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Abstract
Although endurance exercise is effective for reducing diabetes-related capillary re-
gression, it is difficult to prescribe high-intensity endurance exercise due to the poten-
tial worsening of complications in patients with severe hyperglycemia. Therefore, this 
study aimed to examine whether chronic low-intensity exercise training may prevent 
severe hyperglycemia-induced capillary regression of skeletal muscle in non-obese 
type 2 diabetes. Non-diabetic Sprague Dawley rats were assigned to a control (Con) 
group and an exercise (Ex) group. Likewise, spontaneously diabetic Torii rats were 
assigned to a diabetic sedentary (DM) group or a diabetic exercise (DMEx) group. 
Rats in the Ex and DMEx groups were placed on a motor-driven treadmill running 
at low speed (15 m/min) for 60 min/day, 5 days/week, for 14 weeks. Serum glucose 
levels were significantly increased in the DM group, but not in the DMEx group. 
Although the capillary-to-fiber ratio in the plantaris muscle was significantly lower in 
the DM group compared to the control group, the ratio in the DMEx group was sig-
nificantly higher compared to the DM group. Moreover, the succinate dehydrogenase 
activity and expression levels of vascular endothelial growth factor and peroxisome 
proliferator-activated receptor γ coactivator-1α (PGC-1α) were reduced in the plan-
taris muscle of the DM group. However, those in the DMEx group were significantly 
higher than those in the DM group. These results indicate that low-intensity chronic 
endurance exercise training has the potential to prevent the progression of capillary 
regression in the skeletal muscles of non-obese type 2 diabetes patients with severe 
hyperglycemia.
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1 |  INTRODUCTION

Diabetes mellitus (DM) is a widely prevalent metabolic dis-
order that is associated with a marked increase in hypergly-
cemia-induced diabetic complications (Tanaka et al., 2019; 
Zhao et al., 2014). Hyperglycemia leads to diverse compli-
cations such as muscle atrophy (Tanaka et al., 2019), insulin 
resistance, and a decline in the number of capillaries in skele-
tal muscle (Lillioja et al., 1987). In particular, type 2 diabetes 
is, in essence, a vascular disease that is frequently associated 
with capillary regression, which is a diabetic complication 
(Ko et al., 2010). Capillary regression of skeletal muscle is 
often evaluated as a decrease in capillary number (Gute et al., 
1994; Koves et al., 2005). The capillary number of skeletal 
muscle plays an important role in supplying oxygen and nu-
trients to, and removing waste products from, muscle cells 
(Padilla et al., 2006). Therefore, it has been suggested that it 
is important to prevent hyperglycemia and hyperglycemia-in-
duced capillary regression for diverse complications in skel-
etal muscle.

A previous study suggested that the decrease in vascu-
lar endothelial growth factor (VEGF) expression is one of 
the key factors in capillary regression (Tang et al., 2004). 
VEGF is well-known as a major angiogenic growth fac-
tor (Ferrara, 2001). In addition, previous studies have sug-
gested that VEGF expression is decreased in diabetes (Kivela 
et al., 2006; Rivard et al., 1999). Therefore, the prevention 
of diabetes-related decreased VEGF expression may prevent 
capillary regression. Hyperglycemia is also evoked by a re-
duction in the expression level of the transcriptional coact-
ivator, peroxisome proliferator-activated receptor-gamma 
coactivator-1α (PGC-1α) (Mootha et al., 2003; Patti et al., 
2003). Recently, PGC-1α has attracted attention as a key 
player in the regulation of mitochondrial biogenesis (Arany 
et al., 2008) and mitochondrial oxidative capacity (Mootha 
et al., 2004; Pagel-Langenickel et al., 2008). However, hyper-
glycemia causes decreased mitochondrial oxidative capac-
ity through decreased PGC-1α expression (Nagatomo et al., 
2011; Nakamoto & Ishihara, 2020). In addition, PGC-1α 
strongly correlates with VEGF expression and angiogenesis 
in skeletal muscles (Arany et al., 2008). Therefore, the inhi-
bition of hyperglycemia-induced decreased PGC-1α expres-
sion may prevent the development of hyperglycemia-induced 
capillary regression in diabetes via improved mitochondrial 
oxidative capacity.

