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Abstract

The identification of risk factors for acute rejection (AR) may lead to strategies to improve

success of kidney transplantation. Ectonucleotidases are ectoenzymes that hydrolyze

extracellular nucleotides into nucleosides, modulating the purinergic signaling. Some mem-

bers of the Ectonucleotidase family have been linked to transplant rejection processes.

However, the association of Ectonucleotide Pyrophosphatase / Phosphodiesterase 1

(ENPP1) with AR has not yet been evaluated. The aim of this study was to evaluate the

association between the K121Q polymorphism of ENPP1 gene and AR in kidney transplant

patients. We analyzed 449 subjects without AR and 98 with AR from a retrospective cohort

of kidney transplant patients from Southern Brazil. K121Q polymorphism was genotyped

using allelic discrimination-real-time PCR. Cox regression analysis was used to evaluate

freedom of AR in kidney transplant patients according to genotypes. Q allele frequency was

17.6% in recipients without AR and 21.9% in those with AR (P = 0.209). Genotype frequen-

cies of the K121Q polymorphism were in Hardy-Weinberg equilibrium in non-AR patients (P

= 0.70). The Q/Q genotype (recessive model) was associated with AR (HR = 2.83, 95% CI

1.08–7.45; P = 0.034) after adjusting for confounders factors. Our findings suggest a novel

association between the ENPP1 121Q/Q genotype and AR in kidney transplant recipients.

Introduction

Kidney transplantation has become the treatment of choice for a substantial proportion of

patients with end-stage renal disease. Transplantation has been shown to provide better quality

of life and longer life expectancy than dialysis treatment [1, 2]. However, the survival rate in

PLOS ONE | https://doi.org/10.1371/journal.pone.0219062 July 18, 2019 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sortica DA, Crispim D, Bauer AC, Nique

PS, Nicoletto BB, Crestani RP, et al. (2019) K121Q

polymorphism in the Ectonucleotide

Pyrophosphatase/Phosphodiesterase 1 gene is

associated with acute kidney rejection. PLoS ONE

14(7): e0219062. https://doi.org/10.1371/journal.

pone.0219062

Editor: Lucienne Chatenoud, Université Paris

Descartes, FRANCE

Received: November 19, 2018

Accepted: June 15, 2019

Published: July 18, 2019

Copyright: © 2019 Sortica et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: Funding received during the study:

Conselho Nacional de Desenvolvimento Cientı́fico e

Tecnológico (CNPq), Coordenação de

Aperfeiçoamento de Pessoal de Nı́vel Superior

(CAPES), Fundos de Incentivo à Pesquisa e

Eventos (FIPE) from Hospital de Clı́nicas de Porto

Alegre, Fundação de Amparo à Pesquisa do Estado

http://orcid.org/0000-0002-1813-4491
https://doi.org/10.1371/journal.pone.0219062
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219062&domain=pdf&date_stamp=2019-07-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219062&domain=pdf&date_stamp=2019-07-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219062&domain=pdf&date_stamp=2019-07-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219062&domain=pdf&date_stamp=2019-07-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219062&domain=pdf&date_stamp=2019-07-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219062&domain=pdf&date_stamp=2019-07-18
https://doi.org/10.1371/journal.pone.0219062
https://doi.org/10.1371/journal.pone.0219062
http://creativecommons.org/licenses/by/4.0/


kidney transplant recipients is significantly lower than age-matched controls in the general

population mainly due to recipient’s related factors, that include co-morbidities and duration

of dialysis treatments, and transplant-related complications, such as infections, hypertension,

diabetes, cancer, and acute rejection (AR) episodes [3, 4]. AR is correlated with progression to

chronic allograft dysfunction, which is the most frequent cause of renal transplant failure [5].

AR is a potentially destructive allograft immune response that may occur at any time during

the life span of a grafted organ. A number of factors are known to be associated with increased

risk of AR, including recipient’s age, ethnicity, HLA sensitization and occurrence of delayed

graft function (DGF). However, these factors alone may not fully account for all rejection epi-

sodes [6, 7]. Currently the gold standard for AR diagnosis is the allograft biopsy, an invasive

procedure with related complications [8]. The development of noninvasive tools that help to

predict the risk of AR might ultimately lead to strategies to improve patient and allograft out-

comes [9, 10]. In this scenario, DNA polymorphisms that might be predictors of AR are worth

to be thoroughly investigated [11].

Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides into nucleo-

sides. They consist of four families, namely, ectonucleoside triphosphate diphosphohydrolases

(NTPDases), ectonucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-5’-nucleotid-

ases and alkaline phosphatases, and they are involved in the modulation of purinergic signal-

ing [12]. Different ectonucleotidases, including NTPDase1 [13] and ecto-5’-nucleotidase, have

been associated with chronic allograft rejection [14].

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) belongs to the NPP family.

This enzyme was first reported as a surface marker of B lymphocytes, being previously called

plasma-cell differentiation antigen-1 (PC-1). ENPP1 is a cell membrane protein with an extra-

cellular active site catalyzing the release of nucleoside 5-monophosphatase from nucleotides

and their derivatives [15]. This enzyme is expressed in various tissues, including kidney, heart,

brain, pancreatic islets, placenta, lung, salivary gland, epididymis, chondrocytes and lympho-

cytes [15]. It seems to be involved in immune system modulation [16, 17], possibly via degra-

dation of extracellular adenosine triphosphate (ATP) and adenosine generation [18]. It has

been shown that the K121Q polymorphism in the ENPP1 gene is a risk factor for diabetes mel-

litus (DM) [15, 19] and diabetic kidney disease [20, 21], but its association with AR has not

been evaluated.

Considering the potential involvement of different ectonucleotidases in transplant rejec-

tion, and a possible role of ENPP1 in immune modulation, we hypothesized that polymor-

phisms in the ENPP1 gene might play a role in the AR process and, if so, could be used as

predictor biomarkers of AR. Therefore, the aim of the present study was to evaluate the associ-

ation between the ENPP1 K121Q polymorphism and AR in a cohort of kidney transplant

recipients.

Materials and methods

Study subjects

This nested case-control study was undertaken within a cohort of kidney transplant recipients

from a tertiary teaching hospital in Southern Brazil. It was designed in accordance with

STROBE and STREGA guidelines for reporting of genetic association studies [22, 23]. Six hun-

dred and thirteen kidney transplant patients were initially recruited from 2002 to 2016. All

recipients were followed-up for at least one year after transplantation. Among them, 501

(81.7%) patients were self-defined as white. Considering that the frequency of the ENPP1
K121Q polymorphism differs between ethnic groups [24, 25], we excluded non-white subjects

from the study. We also excluded patients without genotype data, biopsy proven acute
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antibody-mediated rejection and those who received a previous transplant, corresponding to

10.37% of the total group. Hence, the analyzed sample comprised 449 subjects. Among them,

98 patients had at least one AR episode (cases) and 351 patients did not present AR episodes

during follow-up (control group) (S1 Fig).

Study variables

Rejections that occurred within the first post-transplant year were diagnosed by an experi-

enced transplant pathologist according to the Banff classification currently available [26–29].

Data were collected retrospectively from kidney transplant electronic records, and included:

donor type [living or deceased (with brain death)], recipient and donor age at transplantation,

recipient and donor gender, cold ischemia time, underlying kidney disease, number of preg-

nancies, number of blood transfusions, cytomegalovirus (CMV) and hepatitis C virus (HCV),

renal replacement therapy modality, blood pressure (BP) previous to transplant, smoking hab-

its, presence of DM or a family history of this disease, occurrence of DGF (defined by the

requirement for hemodialysis in the first post-transplantation week), HLA mismatches, panel

reactive antibody (PRA) class I/II, donor specific antibodies (DSA), induction immunosup-

pressive therapy, maintenance therapy, occurrence of post-transplant DM (PTDM) and time

of AR diagnosis. Until 2006, HLA typing of donors and recipients were performed by

PCR-SSP (polymerase chain reaction—sequence specific primers) technique [30], after that,

the PCR-SSO (PCR—sequence specific oligonucleotide) technique was used [31]. The study

was approved by the Ethics Committee of Hospital de Clı́nicas de Porto Alegre, and all subjects

received adequate information about this study and gave their written informed consent.

