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Abstract

Base flow, as an important component of runoff, is the main recharge source of runoff during

the dry period, especially in the Yellow River Basin located in a semiarid area. However, the

process of obtaining base flow has great uncertainty when considering hydrological simula-

tions. Thus, in this study, a three-step framework is proposed, i.e., the particle swarm optimi-

zation (PSO) algorithm is used to calibrate model parameters under different subbasin

partitioning schemes; then, the hydrograph separation (HYSEP), Improved United Kingdom

Institute of Hydrology (IUKIH) and Lyne and Hollick filter (Lyne-Hollick) methods are used to

separate the baseflow from the total runoff process, thereby exploring the uncertainty

impacts of baseflow segmentation methods on the hydrological simulation process. The

subsample-variance-decomposition method is used to quantify the independent and inter-

active uncertainty in the hydrological simulation process. The results show that the Topmo-

del model can be better applied to the source area of the Yellow River (the KGE values in

the Sub5, Sub13, Sub21, Sub29, Sub37 and Sub13 scenarios were 0.91 and 0.65, 0.94 and

0.86, 0.94 and 0.88, 0.92 and 0.82, 0.95 and 0.89, and 0.92 and 0.83, respectively). The

subbasin division uncertainty had less impact on simulated streamflow during the dry sea-

son and had a significant impact in the wet season, such as, the subbasin division uncer-

tainty caused the difference between the median of the simulated streamflow to be as high

as 213.09 m3/s in August but only 107.19 m3/s in January; Meanwhile, the baseflow seg-

mentation method uncertainty has a significant impact on the annual mean streamflow val-

ues under different subbasin segmentation schemes. In addition, the baseflow values

estimated by the Lyne-Hollick and HYSEP methods were obviously higher than those esti-

mated by the IUKIH method during the wet season. The uncertainty influence of subbasin

partitioning schemes and baseflow segmentation methods had significant differences on

hydrological processes in different periods. The uncertainty influence of subbasin partition-

ing schemes was dominant in the dry season, accounting for 86%, and the baseflow seg-

mentation methods took second place, accounting for approximately 12%. In the wet

season, the uncertainty influence of the baseflow segmentation methods was gradually

weakened, which may have been due to the uncertainty influence of the hydrological model.
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These results provide a reference for the calibration and validation of hydrological model

parameters using baseflow components.

1 Introduction

Climate change and high-intensity human activities accelerate the hydrological cycle. Hydro-

logical models are an important tool to simulate hydrological processes and predict changes in

water resources [1, 2]. In addition, distributed, semidistributed or lumped units indicates a

critical way to differentiate hydrological models, as this is closely related to the scale at which

the input variables are considered homogeneous. For the hydrological model, the distributed

hydrological model response unit is a regular cell grid, the semidistributed hydrological model

response unit is a subbasin, and the basin as a whole is evaluated as lumped. Watershed parti-

tioning is widely used in semidistributed hydrological models to consider spatial heterogene-

ities in different areas within watersheds. However, many studies have been conducted by

investigating the influence of watershed partitioning schemes on the model results of different

hydrological models [3–5]. Several studies have discussed the influence of watershed partition-

ing schemes on the accuracy of hydrological simulations [6, 7]. Arabi et al. found that the accu-

racy of runoff simulation increased with increasing subbasin partitioning, but there was a

threshold effect, which led to the stability or decline of runoff simulation accuracy [8]. Han

et al. analyzed the influence of eight watershed partitioning schemes on SLURP hydrological

simulations in the Xiangxi River Basin [9]. Jha et al. used the Soil and Water Assessment Tool

(SWAT) model to determine the appropriate level of watershed partitioning for simulating

flow, sediment, and nutrients over 30 years in four Iowa watersheds [10].

Recently, considerable attention has been focused on the uncertainties in hydrological

models [11–13], such as parameter uncertainty, structural uncertainty, and input/output

uncertainty. Many uncertainty assessment frameworks have been developed in the literature

[14–16]. Research results under these assessment frameworks revealed that exploring the

effects of these uncertainties on hydrological models has great significance for understanding

hydrological processes. Moreover, what needs special attention is the uncertainty of the hydro-

logical model parameters; hydrologists usually define a unique set of values as the calibration

parameters for the model, whereas this is a difficult task because they need to address the equi-

finality issue. This indicates that there might be multiple acceptable sets of parameters that can

represent hydrological processes of the basin [14]. Beven and Binley also showed that identical

model results could be obtained using different parameter combinations, which indicates that

similar streamflows can be modeled with different combinations of surface runoff and base-

flow [14, 16–18]. At present, the uncertainty related research mainly focuses on the analysis of

precipitation input, model parameter error and other factors, while there are few cases to

explore the impact of data error on the uncertainty analysis of hydrological forecast and simu-

lation results from the perspective of model verification basis. Flow series has become the most

common basis for hydrological model validation because of its good characteristics of long

series continuous monitoring and acquisition. However, flow series is one of the important

factors affecting the simulation effect of hydrological model. It is very important to select

appropriate and reliable flow series as the basis for model validation. Although at present,

most theories assume that the measured flow data is true and effective and can be directly used

for model calibration in hydrological simulation, according to relevant studies, the flow data

may have large errors and uncertainties due to the heterogeneity of hydrological elements and
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monitoring level. Base flow, as an important component of runoff, is the main recharge source