Endurance exercise training, which is known to prevent 
the development of type 2 diabetes in humans (Knowler et al., 
2002) and rodents (Pold et al., 2005), is recommended for 
the prevention of type 2 diabetes and/or its complications, 
such as preventing capillary regression in the skeletal mus-
cle (Kondo et al., 2015). In general, endurance exercise 
training increases the capillary number of skeletal muscle 
via increased VEGF expression (Hermansen & Wachtlova, 

1971; Jensen et al., 2004; Poole & Mathieu-Costello, 1996; 
Richardson et al., 1999), thereby preventing diabetes-related 
capillary regression.

Although endurance exercise is effective for diabetes-re-
lated capillary regression, it is difficult to prescribe high-in-
tensity endurance exercise for diabetic patients due to the 
potential worsening of complications in patients with severe 
hyperglycemia (American Diabetes, 2016). Therefore, endur-
ance exercise must be set to low intensity to prevent capillary 
regression in patients with severe non-obese type 2 diabetes. 
Our previous study suggested that low-intensity endurance 
exercise prevents capillary regression in non-severe hyper-
glycemia-related diabetes rat models (Goto-Kakizaki rat) 
(Kondo et al., 2015). However, the previous study did not 
use severe hyperglycemia-induced rat models and did not 
demonstrate the effects of low-intensity exercise on severe 
hyperglycemia. We hypothesized that low-intensity endur-
ance exercise might prevent severe hyperglycemia-induced 
capillary regression via inhibition of mitochondrial oxidative 
capacity in non-obese type 2 diabetes as well as non-severe 
hyperglycemia diabetes. If this study is validated, new thera-
peutic interventions for non-obese patients with severe diabe-
tes can be established. Therefore, the purpose of the present 
study was to examine whether chronic low-intensity exercise 
training may prevent severe hyperglycemia-induced capillary 
regression of skeletal muscle in a non-obese type 2 diabetic 
rat model and whether factors related to the inhibition of se-
vere hyperglycemia through the improvement of mitochon-
drial oxidative capacity might be involved in the preventive 
effects.

2 |  MATERIALS AND METHODS

2.1 | Experimental design

Eleven-week-old male Sprague Dawley (SD) rats were 
purchased from CLEA Japan, Inc. and assigned to either a 
non-diabetes control (Con) group or a non-diabetes exercise 
(Ex) group. Spontaneously Diabetic Torii (SDT) rats were 
assigned to either a diabetes mellitus (DM) group or a DM 
exercise (DMEx) group (n  =  5 in each group). SDT rats 
have been established as a model for non-obese and severe 
hyperglycemia-induced type 2 diabetes (Shinohara et al., 
2000). The rats in the Ex and DMEx groups were running 
on a motor-driven treadmill at low speed (15  m/min) for 
60 min/day, 5 days/week, for 14 weeks after being familiar-
ized with the treadmill for 5–10  min per day for a period 
of 1 week. The levels of blood lactate in the Ex and DMEx 
groups were measured from the tail vein using a blood lac-
tate test meter (Lactate Pro; Arkray, Shiga, Japan) before 
and after exercise. The exercise was considered as aerobic 
in terms of intensity because the levels of blood lactate did 
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not change significantly (1.30 ± 0.21 mmol/L <2 mmol/L) 
before and after exercise. The animals had access to food and 
water ad libitum. All rats were maintained at 22 ± 2°C with 
a light–dark cycle of 12 h. All experiments were conducted 
in accordance with the National Institutes of Health (NIH) 
Guide for the Care and Use of Laboratory Animals (National 
Research Council, 1996) and approved by the Animal Care 
and Use Committee of Kobe University, Japan.