Genotyping of the ENPP1 K121Q polymorphism

Peripheral blood samples were collected from all patients for DNA extraction and genotyping

of the ENPP1 K121Q polymorphism. DNA was extracted using a standardized salting-out pro-

cedure. Genotyping of the K121Q (A/C) polymorphism (rs1044498) in exon 4 of the ENPP1
gene was performed using primers and probes contained in the Human Custom TaqMan

Genotyping Assay 20x (Thermo Fisher Scientific Inc., Waltham, MA, USA). Primer and probe

sequences used for genotyping were: 5-AGCCTCTGTGCCTGTTCAG-3’ (forward primer),

5’-ACACACAGAACTGTAGTTGATGCA-3’ (reverse primer), 5’-AGTCGCCCTTGTCCTT-
3’ (VIC probe), and 5’-TCGCCCTGGTCCTT-3’ (FAM probe). All reactions were con-

ducted in 96-well plates, in a total of 5 μl volume using 2 ng of genomic DNA, TaqMan Geno-

typing Master Mix 1x (Thermo Fisher Scientific Inc.) and Custom TaqMan Genotyping Assay

1x, and ran on the 7500 Fast Real-Time PCR System (Thermo Fisher Scientific Inc.).

Statistical analyses

Allelic frequencies were determined by gene counting, and departures from the Hardy–Wein-

berg equilibrium (HWE) were verified using χ2 test. Allele and genotype frequencies were

compared between groups of patients using χ2 tests. Clinical and laboratory characteristics

were compared between groups by using unpaired Student’s t-test or χ2, as appropriate. Vari-

ables are shown as mean ± SD or absolute numbers (percentages). The magnitude of the asso-

ciations with AR were estimated using odds ratios (ORs) with 95% confidence intervals (95%

CI). Hazard ratio (HR) and 95% CI obtained from a Cox regression model was used to evalu-

ate freedom of AR episodes in patients according to the presence of the 121Q/Q genotype

(recessive model). The selection criteria for variables included in the Cox analysis were a well-

established association with AR or P values< 0.10 obtained in the univariate Cox regression.

In addition, logistic regression analysis was performed to test the independent association of
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the ENPP1 K121Q polymorphism with AR, adjusting for the same covariates used in the Cox

analysis. Results for which P values were less than 0.05 were considered statistically significant.

Statistical analyses were performed using SPSS version 18.0 (SPSS, Chicago, IL).

Results and discussion

Sample description

Among the 449 renal transplant recipients included in this study, 98 presented biopsy proven

acute cellular rejection and three hundred and fifty one patients did not have AR episodes

(non-AR group). The median time for biopsy-proven AR was 12.5 days (2–329, minimum-

maximum values). The main underlying diseases for CKD were: hypertension (22.8%), dia-

betic nephropathy (11.4%), primary glomerulonephritis (13.9%), and secondary glomerulone-

phritis (2%). Twenty one percent of the patients had an unknown underlying disease. Patient’s

demographic and clinical characteristics are shown in Table 1. There were no significant dif-

ferences between AR and non-AR groups regarding donor and recipient gender and age, num-

ber of blood transfusions CMV, HCV, number of pregnancies, renal replacement therapy

modality, smoking habits, presence of DM, donor type, cold ischemia time, hypertension,

HLA-A and B, DSA, and PRA class I or II. However, the mean of total HLA-mismatches was

higher in the AR group than in the non-AR group (P = 0.011). Likewise, the frequency of

patients with 2 HLA-DR mismatches was higher in the AR group than in the non-AR group

(P = 0.008). Stratification of patients according to the two techniques used for HLA typing did

not change the results. DGF occurred more frequently in the AR group compared to non-AR

patients (P = 0.024). Moreover, a lower percentage of recipients with AR received antibody

induction therapy with anti-thymocyte globulin (ATG) in comparison with the non-AR group

(P = 0.004).

Maintenance immunosuppression was achieved with prednisone, tacrolimus and myco-

phenolate for 269 patients (50.9%), 97 patients (18.4%) used prednisone, mycophenolate and

cyclosporine, and the remaining patients (30.7%) received other combined therapies.