of runoff during the dry period, especially in the Yellow River Basin in semiarid and semihu-

mid climate areas. In the dry season, the base flow accounts for more than 65.20% of the peak

flow at the outlet section of the basin. At this time, the existence of base flow may have a far-

reaching impact on the use of flow series calibration model, which can not be ignored. In the

past, the application of base flow data for hydrological model verification has achieved better

results. Such as, Rouhani et al. employed baseflow, which was obtained by using the partial

duration series approach, to calibrate and validate the SWAT model [19]. Ferket et al. also

used baseflow obtained by a physically based digital baseflow filter to calibrate and validate

two hydrological models: the Hydrologiska Byråns Vattenavdelning (HBV) and probability-

distributed model (PDM) [20]. This shows that baseflow has been widely used to evaluate the

characteristics of water resources in river basins due to being less affected by the spatial vari-

ability of rainfall, temperature, and solar radiation. In recent decades, hydrologists have carried

out research on baseflow, and new baseflow segmentation methods have emerged, but thus

far, there is still no universally accepted method [21–23]. Li et al. found that the Lyne-Hollick

method was superior to the two-parameter digital-filtering algorithm by coupling the surface

water and groundwater model and recursive digital-filtering technique [24]. Chapman devel-

oped an algorithm that can be used for baseflow division in intermittent rivers [25]. Aksoy

et al. used the nonlinear baseflow segmentation model to segment the base flow and then

revealed evident seasonal behavior of base flow [26].

In 2019, ecological protection and high-quality development in the Yellow River Basin were

promoted as a national strategy, marking a new historical period for its economic and social

development [27]. Thus, in this context, it is of great significance to study the law of time scale

evolution for the smooth development of ecological protection. To date, there is still no

accepted method to measure baseflow processes, which can only separate baseflow from runoff

using baseflow segmentation methods. In addition to the uncertainty from the watershed par-

titioning scheme, baseflow segmentation method uncertainty also affects hydrological pro-

cesses in the calibration and validation of hydrological model parameters using baseflow

components. Previous research studies have shown that the influence of watershed partition-

ing schemes and baseflow segmentation methods has a significant impact on the performance

of hydrological models in different periods but they have not considered the impact of their

simultaneous existence [28–31]. Consequently, there is a lack of understanding of the com-

bined and interactive contributions of different uncertainty sources to the performance of

hydrological models in different periods. In addition, this problem is compounded by the fact

that the base flow segmentation method operates solely on the total streamflow hydrograph

without considering the potential impacts of physical catchment characteristics. However, by

considering the hydrological processes driving baseflow, one might expect that physical catch-

ment characteristics have a significant impact on baseflow. For example, if the rainfall rate

over a dry catchment with sandy soils is smaller than the rate of infiltration, direct runoff from

the surface will be very small, and the baseflow contribution to streamflow will be significant.

However, at present, it is difficult to assess this.

For the above reasons, the objective of this paper was to develop a global sensitivity analyti-

cal framework to quantitatively explore the influence of uncertainty in watershed partitioning

schemes and baseflow segmentation methods on hydrological simulation. The main steps of

this study included (i) based on the topographic model (TOPMODEL), PSO was used to cali-

brate the hydrological model parameters of the watershed partitioning scheme, and the objec-

tive function values were evaluated; (ii) three baseflow segmentation methods (HYSEP,

IUKIH and Lyne-Hollick) were used to separate the baseflow from hydrological simulation

processes under different watershed partitioning schemes in the source area of the Yellow
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River; and (iii) finally, using the variance decomposition method based on the subsampling

method, we quantitatively evaluated the individual and interactive uncertainty impacts of the

watershed partitioning scheme and the baseflow segmentation methods on base processes in

different periods. The results of this study are helpful for deeply understanding the impact of

uncertainty on water resources.

2 Study area and data

The Yellow River is the "Mother River" of Chinese people and is the water supply for approxi-

mately 140 million people (in more than 50 major cities). Agricultural irrigation is extensive

and the basin area is 16 × 105 km2. The river spans the Qinghai-Tibetan Plateau, Loess Plateau

and North China Plain and finally flows into the Pacific Ocean, with a total length of 5464 km

[32, 33]. The basin is dominated by an alpine semihumid climate. The temperature and precip-

itation decrease from the southeast to the northwest. The annual average precipitation is 450

mm, mainly from June to October. Base flow is an important part of river runoff. Meanwhile,

as the hinterland of the Qinghai Tibet Plateau, the source area of the Yellow River, known as

the "Chinese water tower", plays an important role in the development and utilization of natu-

ral ecology and water resources in the lower reaches of the Yellow River. In addition, the base

discharge of the Yellow River accounts for about 44% of the river runoff, and the ratio of the

multi-year average base discharge to the river runoff in the source area of the Yellow River

above Tangnaihai is as high as 65.2%.

The input data of the TOPMODEL hydrological model include digital elevation model, dig-

ital, terrain index and hydrometeorological data. The digital elevation model (DEM) used is

the 90 m space shuttle radar terrain mission, which came from a geospatial data cloud (http://

www.gscloud.cn/sources/accessdata/305?pid=302). Except for hydrometeorological data,

other data were obtained by ArcGIS software. For meteorological data, the average daily pre-

cipitation, temperature, relative humidity, solar radiation and wind speed of 12 meteorological

stations in the basin from 2006 to 2012 were selected, and the potential evaporation of each

subbasin was calculated by using the Tyson polygon. Hydrological data and meteorological

data were consistent over time. Fig 1 shows the geographic location of the basin and the spatial

distribution of meteorological stations. Fig 2 shows a flowchart of the methods used in this

study.