2.2 | Biochemical analyses of blood

Every 2 weeks from 10 weeks to 24 weeks of age, glucose 
levels were measured using a blood glucose monitoring sys-
tem (Precision Xceed, Abbot Laboratories, Illinois, USA) 
from blood samples obtained from the tail vein in the non-
fasting state.

At 25 weeks of age, after all the rats were anesthetized 
with pentobarbital sodium (50  mg/kg, i.p.), blood samples 
were obtained from the abdominal veins after 9  h of fast-
ing. The animals were then euthanized by an overdose of 
sodium pentobarbital. Hemoglobin (Hb)A1c was then mea-
sured using a DCA Vantage Analyzer (Siemens Medical 
Solutions Diagnostics). Serum was obtained by centrifuga-
tion (3000 × g for 10 min) at room temperature and stored at 
−80°C until further analyses. Serum glucose was measured 
using the Glucose CII-Test Wako kit (Wako Pure Chemical 
Industries).

2.3 | Histological analyses

Twenty-four hours after the final exercise session and after 
blood sampling, the plantaris muscle was excised, quick-fro-
zen in isopentane, pre-cooled in liquid nitrogen, and stored at 
−80°C. Thereafter, the muscle was sliced into 12-μm-thick 
transverse sections using a cryostat microtome (CM3050; 
Leica Microsystems) at −20°C, and the sections were dried 
at room temperature for 30  min. Several sections were 
stained to determine the levels of alkaline phosphatase (AP) 
to visualize capillaries in the skeletal muscle. For AP stain-
ing, the sections were incubated for 60 min at 37°C in 0.1% 
5-bromo-4-chloro-3-indolyl phosphate p-toluidine salt and 
0.1% nitro blue tetrazolium in 0.2 M borate buffer. The sec-
tions were observed under a light microscope (×400: BX51; 
Olympus, Tokyo, Japan), and images were obtained with a 
CCD camera (VB-7000; Keyence, Osaka, Japan). The cap-
illary-to-fiber ratio (C/F) ratio was measured in microscopic 
images selected at random from AP stained sections. The C/F 
ratio in the deep layer of the plantaris muscle (two images in 
each rat) was determined by counting all the capillaries and 
fibers in a microscopic image. All measurements were subse-
quently calculated using the ImageJ software program (NIH).

The level of succinate dehydrogenase (SDH) activity, an 
indicator of mitochondrial oxidative capacity (Nakatani et al., 
1999; Wust et al., 2009), was measured in the stained sections. 
For SDH staining, the sections were incubated for 45 min at 
37°C in 0.05% nitroblue tetrazolium and 0.05 M sodium suc-
cinate in 0.05 M phosphate buffer (pH 7.5). Cross-sectional 
images of tissues were visualized with a light microscope, 
and images were obtained with a CCD camera. Microscopic 
images were randomly selected from each section, and all 
muscle fibers in each image were analyzed to determine SDH 
activity in the plantaris muscle. SDH activity was calculated 
as the mean optical density using the Image J software pro-
gram (NIH). All values are shown as fold changes relative to 
the Con group.

