis, genetic diversity and popu-
lation genetics studies. Here, we described the development of first microsatellite repeat database of the pea
aphid (APMicroDB), accessible at “http://deepaklab.com/aphidmicrodb”. We identified 3,40,233 SSRs using MI-
croSAtellite (MISA) tool that was distributed in 14,067 (out of 23,924) scaffold of the pea aphid. We observed
89.53% simple repeats of which 73.41% were mono-nucleotide, followed by di-nucleotide repeats. This database
stored information about the repeats kind, GC content, motif type (mono - hexa), genomic location etc. We have
also incorporated the primer information derived from Primer3 software of the 250bp flanking region of the
identified marker. Blast tool is also provided for searching the user query sequence for identified marker and
their primers. This work has an immense use for scientific community working in the field of agricultural pest
management, QTL mapping, and host-pathogen interaction analysis.
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©2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Simple Sequence Repeats (SSRs) also known as Microsatellites, are
the extensively dispersed short tandem repeat units harbor substantial
length variation [1,2]. A major proportion of eukaryotic genomes (up to
4%) are composed of these markers. Despite their presence in both cod-
ing and non-coding region, high abundance was only observed in the
non-coding region of the genome [3,4]. Previous studies suggested
that short tandem repeats (STRs) are under the selective pressure that
played an important role in genome structure and evolution [5–7].

SSRs offers several advantages such as their distribution, specificity,
and reproducibility, therefore, they were extensively employed in pop-
ulation genetics [8,9], genetic diversity [10–13] and evolution [14,15].
Based on the origin, SSRs has been classified into two types: 1) genomic
SSRs (that derived from genome), and 2) EST-SSRs (that comes from
expressed sequence tags) [10,14]. EST-based SSRs were originated
from transcribed region which is more conserved as compared to geno-
mic SSRs [16,17]. Therefore, genomic SSRs are highly polymorphic and
fitted for genetic diversity studies within a particular species.

The present study is focused on the identification of SSRs from the
genome of A. pisum. Pea aphids (Acyrthosiphon pisum) are the phloem-
feeding insects having several advantages over other aphid species
[18]. Association of pea aphid with more than 20 legume genera repre-
sents their host race specific evolution. Each race is more or less special-
ized and genetically differentiated from other host races [19,20]. To
reveals the host-pathogen relationship, it is important to understand
n open access article under
the genomic architecture of aphid genome. Hence, the international
aphid genome consortium first time reported the draft genome of the
pea aphid of size 464 Mb. Initially, ~3.13 million reads were assembled
into 72,844 contigs using Atlas assembly pipeline. However, in the sec-
ond version, the number of contigs was reduced to 60,596with the N50
length of around 28 kb. Previously, only few studies have been reported
to experimentally characterize the microsatellite markers in pea aphid
[21–23]. However, the wet-lab characterization is very tedious and
time-consuming job. Therefore, researchers paved the attention for in
silico identification of SSRs in the aphid genome [2,24]. For e.g. Behura
et al. reported 1,69,601 and 4283 microsatellite repeats in whole ge-
nome and coding region ofA. pisum respectively. Based on the identified
SSRs, few insect specific databases such as InSatDb, EuMicrosatdb etc.
has been developed in the past [25,26]. Best of the author knowledge,
no publicly accessible database of SSRs has been reported for the pea
aphid. Owing to the importance of microsatellite, and pea aphid as
model insect species, the foremost purpose of this manuscript is to dis-
cover the abundance and distribution of SSRs in the pea aphid genome.

2. Database development

2.1. Database construction and architecture

We have downloaded the pea aphid genome v2.0 from the NCBI da-
tabase in FASTA format [27]. The complete genome was scaffold-wise
scan for the occurrence of microsatellite repeats using MIcroSAtellite
(MISA) tool (http://pgrc.ipk-gatersleben.de/misa/). We used the PRIM-
ER3 software to predict the primer of the identified microsatellite
markers [28]. For this, we extracted a flanking region of 250 bp of the
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Overall distribution of SSRs and their percentage in pea aphid genome.

SSR type Count Percentage

Simple 3,04,595 89.53%
Compound 34,196 10.05
Complex 1442 0.42
Total 3,40,233 100%

Fig. 1.Histogram plot of SSRswith the type of repeats in the x-axis and their percentage in
the y-axis.
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repeats on both sides using bedtools [29]. The custom PERL scripts were
used to process the MISA output in CSV format. Finally, the file was
uploaded into MySQL database. The front-end of the database was de-
veloped using HTML, PHP language, and JAVA scripts.

2.2. Genome analysis

We analyzed the distribution of STRs across the scaffold and ob-
served that simple microsatellite repeats represents 89.53% of the total
Fig. 2. Pie chart showing the percent distribution of mi
STRs (Table 1). We also plotted the different motif repeats from
mono- hexa to show their relative abundance in pea aphid genome.
As evident from Fig. 1 and Table-S1, Mononucleotide type repeats
(73.41%) wasmost abundant as compared to other types [30,31]. How-
ever, hexanucleotide repeats (0.03%) was the least ones (suppl-1.docx,
Table-S1). Our analysis also supported the Katti et al. analysis that tri-
nucleotide repeats have amaximum length 441 bp followed by dinucle-
otides (suppl-1.docx, Table-S1) [32]. We also observed that STRs of
length up to 15 bp represents the major proportion in the genome
followed by length 16–20 (Fig. 2). However, the motif of length 46–
50 bp was represented by only 0.13% (Fig. 2, Table-S2).