Fig 1. Geographic location of the basin and the spatial distribution of hydrometeorological stations.

https://doi.org/10.1371/journal.pone.0261859.g001

PLOS ONE Quantifying interaction uncertainty between subwatersheds and base-flow partitions on hydrological processes

PLOS ONE | https://doi.org/10.1371/journal.pone.0261859 March 1, 2022 4 / 22

http://www.gscloud.cn/sources/accessdata/305?pid=302
http://www.gscloud.cn/sources/accessdata/305?pid=302
https://doi.org/10.1371/journal.pone.0261859.g001
https://doi.org/10.1371/journal.pone.0261859


3 Hydrological model and methods

3.1 TOPMODEL model

Topmodel is a semidistributed hydrological model proposed by Beven and Kirkby in 1979

[34]. It is based on the variable source principle of the topographic index and uses soil mois-

ture content to estimate the size and location of the source area. The model is simplified based

on the following three important assumptions: (1) there is a stable saturated layer of water sup-

ply in the basin; (2) soil water conductivity and water deficit decrease exponentially; and (3)

the hydraulic gradient is approximately the same as the topographic slope on the saturated

area of the basin, according to Darcy’s law.

3.2 Model calibration method

Particle swarm optimization (PSO) is a stochastic algorithm for solving optimization prob-

lems. It has the advantages of less parameter setting, simple and easy operation, and room for

improvement, and it is widely used in scientific research and engineering applications [35–37].

Each solution to the optimization problem represents a particle, which flies at a certain

speed in the n-dimensional search space, and the fitness function is used to identify good or

bad particles [38]. PSO, with its advantages of easy implementation, high accuracy and fast

convergence speed, has been favored by academic circles and has been applied to many practi-

cal problems, including multiobjective optimization, signal processing, neural network train-

ing, and other fields [39, 40]. Thus, we used PSO to optimize the TOPMODEL model

parameters in this paper. The particles dynamically adjust the flight speed according to their

flight experience and the flight experience of other particles to obtain the best solution. The

standard PSO algorithm can be described as follows: Assuming that the search space is d-

dimensional, there are Np particles in the population, then the position of particle i in the

group is represented as a d-dimensional vector Xi = (Xi1,Xi2,. . .,Xid)T, the particle velocity can

Fig 2. Flowchart of the methods used in this study.

https://doi.org/10.1371/journal.pone.0261859.g002
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be expressed as another d-dimensional vector Vi = (Vi1,Vi2,. . .,Vid)T, and then the velocity and

position update of particle i can be obtained by the following formula.

vijðt þ 1Þ ¼ w� vijðtÞ þ c1rand1ij � ðpbestijðtÞ � xijðtÞÞ þ c2rand2ij � ðpbestijðtÞ � xijðtÞÞ ð1Þ

xijðt þ 1Þ ¼ xijðtÞ þ vijðt þ 1Þ ð2Þ

where t represents the number of particle update iterations, w represents the inertia coefficient,

c1 and c2 are acceleration constants, rand1 and rand2 represent two independent random

numbers uniformly distributed in the interval [0,1], and pbest represents the "best" position

that particle i has experienced in the tth generation.

3.3 Baseflow segmentation method

The baseflow segmentation method is an important tool for separating baseflow and surface

flow from runoff, which has received considerable attention from domestic and foreign schol-

ars in recent years [41–44]. To simplify the baseflow segmentation process, baseflow segmenta-

tion methods are a powerful tool for segmenting the baseflow and surface flow of runoff. The

widely used baseflow segmentation methods mainly include smoothing minimum (UKIH)

[44], digital filtering [45] and the HYSEP method [46]. Taking into account the advantages

and disadvantages of the baseflow segmentation method, three methods, the filtering smooth-

ing minimum method (IUKIH), single parameter digital filtering (Lyne-Hollick) and fixed

interval method (HYSEP), are selected to segment the runoff simulation process under differ-

ent subbasin partitioning schemes in this paper. The performance of recursive digital filters is

also affected by one or more user-defined parameters, which are used to change the amount of

attenuation in the low/high-frequency domain of the flow spectrum and therefore have an

impact on the obtained baseflow hydrograph. Thus, the HYSEP, IUKHH and Lyne-Hollick

methods are data-filtering algorithms. To reduce the uncertainty of the algorithm results, we

only utilized these three algorithms.

3.4 Variance decomposition method based on subsampling

The multivariate variance decomposition method was proposed by Bosshard in 2013 [47]. It

has been successfully applied to examine the effects of individual variables and their interac-

tions on dependent variables. This method has been widely used to explore the degree of con-

tribution of uncertainty between different sources. Therefore, this method explores the

uncertainty impact of subbasin segmentation schemes and base-flow segmentation methods

on runoff simulation. The main steps are as follows.

Suppose Y is a variable whose two influencing factors are A and B, where A and B contain

M and K samples, respectively; then, the combination of A and B produces the sum ofM × K
samples.

Yj;k ¼ Aj þ Bk þ ABj;k ð3Þ

In this paper, A represents the jth subbasin partitioning scheme, B represents the kth base-

flow segmentation method, and AB represents the interaction influence between the two. The

process of combining the subbasin partitioning scheme and baseflow segmentation method is

shown in Fig 3.