2.4 | Western blot analyses

The frozen muscle samples were homogenized in ice-cold 
homogenizing buffer (50  mM Tris–HCl, pH 7.8) contain-
ing a protease inhibitor cocktail (1:200, P8340; Sigma 
Chemicals). Following this, the homogenate was centrifuged 
at 15,000 g for 15 min at 4°C, and the total protein concen-
tration was determined using a protein determination kit 
(Bio-Rad Laboratories). The homogenates were solubilized 
in sample loading buffer (62.5  mM Tris–HCl, pH 6.8, 2% 
sodium dodecyl sulfate (SDS), 10% glycerol, 5% 2-mercap-
toethanol, and 0.02% bromophenol blue), and were boiled for 
10 min at 80°C. Equal amounts of proteins were separated 
by SDS-polyacrylamide gel electrophoresis and then trans-
ferred to a polyvinylidene difluoride membrane. Following 
an overnight blocking step in 5% skim milk in phosphate-
buffered saline with Tween 20 (PBST), the membranes were 
incubated with anti-VEGF antibody (1:1000 in PBST, sc-
7269; Santa Cruz Biotechnology) and anti-PGC-1α antibody 
(1:1000 in PBST, sc-13067, Santa Cruz Biotechnology) at 
4°C. Following overnight incubation, the membranes were 
incubated for 60 min at room temperature with anti-mouse 
or anti-rabbit secondary antibodies (1:10,000 in PBST). The 
signals were detected using the enhanced chemiluminescent 
Prime Western Blotting Detection System (GE Healthcare) 
and analyzed with an image reader (LAS-1000, Fujifilm). 
β-actin was used as an internal control.

2.5 | Statistical analyses

All data are represented as the mean ± standard error of the 
mean. Two-way analysis of variance (ANOVA) was used to 
analyze the blood glucose levels among the Con, Ex, DM, 
and DMEx groups followed by Tukey's post hoc tests to de-
termine specific group differences. One-way ANOVA was 
used to analyze the capillary-to-fiber ratio, SDH activity, and 
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western blot protein expression levels among the Con, Ex, 
DM, and DMEx groups, followed by Tukey's post hoc tests 
to determine specific group differences. Statistical signifi-
cance was set at p < 0.05.

3 |  RESULTS

3.1 | Blood glucose level

Blood glucose levels are shown in Figure 1. There was no 
significant difference in blood glucose levels between the 
DM and Con groups until 14  weeks of age. However, the 
blood glucose level in the DM group increased markedly 
from 16 to 22 weeks of age. Blood glucose levels were sig-
nificantly higher in the DM group than in the Con group at 
16 to 24 weeks of age. In contrast, the blood glucose levels 
in the DMEx group were significantly lower than those in the 
DM group at 16 to 24 weeks of age. Furthermore, there were 
no significant differences between the Con, Ex, and DMEx 
groups during the experimental period.

3.2 | Body weight, relative muscle mass to 
body weight, serum glucose, and HbA1c

Body weight, the muscle-to-body weight ratio of each muscle, 
serum glucose, and HbA1c are shown in Table 1. There was no 
significant difference in body weight between the groups. The 
muscle mass to body weight ratio in the DM group was signifi-
cantly lower than that in the Ex group. Although serum glucose 
and HbA1c levels were significantly higher in the DM group 
than in the Con and Ex groups, they were significantly lower in 
the DMEx than in the DM group at 25 weeks of age. Moreover, 
there were no significant differences between the Con, Ex, and 
DMEx groups.

3.3 | Capillary-to-fiber ratio

Representative AP staining images in the plantaris muscle 
of the Con, Ex, DM, and DMEx groups are shown in Figure 
2a-d. Capillaries were arranged around the muscle fibers 
and visualized as dark spots. The C/F ratio in the DM group 
was significantly lower than that in the Con and Ex groups 
(Figure 2e). However, the C/F ratio in the DMEx group was 
significantly higher than that in the DM group.

3.4 | SDH activity

Representative SDH staining images in the plantaris muscle 
of the Con, Ex, DM, and DMEx groups are shown in Figure 

3a-d. The SDH activity of muscle fibers in the DM group was 
significantly lower than that in the Con group (Figure 3e). In 
contrast, SDH activity was significantly higher in the DMEx 
group than in the DM group.

3.5 | VEGF and PGC-1α expression levels in 
plantaris muscles

Representative western blot images of VEGF and PGC-1α 
in the plantaris muscle are shown in Figure 4c. The expres-
sion level of VEGF protein was significantly lower in the 
DM group than in the Con group. In contrast, the expression 
level of VEGF protein was significantly higher in the DMEx 
group than in the DM group (Figure 4a). The expression 
level of PGC-1α protein in the DM group was significantly 
lower than that in the Con group, whereas it was higher in the 
DMEx group than in the DM group (Figure 4b).