2.3. STR validation

Previously, Kurokawa et al. reported six microsatellite markers in
pea aphid using experimental approach [21]. In the same year, Caillaud
et al. reported fifteen markers from pea aphids [22]. In order to validate
this, we used the FASTA sequence of reported marker and search in our
database using blast tool. We observed that 76% of the markers were
partially or completely matched with our database (Table 2). Out of
the 15markers, we found six were exactly matched, and sevenmarkers
matched with repeat kind but their copy number has been changed.
This might be because the assembly of pea aphid genome is only avail-
able at preliminary scaffold level but not at the chromosome level.

3. Utility

3.1. Search

We provided the scaffold wise search option for STRs alongwith the
marker properties such as the type of motif, repeat kind etc. Further-
more, we have also given the advanced search option to filter the results
based on the scaffold region, copy number of the marker, and GC con-
tent. This will be helpful to the user interested in locating the marker
in the given genomic region of the genome, which may be coding or
non-coding. The search result is shown in a well-organized tabular for-
mat with an additional button for extracting primer information of a
particular SSR (Fig. 3). On clicking the show primer button, users will
crosatellite repeats within different length ranges.



Table 2
Validation of previously identified STRs with APMicroDB.

GenBank Scaffold no. Reported [21,22] APMicroDB

AY528722 NW_003383558 (TC)12 (TC)10
AY528723 NW_003383960 (CT)12 (CT)10g(TC)7
AY528724 NW_003383777 (GA)11 (GA)10
AY528725 NW_003383909 (AG)20 (AG)14
AY528726 NW_003383570 (CT)10 (CT)14
AY528727 NW_003383545 (AG)7AT(AG)18 (AG)7at(AG)16
AY528728 NW_003383554 (CA)4T(AC)4 Not found
AY528729 NW_003384067 (GT)6 (GT)6
AY528730 NW_003399631 (TG)2TA(TG)8 (TG)8
AY528731 NW_003383549 (GCT)8 (GCT)8
AY528732 NW_003384067 (AC)5GAAT(AC)4 Not found
AY528733 NW_003383549 (AGC)8 (AGC)8
AY528734 NW_003384434 (CA)10 (CA)10
AY528735 NW_003383752 (CA)16 (CA)16
AY528736 NW_003384150 (CA)7 … (TA)3T(CA)3 (TG)7-
AB162918 NW_003383507 (ATA)5 Not found
AB162919 NW_003383919 (CG)5 … (TTA)7 (T)12gggggggaagggtccggtgtaaaaattgaaagtaaaaaacgaattcaaatacaaaaaacacaggtacaatctcgtatag(TAA)7
AB162920 NW_003385021 (GA)11 (GA)19
AB162921 NW_003383764 (AT)9 Not found
AB162922 NW_003383818 (AC)7 … (AC)5 Not found
AB162923 NW_003383520 (TG)8 (TG)6
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get the information about the primers (250 bp flanking region of mark-
er) and their properties.
3.2. Web tool

A customized BLAST tool is implemented in this database for similar-
ity search. The user input query sequence will be searched against the
database of repeats containing flanking region. A user-friendly search
option for e-value cut off, query coverage and a number of hits to be
displayed is provided in the blast search. The identified hit is further
linked with the primer information of the identified hits (Fig. 4).
Fig. 3. Showing the database search page and
4. Discussion

Here, we reported the mining of 3,40,233 microsatellite markers,
which is almost double that are reported by Behura and Severson [24].
The percentage of mono- was higher followed by di-, tri-, tetra, penta,
and hexa-nucleotide repeats respectively. A similar trendwas observed
by Sharma et al. supporting the fact that an increase in repeat length is
proportional with the decrease in repeat numbers [31]. The distribution
of repeat length showed a good coverage in the range of 11–15 bp long
repeats. However, low coverage (0.13%) was observed in the case of re-
peats of length 46–50 bp. In 2001, Katti et al. observed that tri-nucleo-
tide repeat seems to be much longer as compared to other repeats in
its results along with primer information.



Fig. 4. The overall flow of user Blast query, and its link to database and primers.
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Drosophila [32]. This is highly correlated with our study of pea aphid
that belongs to the same phylum. A significant correlationwith the pre-
viously identified marker suggests the application of this database. De-
spite the improvement in pea aphid assembly from version1.0 to
version 2.0 still the assembly existed at the scaffold level. This indicates
a gap in the knowledge of SSRmarkers in pea aphids and suggested that
there must be a much more SSRs marker that could only be resolved
only at the chromosome level.
5. Data maintenance

APMicroDB will be regularly maintained by our team. We will wel-
come any scientific suggestion from the readers via. ‘Contact’ link on
the database. In future, we will upgrade the database whenever the
new assembly from different strain/race of pea aphid will be reported.
The updatewill be helpful in study species-specific primer and establish
an evolutionary relationship.
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6. Conclusion

STRs are the most extensively studied marker having wide applica-
tion in genetic diversity, evolution, and genome mapping. Despite the
great importance of microsatellite makers, no database exists to store
and compiles the genome-wide information of SSR markers from pea
aphid. Therefore, in the present work, an effort has beenmade to devel-
op first whole genome based SSRs database of pea aphid that will be
useful in phylogenetic analysis, and evolutionary insight on pea aphid.
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