The influence level of each uncertainty source depends on the number of samples. To solve

this problem, Bosshard proposed a subsampling method to eliminate the influence of the num-

ber of samples. The main process of this method is that for iteration i, two samples are
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randomly selected from all samples of a factor, such as the samples in watershed partitioning

schemes A and g(h, i), which are used instead of j in Yj,k. The total number of subsamplings is

15, i.e., I = 15, in this paper, and its combination matrix is as follows.

g ¼
1 1 � � � 1 2 2 � � � 4 4 5

2 3 � � � 6 3 4 � � � 5 6 6

 !

ð4Þ

The total variance contribution (SST) can be decomposed into the contribution of A and B
and the contribution of the combination of Factors A and B, and its contributions are

expressed as SSA, SSB, and SSI, respectively.

SST ¼ SSAþ SSBþ SSI ð5Þ

SST ¼
XH

h¼1

XK

k¼1

ðMgðh;iÞ;k � Mgðo;iÞ;oÞ
2

ð6Þ

SSAi ¼ K �
XH

h¼1

ðMgðh;iÞ;o � Mgðo;iÞ;oÞ
2

ð7Þ

SSBi ¼ H �
XK

k¼1

ðMgðo;iÞ;k � Mgðo;iÞ;oÞ
2

ð8Þ

SSIi ¼
XH

h¼1

XK

k¼1

ðMgðh;iÞ;k � Mgðh;iÞ;o � Mgðo;iÞ;k � 2 �Mgðo;iÞ;oÞ
2

ð9Þ

where SST represents the contribution of total variance, SSA represents the variance contribu-

tion of the subbasin partitioning scheme, SSB is the variance contribution for the baseflow seg-

mentation method, SSI represents the contribution of the partitioning scheme and baseflow

segmentation method interaction between the two, and the symbol o represents the mean flow

in i subsamples.H and K represent the number of subbasin partitioning schemes and the base-

flow segmentation method, respectively. In this paper,H = 6 and K = 3. The variance

Fig 3. Combination process of the subbasin partitioning scheme and baseflow segmentation method.

https://doi.org/10.1371/journal.pone.0261859.g003
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contribution rate of different factors is calculated by the following formula.

Zsubbasin ¼
1

I

XI

i¼1

SSAi
SSTi

ð10Þ

Zbaseflow ¼
1

I

XI

i¼1

SSBi
SSTi

ð11Þ

Zinteraction ¼
1

I

XI

i¼1

SSIi
SSTi

ð12Þ

where η is a number between 0 and 1, and they represent the contribution degrees of 0% and

100%, respectively.

3.5 Evaluation index

Four statistical metrics, including the Kling-Gupta coefficient (KGE), Nash efficiency coeffi-

cient (NSE), correlation coefficient (R2) and relative error (RE), were used to evaluate the

model performance [48, 49]. Taking into account the advantages of the KGE indicator in

model evaluation performance [50], this paper selected this as the objective function and uses

other indicators to evaluate model simulation accuracy.

KGE ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr � 1Þ
2
þ ða � 1Þ

2
þ ðb � 1Þ

2

q

ð13Þ

NSE ¼ 1 �

Pn

i¼1

ðQobs;i � Qsim;iÞ
2

Pn

i¼1

ðQobs;i � �QobsÞ
2

ð14Þ

R2 ¼

Pn

i¼1

½ðQsim;i � �QsimÞðQobs;i � �QobsÞ�
2

Pn

i¼1

ðQobs;i � �QobsÞ
2 Pn

i¼1

ðQsim;i � �QsimÞ
2

ð15Þ

jRej ¼
�Qsim �

�Qobs
�Qobs

� 100% ð16Þ

where r, α and β represent the correlation coefficient, relative dispersion degree and mean

deviation of the simulated and measured flows, respectively, and Qsim,i and Qobs,i represent the

ith simulated and observed flow, respectively. �Qsim and �Qobs represent the average values of the

measured flow and simulated flow, respectively. n represents the length of the runoff series.

4 Results and analysis

Hydrological models play an important role in simulating hydrological processes of a water-

shed, and the basic steps for successfully constructing a hydrological model are dividing a

catchment basin into different subbasin response units and then calibrating and validating the

hydrological model parameters. Beven and Binley showed that identical model results can be

obtained using different parameter combinations, which indicates that similar streamflows

can be modeled with different combinations of surface runoff and baseflow [14]. For example,
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Rouhani et al. employed baseflow, which was obtained by using the partial duration series

approach, to calibrate and validate the SWAT model [19]. Ferket et al. also used baseflow

obtained by a physically based digital baseflow filter to calibrate and validate HBV and PDM

hydrological models. However, the randomness of subbasin division and the selection of base-

flow segmentation methods may lead to significant differences in runoff simulation accuracy

[20]. Thus, quantifying the effects of subbasin partitioning schemes and baseflow segmentation

methods on runoff simulation has important practical significance.

4.1 Spatial distribution characteristics of subwatershed division

Fig 4 represents the spatial distribution of the subbasin partitioning scheme under different

catchment area thresholds in the source region of the Yellow River. The elevation of the basin

gradually decreases from the west to east, and the elevation range of the basin is between 2772

and 6553 m.