4 |  DISCUSSION

In the present study, we found that low-intensity endurance 
exercise in non-obese DM prevented capillary regression 

F I G U R E  1  Blood glucose level. The values of blood glucose are 
presented as the mean ± standard error of the mean (SEM). ○, control 
group; □, exercise group; ◆, diabetes group; ▲, diabetes with the 
exercise group. *, †, and ‡ indicate significant differences in the Con, Ex, 
and DM groups, respectively, at p < 0.05. a is significantly different from 
the DM group, 14 weeks of age at the time point of the same group at 
p < 0.05. Con, control group; DM, diabetes group; Ex, exercise group
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and maintained the expression level of VEGF in the plan-
taris muscle of the control group, which contributed to the 
prevention of hyperglycemia-induced capillary regression. 
In addition, endurance exercise inhibited the decrease in the 
mitochondrial oxidative capacity that is typically associ-
ated with DM, which contributed to the inhibition of severe 
hyperglycemia. These results suggest that low-intensity 
endurance exercise training can both alleviate capillary 
regression and decrease mitochondrial oxidative capacity 
via inhibition of severe hyperglycemia in the skeletal mus-
cles of rats with non-obese type 2 diabetes-related severe 
hyperglycemia.

It was observed that the diabetes group exhibited severe 
hyperglycemia and capillary regression as well as decreased 
expression levels of VEGF in the plantaris muscle. In several 
studies, the capillary number of skeletal muscle was reduced 
in diabetes (Kivela et al., 2006; Marin et al., 1994; Mathieu-
Costello et al., 2003; Sexton et al., 1994), which is expected 
since VEGF expression levels regulate capillary number (Liu 
et al., 2018). In addition, previous studies have suggested 
that VEGF expression levels are decreased in diabetic con-
ditions as was observed in the present study (Hazarika et al., 
2007; Liu et al., 2018). In contrast, our previous study sug-
gested that non-severe hyperglycemia diabetes model rats did 
not show decreased VEGF expression (Kondo et al., 2015). 
VEGF expression depends on capillary regression through 
endothelial cell disruption (Tsurumi et al., 1997). In addi-
tion, hyperglycemia induces a decrease in VEGF expression 
through endothelial cell disruption (Brownlee, 2001; Yang 
et al., 2008). Furthermore, our previous study using non-se-
vere hyperglycemia diabetes rat models also showed that the 
capillary number did not decrease, as well as not show a de-
crease in VEGF expression (Kondo et al., 2015). Decreased 
capillary number was related to endothelial cell disruption 
(Fujino et al., 2005). Therefore, these results suggest that 
capillary regression may lead to a decrease in VEGF ex-
pression due to severe hyperglycemia in the present study, 
consistent with a previous study using obese diabetes condi-
tions (Hazarika et al., 2007; Liu et al., 2018). In addition, the 
decreased capillary number reported here, which is different 

from our previous study, may be related to a severe hypergly-
cemia-induced decrease in VEGF expression.

Conversely, low-intensity endurance exercise training 
prevented capillary regression in the plantaris muscle in 
non-obese diabetes-related severe hyperglycemia. In addi-
tion, exercise training in diabetes prevented decreased mi-
tochondrial oxidative capacity. Moreover, exercise training 
inhibited hyperglycemia in non-obese patients with diabe-
tes (Kishimoto et al., 2002). These results suggest that the 
prevention of capillary regression may be inhibited in cases 
of non-obese diabetes-related hyperglycemia via exercise. 
Muscle contraction during endurance exercise was shown to 
increase glucose uptake during exercise and decrease blood 
glucose levels via increased glucose consumption in the skel-
etal muscle, even in low-intensity exercise (Michishita et al., 
2008; Mul et al., 2015). In the present study, a regular exercise 
regime was set and every exercise-induced decrease in blood 
glucose level was temporary. Therefore, the exercise strategy 
prevented severe hyperglycemia-induced capillary regression 
via a muscle contraction-induced decrease in blood glucose 
level on a regular basis in hyperglycemic rats.