Molecular analyses

Genotype frequencies were in HWE in controls (P = 0.70). The presence of Q/Q genotype was

associated with AR assuming either additive (K/K vs. Q/Q; OR = 3.064; 95% CI 1.267–7.408;

P = 0.020) or recessive (K/K+K/Q vs. Q/Q; OR = 3.210; 95% CI 1.343–7.673; P = 0.013) inheri-

tance models (Table 2). The Q allele frequency was similar in AR patients compared to non-

AR patients (21.9% vs. 17.6%, respectively; P = 0.209).

In a multivariable Cox regression analysis, the ENPP1 121Q allele remained associated with

AR in the recessive model (HR = 2.838, 95% CI 1.080–7.457, P = 0.034; Fig 1) adjusting for

HLA-DR mismatches, pregnancies, blood transfusions, recipient age, DGF, and induction

therapy. In Table 3, we show HRs for each variable included in the Cox regression analysis.

Among these variables, only DGF was associated with risk for AR (HR = 2.774, 95% CI 1.273–

6.045, P = 0.010), while induction therapy was associated with protection against AR

(HR = 0.345, 95% CI 0.158–0.755, P = 0.008). The independent association of the ENPP1
121Q/Q genotype with AR was confirmed by logistic regression analysis adjusting for

HLA-DR mismatches, pregnancies, blood transfusions, recipient age, DGF, and induction

therapy (OR = 6.41, 95% CI 1.46–28.19, P = 0.014; S1 Table).

ENPP1 K121Q polymorphism in kidney graft rejection
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Conclusions

Here, we demonstrate, for the first time, the independent association of the ENPP1 121Q/Q

genotype with AR in a cohort of white Brazilian kidney transplant patients.

Ectonucleotidases have been shown to modulate local immune responses by lymphocytes,

with anti-inflammatory action that occurs, possibly, via degradation of the extracellular ATP

Table 1. Demographic and clinical characteristics of kidney transplant recipients classified by presence kidney acute rejection.

AR

(n = 98)�
Non-AR

(n = 351)�
P values

Donor type (deceased), N (%) 64 (65.3) 253 (72.1) 0.240

Cold ischemia time, Yes (%) 14.04 ± 10.82 19.90 ± 74.92 0.441

Donor gender, N (%) 47 (53.4) 171 (53.4) 0.999

Donor age (years) 41.36 ± 16.05 42.43 ± 15.09 0.559

Recipient age (years) 42.41 ± 12.79 45.23 ± 12.78 0.054

Recipient gender, N (%) 61 (62.2) 210 (59.8) 0.752

Pregnancy, N (%)

0 6 (16.2) 32 (22.7) 0.528

�1 31 (83.8) 109 (77.3)

Blood transfusion, N (%)

0 49 (50.0) 180 (52.9) 0.690

�1 49 (50.0) 160 (47.1)

Positive CMV status, Yes (%) 24 (25.5) 57 (16.5) 0.080

Positive HCV status, Yes (%) 15 (9.1) 31 (15.8) 0.091

Renal replacement therapy, N (%)

Hemodialysis 93 (94.9) 319 (90.9) 0.404

Peritoneal dialysis 4 (4.1) 22 (6.3)

Preemptive transplant 1 (1.0) 10 (2.8)

Smoking habits, Yes (%) 23 (23.5) 71 (20.2) 0.480

DM status, Yes (%) 9 (9.2) 47 (13.4) 0.346

DGF, Yes (%) 64 (65.3) 182 (51.9) 0.024

HLA-A mismatches (0/1/2) 12/48/36 50/170/122 0.857

HL-B mismatches (0/1/2) 8/47/41 59/157/126 0.094

HLA-DR mismatches (0/1/2) 25/40/31 122/155/61 0.008

HLA mismatches A/B/DR, mean 3.66 3.23 0.011

Hypertension, Yes (%) 72 (77.4) 282 (85.5) 0.090

PRA–Class I, N (%) 27 (45.8) 112 (48.7) 0.798

PRA–Class II, N (%) 25 (42.4) 93 (40.4) 0.903

DSA, Yes (%) 9 (10.1) 30 (9.3) 0.982

Antibody induction therapy, Yes (%)

OKT3 or ATG or Basiliximab 58 (59.8) 260 (74.3) 0.008

ATG 13 (13.3) 99 (28.2) 0.004

OKT3 5 (5.1) 37 (10.5) 0.170

Basiliximab 44 (44.9) 154 (43.9) 0.948

Data are presented as mean ± SD or n (%).