Table 1 shows the parameter values of the TOPMODEL model under different subbasin

division schemes. As seen from Table 1, under different subbasin division schemes, the differ-

ences in the parameter values of T0, szm, Td, and SRmax were small, but the differences in the

parameters Rv, CHV and SR0 were large. This indicates that the subbasin division has little

impact on the time lag coefficient of gravity drainage, the maximum water storage of the root

zone and the initial water content of the root zone but has a significant impact on the effective

speed of river confluence and river width.

Fig 4. Spatial distribution information of the subbasin partitioning scheme under different catchment area

thresholds (the base map for this figure originated from NASA earth observatory (public domain)).

https://doi.org/10.1371/journal.pone.0261859.g004

Table 1. Parameter values of the TOPMODEL model under different subbasin division schemes.

Subbasins T0 szm Td SRmax Rv CHV SR0

5 4.05 0.06 15.61 0.05 4165.60 5479.64 376.28

13 5.56 0.05 15.09 0.06 4358.30 6899.54 242.81

21 5.25 0.05 15.70 0.05 4352.04 5933.44 262.83

29 4.55 0.05 15.60 0.06 4441.20 5770.10 239.25

37 4.65 0.05 17.32 0.06 5663.59 5689.59 213.17

45 5.17 0.05 14.56 0.05 5309.38 5824.09 275.06

https://doi.org/10.1371/journal.pone.0261859.t001
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4.2 Model performance evaluation

For the six subbasin partitioning schemes, the data from January 1, 2005, through December

31, 2005 were used for model warm-up, the data from January 1, 2006, through December 31,

2009 were used for model calibration, and the data from January 1, 2010, through December

31, 2012 were used later for model validation.

This paper selected the KGE index as the objective function of the TOPMODEL model

calibration and validation periods. Fig 5 represents the Taylor plot results for calibration

and validation periods under different subbasin partitioning schemes. A number of conclu-

sions can be obtained from Fig 5. In addition to Sub 29, the accuracy of the TOPMODEL

hydrological model performance increased gradually with the increase in the number of sub-

basins partitioned up to a certain threshold and then decreased. The number of subbasins

partitioned had a small influence on the standard deviation and root mean square error in

the calibration period but had a greater impact during the validation period. In the calibra-

tion and validation periods, the objective function values (KGE) in the Sub5, Sub13, Sub21,

Sub29, Sub37 and Sub13 scenarios were 0.91 and 0.65, 0.94 and 0.86, 0.94 and 0.88, 0.92 and

0.82, 0.95 and 0.89, and 0.92 and 0.83, respectively. In addition, the KGE in model validation

was lower than that in validation but was always more than 0.65 for all subbasin partitioning

schemes.

Fig 6 represents the observed and model-simulated daily streamflow scatter plot results, in

which the observed streamflow is plotted along the x-axis and the simulated model is plotted

along the y-axis. It is worth pointing out that the farther the linear regression slope line is from

the 1:1 line, the worse the model simulation accuracy. In Fig 6, when only the correlation coef-

ficient is considered, the difference in model simulation accuracy is small, but considering the

correlation coefficient and the linear regression slope simultaneously, we can see that the

model simulation accuracy under different subbasin partitioning schemes are significantly dif-

ferent, e.g., the Sub5 linear regression line is far from the 1:1 line and located below it, indicat-

ing that the model-simulated streamflow is much lower than the observed streamflow for most

months, while the Sub37 linear regression line is closer to the 1:1 line, which indicates that the

TOPMODEL model has poor simulation accuracy in the Sub5 scenario and has good simula-

tion accuracy in the Sub37 scenario. In addition, in the Sub37 scenario, the simulated dis-

charge is obviously underestimated. In addition, as the number of subbasin partitions

increases, the linear regression line gradually approaches the 1:1 line up to a certain threshold

and then decreases. Overall, the number of subbasin divisions has a significant impact on the

model simulation accuracy.

Fig 5. Taylor plot results for calibration and validation periods under different subbasin partitioning schemes.

https://doi.org/10.1371/journal.pone.0261859.g005
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4.3 Effect of subbasin partitioning scheme uncertainty on the hydrological

simulation process

From the previous section, we can see that the performance evaluation results of different sub-

basin partitioning scheme models are obviously different. To further explore the influence of

subbasin partitioning scheme uncertainty on hydrological processes in different characteristic

periods, we conducted statistical analysis from the perspective of hydrological processes and

monthly streamflow values (calibration and validation). Fig 7 shows the results of runoff simu-

lation in calibration and validation periods under different subbasin partitioning schemes. A

Fig 6. Scatter plot results of the observed and model-simulated streamflow under different subbasin partitioning

schemes.

https://doi.org/10.1371/journal.pone.0261859.g006

Fig 7. Results of the model performance evaluation in calibration and validation periods.

https://doi.org/10.1371/journal.pone.0261859.g007
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number of important conclusions can be obtained from this plot. First, the results of the mod-

eled discharge are similar to the observed discharge, which indicates the better accuracy of

runoff simulation under different subbasin partitioning schemes. However, the process of run-

off simulation showed significant differences in different characteristic periods, e.g., the data

from October 1, 2010, through April 31, 2011 and from June 1, 2011, through October 31,

2011. Again, the runoff simulation accuracy in the calibration period was better than that in

the validation period. In addition, the precipitation in the basin was mostly concentrated in

the flood period (June to September), the maximum daily precipitation was as high as 25 mm/

day, the precipitation in the nonflood period was less, and the daily precipitation was less than

0.5 mm/day. Overall, all subbasin partitioning scheme simulations yielded very good results.