Numerous studies have shown that exercise training 
strongly induces an increase in PGC-1α expression in skel-
etal muscle (Baar et al., 2002; Koves et al., 2005; Norrbom 
et al., 2004). PGC-1α expression was maintained in diabetes 
even with low-intensity exercise (Kondo et al., 2015). The 
inhibition of decreased PGC-1α expression caused an im-
provement in decreased mitochondrial oxidative capacity in 
the skeletal muscle via inhibition of increased blood glucose 
levels in diabetes conditions (Nakamoto & Ishihara, 2020). 
In addition, glucose demand for skeletal muscle is related 
to mitochondrial oxidative capacity (Booth et al., 2015). 
Therefore, the prevention of decreased mitochondrial oxida-
tive capacity could be caused by the inhibition of decreased 
PGC-1α expression via exercise effects. Furthermore, cap-
illaries around the skeletal muscle have a role in supplying 
glucose to the skeletal muscle (Padilla et al., 2006). Hence, 
in the present study, the low-intensity exercise could lead to 
the inhibition of severe hyperglycemia via both the preven-
tion of capillary regression-maintained glucose supply and 

Body 
weight (g)

Relative muscle mass to 
body weight (mg/g)

Serum glucose 
(mg/dL) HbA1c (%)

Con 471 ± 9 1.07 ± 0.04 217.4 ± 18.5 3.1 ± 0.1

Ex 452 ± 7 1.11 ± 0.03 186.1 ± 15.0 3.0 ± 0.1

DM 436 ± 13 0.89 ± 0.06† 443.8 ± 20.1*,† 7.0 ± 0.3*,†

DMEx 469 ± 11 1.07 ± 0.01 231.9 ± 24.5‡ 3.2 ± 0.1‡

The values of body weight, relative muscle mass, serum glucose, and hemoglobin A1c are presented as the 
mean ±standard error of the mean (SEM).
Abbreviations: Con, control group; Ex, exercise group; DM, diabetes group; DMEx, diabetes with the exercise 
group.
*, †, and ‡ indicate significant differences in the Con, Ex, and DM groups, respectively, at p < 0.05.

T A B L E  1  Body weight (g), relative 
muscle mass (mg/g), serum glucose (mg/
dL), and hemoglobin A1c (%) at the end of 
the exercise
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the prevention of decreased mitochondrial oxidative capaci-
ty-related maintained glucose consumption. In addition, the 
inhibition of hyperglycemia via the prevention of decreased 
mitochondrial oxidative capacity may induce further preven-
tion of hyperglycemia-induced capillary regression.

This study has several limitations. First, the current find-
ings showed that low-intensity exercise can prevent capillary 
regression due to non-obese type 2 diabetes-related severe hy-
perglycemia; however, a comparison between low- and high-in-
tensity exercise was not performed. Second, in this study we 
focused on a fast-twitch muscle (plantaris), not on a slow-twitch 

muscle (e.g., soleus muscle); however, a comparison between 
fast- and slow-twitch muscle was not analyzed. This study fo-
cused on fast-twitch muscle because a percentage of the fast 
muscle fiber increases in the diabetic muscle through altered 
fiber distribution (Yasuda et al., 2002). Fast muscle fiber re-
sults in increased oxidative stress through the accumulation of 
advanced glycation end products (AGEs) due to a low tolerance 
to oxidative stress (Hagiwara et al., 2009; Snow & Thompson, 
2009; Tanaka et al., 2020). Increased oxidative stress induces 
capillary regression (Hirayama et al., 2017). Therefore, the fast-
twitch muscle causes capillary regression to a greater extent 