� Unknown status for transfusion: n = 11, Delayed graft function (DGF): n = 1, HLA-A mismatches: n = 11, HLA-B mismatches: n = 11, HLA-DR mismatches: n = 15,

HLA mismatches A/B/DR: n = 15, Hypertension: n = 27, Last panel reactive antibody Class I/II (PRA Class I/II): n = 161 (among them, 136 patients had ELISA-PRA

test negative), Donor specific antibody (DSA): n = 38, OKT3: n = 1. Anti-thymocyte Globulin (ATG), Hepatitis C virus (HCV): n = 13, Smoking habits: n = 2, and

Cytomegalovirus (CMV): n = 8.

https://doi.org/10.1371/journal.pone.0219062.t001
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and generation of adenosine [12, 18, 32, 33]. Members of the NTPDase (CD39) family are cell

membrane enzymes that hydrolyze ATP into adenosine diphosphate (ADP) and ADP into

adenosine monophosphate (AMP) in three different steps, releasing inorganic phosphate (Pi).

Following that, ecto-5’-nucleotidases (CD73) dephosphorylate AMP into adenosine [34, 35].

In contrast, ENPP1 degrades ATP and ADP into AMP in a single step, releasing AMP along

with pyrophosphate (PPi)[12]. In the final hydrolyzation step, the extracellular AMP can be

hydrolyzed to adenosine and Pi by the effect of either ecto-50-nucleotidase (CD73) or one of

the four alkaline phosphatase isoforms [32] (Fig 2A).

NTPDase1 (CD39) and ecto-5’-nucleotidases (CD73), as major nucleotide metabolizing

enzymes, are known to regulate immunity and inflammation and, possibly, to protect against

hypoxic and ischemic tissue injuries [36]. Accordingly, CD39 and CD73 can be viewed as

“immunological switches” that shift ATP-driven pro-inflammatory immune cell activity

towards an adenosine mediated anti-inflammatory state [36]. Poelstra et al [37], studying a

murine glomerulonephritis model, indicated that the ecto-5’-nucleotidase has an anti-inflam-

matory activity in glomerular cells. Therefore, it is conceivable to suppose that ENPP1 might

play a role in the inflammatory process of organ transplant rejection. In this context, the 121Q

allele that might lead to decreased ENPP1 activity could be a potential AR risk factor. Further

experimental studies are needed in order to better clarify the putative role of ENPP1 in AR of

organ allografts.

In order to speculate mechanistically on these findings it is important to mention that aden-

osine, released by ectonucleotidase activities (including ENPP1), is known to be an inhibitory

mediator of T effector lymphocytes in various immune diseases [38–40]. CD39 and C73 are

expressed on the surface of T regulatory (Treg) cells, converting ATP into adenosine, which

acts as a substrate for Treg immunosuppressive and anti-inflammatory activities [41–43].

Therefore, it is possible that the presence of the ENPP1 Q/Q genotype has an indirect negative

effect on CD39 e CD73 activities, since mutated ENPP1 will generate less substrate for the

other ectonucleotidases in the cascade. This might lead to increased activity of T effector lym-

phocytes and thus predispose to AR (Fig 2B). To confirm this hypothesis, the functional effect

of the Q/Q genotype on ENPP1 activity in kidney transplant patients must be further

explored.

It is established that HLA sensitizing events, such as pregnancies, blood transfusions, and

prior transplants, might increase the risk of AR [44]. Likewise, donor and recipient character-

istics, such as age and ethnicity also influence this outcome [45–47]. Also, HLA mismatches

Table 2. Frequencies of the ENPP1 K121Q polymorphism between kidney transplant patients with acute rejection (AR) and without acute rejection (non-AR).