For the different subbasin partitioning schemes, the TOPMODEL model performance grad-

ually improved with the increase in the subbasin division number, while the improvement

began to decline when the subbasin division number exceeded a threshold, i.e., Sub37 in this

paper. The boxplots of the streamflow between the observed and model-simulated streamflow

under different subbasin partitioning schemes for different months are shown in Fig 8. In Fig 8,

the subbasin division uncertainty led to a significant difference in simulated streamflow for dif-

ferent months. In the dry season, the simulated streamflows obtained by different subbasin par-

titioning schemes were all smaller than the measured streamflows, indicating that the simulated

streamflow was obviously underestimated for most months; however, the simulated streamflow

was close to the measured streamflow during the wet season, especially in June and July. More-

over, the subbasin division uncertainty had less impact on simulated streamflow during the dry

season and had a significant impact in the wet season; for example, the subbasin division uncer-

tainty caused the difference between the median of the simulated streamflow to be as high as

213.09 m3/s in August but only 107.19 m3/s in January. In addition, this also shows that the

model performance in the Sub5 scenario had the worst simulation accuracy, which can some-

times result in overestimations and sometimes underestimations of the simulated discharge,

such as in January to February and September to December. Moreover, the error range and

trend of the simulated streamflow of subbasin division schemes were basically consistent with

the measured streamflow during the wet season, but the dry season was the opposite.

Fig 8. Difference between the monthly modeled discharge and the measured discharge under subbasin

partitioning schemes.

https://doi.org/10.1371/journal.pone.0261859.g008
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4.4 Effect of baseflow segmentation method uncertainty on hydrological

simulation

In recent decades, a large number of baseflow segmentation methods have been developed

[16–18], and it is possible to use continuous assessments of baseflow for the calibration and

validation of hydrological models. However, there is a large amount of uncertainty in choosing

baseflow segmentation methods. Thus, it is important to explore the effect of baseflow segmen-

tation method uncertainty on the hydrological simulation process.

The plots of the effect of baseflow segmentation method uncertainty on hydrological pro-

cesses under subbasin partitioning schemes are shown in Fig 9. A number of conclusions can

be obtained from these plots. First, the baseflow varied with the change in simulated runoff,

which is more obvious for the Lyne-Hollick and IUKIH methods. Second, the baseflow values

estimated by the Lyne-Hollick method and HYSEP method were obviously higher than those

estimated by the IUKIH method during the wet season (see Fig 9(a) submap). Finally, the

influence of the baseflow segmentation methods on the simulated streamflow is obvious dur-

ing the different characteristic periods. For example, in the Sub5 scenario, the daily mean base-

flows in 2007 were estimated to be 273.04 m3/s, 283.84 m3/s, and 283.92 m3/s using the

HYSEP, IUKIH, and Lyne-Hollick methods during the dry season, respectively, while the daily

mean baseflows were estimated to be 847.14 m3/s, 721.06 m3/s, and 848.92 m3/s, respectively,

during the wet season. This indicates that the baseflow values were underestimated by the

IUKIH method, especially during the wet season.

Fig 9. Effect of baseflow segmentation method uncertainty on hydrological processes under subbasin partitioning schemes.

https://doi.org/10.1371/journal.pone.0261859.g009
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In addition, the baseflow segmentation method uncertainty has a significant impact on the

annual mean streamflow values under different subbasin segmentation schemes. For example,

in the Sub5 scenario, the annual mean baseflows in 2007 were estimated to be 562.58 m3/s,

504.38 m3/s, and 568.88 m3/s using the HYSEP, IUKIH, and Lyne-Hollick methods, respec-

tively, but the annual mean baseflows in the Sub37 scenario were estimated to be 524.94 m3/s,

492.91 m3/s, and 549.12 m3/s, respectively. This also indicates that the baseflow values were

underestimated by the IUKIH method, and as the model simulation accuracy increased, the

difference gradually decreased.

The plot of the effect of baseflow segmentation method uncertainty on runoff in different

months under subbasin partitioning schemes is shown in Fig 10. The results show that the

baseflow segmentation method uncertainty had less influence on runoff in different months;

however, the baseflow values obtained by the HYSEP, IUKIH, and Lyne-Hollick methods

under the different subbasin partitioning schemes were significantly different. The baseflow

hydrographs obtained by different baseflow segmentation method change trends were basi-

cally consistent; however, as the simulated streamflow increased during the wet season, the

baseflow value change error also increased, and a maximum appeared in June. In addition, as

the simulated streamflow decreased during the postflood period, the baseflow value change

error decreased accordingly.

Fig 10. Effect of baseflow segmentation method uncertainty on streamflow in different months under subbasin

partitioning schemes.

https://doi.org/10.1371/journal.pone.0261859.g010
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Furthermore, taking May to August as an example, Fig 10 also shows that as the number of

subbasin partitions increased, the median baseflow values gradually increased and then

decreased, but it had a downward trend in other months. The uncertainty of subbasin parti-

tioning schemes in August had the greatest impact on baseflow processes. The median base-

flow difference was as high as 213.09 m3/s but was less affected in May, and the median

baseflow difference was only 107.19 m3/s. Moreover, the distribution of baseflow values had

significant differences in different months, and the baseflow values had a nonnormal distribu-

tion in June, July, and September-November but had a normal distribution in May. This find-

ing indicates that the subbasin partitioning schemes and baseflow partitioning methods

caused uneven distributions of baseflow values in the wet season.