F I G U R E  2  Capillary to muscle fiber ratio in plantaris muscle. 
Alkaline phosphatase staining of the plantaris muscle (a–d). (a) 
Control group; (b) Exercise group; (c) Diabetes group; (d) Diabetes 
with the exercise group. The capillaries are arranged around the muscle 
fibers and visible as dark spots. The number of capillaries to muscle 
fiber ratio (C/F ratio) in the plantaris muscle (e). The values of the 
C/F ratio are presented as mean ±standard error of the mean (SEM). 
*, †, and ‡ indicate significant differences from the Con, Ex, and DM 
groups, respectively, at p < 0.05. Con, control group; DM, diabetes 
group; Ex, exercise group . Scale bar = 50 μm

(a) (b)

(c) (d)

(e)

F I G U R E  3  Succinate dehydrogenase (SDH) activity of plantaris 
muscle. SDH staining of transverse sections of the plantaris muscle 
(a–d). (a) Control group; (b) Exercise group; (c) Diabetes group; (d) 
Diabetes with exercise group. Staining intensity is directly related 
to SDH activity; darker muscle fibers indicate higher activity. SDH 
activity in the plantaris muscle (e) The values of SDH activity are 
presented as the mean ± standard error of the mean (SEM). All values 
indicate fold changes relative to the control group. a.u., arbitrary unit. 
*, †, and ‡ indicate significant differences from the Con, Ex, and DM 
groups, respectively, at p < 0.05. Con, control group; DM, diabetes 
group; Ex, exercise group. Scale bar = 50 μm

(a) (b)

(c) (d)

(e)
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compared with the slow-twitch muscle. In addition, the fast-
twitch muscle results from harmful effects such as muscle at-
rophy and dysfunction of mitochondrial metabolism due to a 
low tolerance to hyperglycemia induced-oxidative stress com-
pared with slow-twitch muscle in diabetic conditions (Ciciliot 
et al., 2013; Nakamoto & Ishihara, 2020; Tanaka et al., 2019). 
Furthermore, fast-twitch muscle in the hindlimb plays an im-
portant role as locomotor and for physical activity (Ikezoe et al., 
2011). Therefore, it would be especially important to prevent 
harmful effects in the fast-twitch muscle in the hindlimb. In ad-
dition, this study was unable to clarify the changes in the prop-
erties of muscle type. Previous studies suggested that oxidative 
capacity was dependent on fiber type properties (Nakamoto & 
Ishihara, 2020; Qatamish et al., 2020). The decrease in oxida-
tive capacity caused an increase in fast-glycolytic muscle fibers 
(type IIB) and decreased fast-oxidative muscle fibers (type IIA) 
in diabetic rats (Nakamoto & Ishihara, 2020). In addition, ex-
ercise inhibited the increase in type IIB fibers (Nakamoto & 
Ishihara, 2020). Therefore, the preventive effects of decreased 
oxidative capacity may result in muscle fiber properties inhib-
iting the increase of fast-glycolytic muscle fibers in the pres-
ent study. Third, the present study focused on the mechanism 
of how low-intensity exercise regulates capillary regression 
and decreased mitochondrial oxidative capacity in the skeletal 
muscle of rats with non-obese type 2 diabetes-related severe 
hyperglycemia. However, we could not clarify the complete 
mechanism in the present study. Hence, further studies will be 
required to clarify these issues.

5 |  CONCLUSION

Low-intensity endurance exercise training prevented cap-
illary regression and decreased mitochondrial oxidative 

capacity in the skeletal muscle of rats with non-obese type 
2 diabetes-related severe hyperglycemia. These results sug-
gest that low-intensity endurance exercise may have the po-
tential to become an effective therapeutic intervention for 
the prevention of diabetes-related complications in severe 
hyperglycemia patients for whom high-intensity exercise is 
contraindicated.
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