ENPP1 K121Q polymorphism AR

(n = 98)

Non-AR

(n = 351)

P value P value for additive modela P value for dominant modelb P value for recessive modelc

Genotype

Q/Q

K/Q

K/K

10 (10.2) 12 (3.4) 0.019 0.020 0.835 0.013

23 (23.5) 100 (28.5)

65 (66.3) 239 (68.1)

Allele

Q 0.219 0.176 0.209 - - -

K 0.780 0.823

Data are shown as n (%) or proportion.
aQ/Q vs. K/K
bQQ/KQ vs. KK
cQQ vs. KQ/KK. P values were computed by χ2 tests for comparisons between groups.

https://doi.org/10.1371/journal.pone.0219062.t002
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are a relevant risk factor for rejection [48, 49]. In our sample, only HLA-DR mismatches,

occurrence of DGF and induction therapy with ATG were differently distributed between AR

and non-AR groups. Noteworthy, the ENPP1 K121Q polymorphism remained highly associ-

ated with AR after adjustment for HLA-DR mismatches, pregnancies, blood transfusions,

recipient age, DGF, and induction therapy.

Fig 1. Cox regression analysis of the ENPP1 K121Q polymorphism and acute rejection (AR) episodes in kidney transplant recipients. Adjusted

for HLA-DR, pregnancies, blood transfusions, recipient age, delayed graft function, and induction therapy.

https://doi.org/10.1371/journal.pone.0219062.g001
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ENPP1 K121Q polymorphism is differentially distributed across ethnicities [15, 20]. In this

context, some studies showed that the Q allele has an increased prevalence among African-

Brazilians [25] and other African descendent populations [50–52]. Based on this knowledge

and also because the vast majority of our sample was comprised of white subjects, we evaluated

only white subjects in the present study.

The present study has limitations to be acknowledged, including its retrospective design,

and being a single center study without a confirmation cohort. However, we believe that the

study of the K121Q polymorphism and its relationship with AR is worth evaluation in other

populations in order to confirm or deny the present findings.

In conclusion, our findings support an association between the ENPP1 K121Q polymor-

phism and AR in kidney transplant patients. The precise mechanisms behind this finding are

uncertain and need to be further elucidated. Screening of this polymorphism may be useful to

Table 3. Multivariate Cox regression analysis of risk factors for AR.

Variable HR (95% CI) P value

Receptors age 0.969 0.937–1.003 0.071

Pregnancy 1.434 0.548–3.758 0.463

Blood Transfusion 1.052 0.531–2.085 0.884

DGF 2.774 1.273–6.045 0.010

HLA-DR mismatches (1) 0.648 0.280–1.499 0.310

HLA-DR mismatches (2) 1.237 0.530–2.884 0.623

Q/Q genotype (recessive model) 2.838 1.080–7.457 0.034

Induction therapy 0.345 0.158–0.755 0.008

DGF, delayed graft function; HR, hazard ratio; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0219062.t003

Fig 2. (A) Ectonucleotidases cascade–Members of the NTPDase (CD39) family are cell membrane enzymes that

hydrolyze ATP into ADP as well as ADP into AMP through three different steps. In contrast, NPPs are able to degrade

ATP and ADP into AMP in a single step, releasing AMP. In the final hydrolyzation step, the extracellular AMP can

then be hydrolyzed to adenosine and inorganic phosphate (Pi) by the effect of Ecto-50-nucleotidase (CD73). (B)

Regulation of immunity by ectonucleotidase cascade–The occurrence of pathological insults, such as AR, activates T

cell receptors (TCR) expressed in T regulatory cells (Treg), which induces CD39/CD73 activity leading to adenosine

generation. Increased levels of extracellular adenosine promote immunosuppressive and anti-inflammatory activity in

Treg cells. Also, through its receptor A2A in the T effector cell, adenosine suppresses T cell immunity by inhibiting

activation of T effector cells. Thus, by employing different mechanisms on Treg and T effector cells, adenosine

promotes an immunosuppressive effect.

https://doi.org/10.1371/journal.pone.0219062.g002
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predict those patients (carriers of Q/Q genotype) more prone to experience rejection and,

therefore, may need a more intense vigilance and perhaps more intense immunosuppressive

therapy.

Supporting information

S1 Fig. Flowchart. Flowchart showing the strategy used to select patients for inclusion in the

study.

(PDF)

S1 Table. Multivariate logistic regression analysis of risk factors for AR.

(DOCX)

S2 Table. Minimal Data Set used for analyses.

(XLS)

Acknowledgments
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