4.5 Quantitative assessment of the uncertainty effects of subbasin

partitioning schemes and baseflow segmentation methods on baseflow

processes

Based on the above discussion, the uncertainty of subbasin partitioning and baseflow segmen-

tation methods were significantly different on the baseflow values in different characteristic

periods, and then the independence and interaction of multiple factors led to great uncertainty

in the model output. How to quantify the independence and interaction of multiple source fac-

tors faces challenges. However, Bosshard proposed that a method of variance decomposition

based on subsampling can successfully solve this problem, which has been widely applied [36].

In this paper, the variance decomposition method based on subsampling was used to quan-

tify the influence of subbasin partitioning and baseflow segmentation methods on annual base-

flow processes. It is worth noting that the error contribution in the graph is the relative value,

and the interaction effect includes the contribution of the TOPMODE model. The plot of the

contribution of uncertainty of the subbasin partitioning schemes, baseflow segmentation

methods and their combined effects on runoff simulation is shown in Fig 11, and a number of

important conclusions are as follows.

First, the contribution of uncertainty of the subbasin partitioning schemes, the baseflow

segmentation methods and their interactions had significant differences in the baseflow values

in different months and were especially significant during wet and dry seasons. This further

verified the uncertainty influence of subbasin partitioning schemes and baseflow segmentation

methods on the hydrological simulation process.

Second, in the dry season (January to March), the subbasin partitioning scheme uncertainty

had the greatest impact on the simulation process, accounting for approximately 86%, the

baseflow segmentation methods took second place, accounting for approximately 12%, and

Fig 11. Contribution of uncertainty of the subbasin partitioning schemes, baseflow segmentation methods and

their combined effects on runoff simulation.

https://doi.org/10.1371/journal.pone.0261859.g011
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the combination of subbasin partitioning schemes and baseflow segmentation method uncer-

tainty had the smallest impact, accounting for approximately 2%. In addition, in the preflood

period (April to May), as the temperature rose, glaciers and snow meltwater recharged the

underground baseflow values, and then the baseflow segmentation methods were further

enhanced by the influence of the underground baseflow values; thus, the contribution of

uncertainty of the baseflow segmentation methods gradually increased. Correspondingly, the

influence of the subbasin partitioning scheme uncertainty gradually decreased.

Third, in the flood period (June to August), affected by concentrated rainfall, the uncer-

tainty influence of the baseflow segmentation methods was dominant, with the largest impact

in July, accounting for 88.24%, and the smallest in August, accounting for 46.33%. In addition,

from July to August, the uncertainty influence of the baseflow segmentation methods was

gradually weakened, which may have been due to the uncertainty influence of the TOMODEL

hydrological model. In addition, the flood period was the flood peak period of the basin, and

the contribution of subbasin division uncertainty to base flow processes increased, which is

also an important finding of this paper.

Last, in the postflood period (September to December), the uncertainties in the influence of

subbasin partitioning schemes, baseflow segmentation methods and their interactions were

significantly different, accounting for 50.63%, 48.33% and 1.04%, respectively. The uncertain

interaction influence of the subbasin partitioning schemes and the baseflow segmentation

methods gradually decreased, which may be attributed to the fact that the basin is located in an

alpine climate zone, and the winter temperature was relatively low, resulting in the river form-

ing glaciers; thus, the infiltration flow decreased. Moreover, the source area of the Yellow

River is located in a mountain and gully area, and the runoff in winter was very small. The sub-

basin division scheme and the base flow division method contributed to base flow processes.

Most base flow was used to supplement river runoff; therefore, the interaction between the two

was small.

5 Discussion

Due to the influence of different climate and underlying surface types, the base flow index of

rivers in humid areas is generally low, while that in arid and semi-arid areas is high [51–53].

Subbasin partitioning schemes and baseflow segmentation methods are very important for

baseflow processes. Such as, both Arabi et al. and Han et al. found that the subwatershed divi-

sion scheme under hydrological model had an important impact on hydrological processes [8,

9]. Lin et al. investigated the impacts of watershed partitioning on simulation of hillslope sedi-

ment generation and its spatial variations, and found that the Hillslope sediment generation

was seriously affected by watershed subdivision levels, increasing the number of sub-water-

sheds would decrease the modelled amount of hillslope sediment generation and increase its

spatial variations [54]. Wang et al. investigated the features of PMAs (priority management

areas) with differentsubdivision schemes in hydrological conditions, and found that PMAs

identification can be affected by watershed subdivision with different amountsof information,

and the proper increase in the number of sub-watersheds can promote the accuracy ofPMAs

identification [55]. Meanwhile, the application of base flow data for hydrological model verifi-

cation has achieved better results. Such as, Rouhani et al. employed baseflow, which was

obtained by using the partial duration series approach, to calibrate and validate the SWAT

model [19]. Ferket et al. also used baseflow obtained by a physically based digital baseflow filter

to calibrate and validate two hydrological models: the Hydrologiska Byråns Vattenavdelning

(HBV) and probability-distributed model (PDM) [20]. Analysis of the above studies found

that the base flow process obtained by different base flow segmentation methods affects the
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performance of hydrological model. For example, Li et al., Chapman and Aksoy et al. found

that different base flow segmentation methods obtained different evaluation results [24–26].

In general, it is very important to select appropriate and reliable base flow series as the basis for

model validation. Meanwhile, the randomness of subbasin division and the subjectivity of the

selection of the baseflow segmentation methods result in inconsistent runoff simulation values

in different months. The combination of base flow segmentation method and TOPMODEL

model provides a new opportunity to study the spatial distribution characteristics of base flow

and surface runoff, and also provides a new idea for the spatialization of surface process ele-

ments. To fill this gap, we explored the influence of their interaction uncertainty on base flow

processes. We found that the subbasin division scheme and base flow division method had dif-

ferent effects on base flow simulation in different periods. The research results have important

practical significance for an in-depth understanding of water resource assessments with base

flow as the recharge source.

Based on the above discussion, the uncertainty influence of subbasin partitioning schemes

and baseflow segmentation methods had a significant difference on baseflow processes in dif-

ferent periods. Taking June, July and August in 2008 as an example, Figs 12 and 13 represent

the uncertainty influence of subbasin partitioning schemes and baseflow segmentation meth-

ods, respectively. The results show that the uncertainty influence of subbasin partitioning

schemes was mainly reflected in the peak flow, and the lower the simulation accuracy was, the

Fig 12. Influences of subbasin division on water resources.

https://doi.org/10.1371/journal.pone.0261859.g012

Fig 13. Influences of the base-flow segmentation method on water resources.

https://doi.org/10.1371/journal.pone.0261859.g013
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larger the peak flow value. In addition, the flow difference between the Sub37 scenario and

Sub5 scenario on August 1, 2008, was as high as 680.23 m3/s.

Affected by factors, such as precipitation, temperature, model construction, etc., the base-

flow segmentation methods had various manifestations, and the water resources varied signifi-

cantly in different months. In addition, the larger the simulation accuracy was, the smaller the

difference obtained by different baseflow segmentation methods. For example, in the Sub37

scenario, the monthly mean flow difference between the IUKIH and Lyne-Hollick methods in

July was as high as 490.28 m3/s, but the difference between the HYSEP and Lyne-Hollick meth-

ods was small.

Therefore, the subbasin partitioning schemes and baseflow segmentation methods intro-

duce great uncertainty to water resource assessments. The main task of this paper was to quan-

tify the contribution of uncertainty of the subbasin partitioning schemes, the baseflow

segmentation methods and their interaction effects in different periods to further evaluate the

characteristics of water resource changes more accurately in the next stage.

6 Conclusions

The randomness and subjectivity of the selection of the subbasin partitioning schemes and

baseflow segmentation methods resulted in significant differences in baseflow values in differ-

ent months. Identifying and quantifying the uncertainty effects of the independence and inter-

action of multiple source factors can accurately assess the water resources in the basin.

Therefore, a global sensitivity analysis framework is proposed to quantitatively assess the

uncertainty influence of subbasin partitioning schemes and baseflow segmentation methods

on baseflow processes in this paper. A number of important conclusions drawn from this

study are as follows.

First, in the calibration and validation periods, the objective function values (KGE) in the

Sub5, Sub13, Sub21, Sub29, Sub37 and Sub13 scenarios were 0.91 and 0.65, 0.94 and 0.86, 0.94

and 0.88, 0.92 and 0.82, 0.95 and 0.89, and 0.92 and 0.83, respectively. These findings indicate

that subbasin partitioning scheme uncertainty has significant effects in the source region of

the Yellow River.

Second, the baseflow varied with the change in simulated runoff, which was more obvious

for the Lyne-Hollick and IUKIH methods, and the baseflow values estimated by the Lyne-Hol-

lick and HYSEP methods were obviously higher than those estimated by the IUKIH method

during the wet season.

Third, a global sensitivity analysis framework is proposed to quantitatively explore the

uncertainty influence of subbasin partitioning schemes and baseflow segmentation methods

on baseflow processes. The results show that the uncertainty influence of subbasin partitioning

schemes was dominant in the dry season (January to March), accounting for 86%, the baseflow

segmentation methods took second place, accounting for approximately 12%, and a combina-

tion of subbasin partitioning schemes and baseflow segmentation method uncertainty had the

smallest impact, accounting for approximately 2%. From July to August, the uncertainty influ-

ence of the baseflow segmentation methods was gradually weakened, which may have been

due to the uncertainty influence of the TOMODEL hydrological model. In the wet season

(September to December), the uncertainty influence of subbasin partitioning schemes, base-

flow segmentation methods and their interactions were significantly different, accounting for

50.63%, 48.33% and 1.04%, respectively.

In addition, although this study accurately identified the contributions of the subbasin divi-

sion scheme and base flow segmentation method to the uncertainty of baseflow simulation in

different periods, there were few hydrological models and base flow segmentation methods

PLOS ONE Quantifying interaction uncertainty between subwatersheds and base-flow partitions on hydrological processes

PLOS ONE | https://doi.org/10.1371/journal.pone.0261859 March 1, 2022 18 / 22

https://doi.org/10.1371/journal.pone.0261859


selected in this study, and the time series of the calibration model was short. More distributed

hydrological models and base flow segmentation methods will be added in the future to verify

the rationality of this study and to extend this research to more watersheds. Although the

robustness of the research results needs to be further tested in other watersheds, the different

uncertainty source assessment frameworks proposed in this study can also be applied to other

watersheds.
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